導航:首頁 > 數據分析 > 技術性數據是什麼

技術性數據是什麼

發布時間:2024-03-15 10:24:26

大數據技術是學什麼的就業方向

大數據技術是學數學專業、計算機專業的就業方向。

大數據技術里會用到很多學科學習的知識,並不是單一的專業可以學完大數據所需要掌握的技術,所以大數據屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。

Ⅱ 數據挖掘技術包括哪些

統計技術、關聯規則、基於歷史的MBR分析、遺傳演算法、聚集檢測、連接分析、決策樹、神經網路、粗糙集、模糊集、回歸分析、差別分析、概念描述。

1、統計技術

數據挖掘涉及的科學領域和技術很多,如統計技術。統計技術對數據集進行挖掘的主要思想是:統計的方法對給定的數據集合假設了一個分布或者概率模型(例如一個正態分布)然後根據模型採用相應的方法來進行挖掘。

2、關聯規則

數據關聯是資料庫中存在的一類重要的可被發現的知識。若兩個或多個變數的取值之I司存在某種規律性,就稱為關聯。關聯可分為簡單關聯、時序關聯、因果關聯。關聯分析的目的是找出資料庫中隱藏的關聯網。有時並不知道資料庫中數據的關聯函數,即使知道也是不確定的,因此關聯分析生成的規則帶有可信度。

13、概念描述

概念描述就是對某類對象的內涵進行描述,並概括這類對象的有關特徵。概念描述分為特徵性描述和區別性描述,前者描述某類對象的共同特徵,後者描述不同類對象之間的區別,生成一個類的特徵性描述只涉及該類對象中所有對象的共性。

Ⅲ 大數據技術是什麼

大數據本身是一個抽象的概念。從一般意義上講,大數據是指無法在有限時間內用常規軟體工具對其進行獲取、存儲、管理和處理的數據集合。
目前,業界對大數據還沒有一個統一的定義,但是大家普遍認為,大數據具備 Volume、Velocity、Variety 和 Value 四個特徵,簡稱「4V」,即數據體量巨大、數據速度快、數據類型繁多和數據價值密度低,如圖 1 所示。下面分別對每個特徵作簡要描述。

1)Volume:表示大數據的數據體量巨大。
數據集合的規模不斷擴大,已經從 GB 級增加到 TB 級再增加到 PB 級,近年來,數據量甚至開始以 EB 和 ZB 來計數。

例如,一個中型城市的視頻監控信息一天就能達到幾十 TB 的數據量。網路首頁導航每天需要提供的數據超過 1-5PB,如果將這些數據列印出來,會超過 5000 億張 A4 紙。圖 2 展示了每分鍾互聯網產生的各類數據的量。

2)Velocity:表示大數據的數據產生、處理和分析的速度在持續加快。

加速的原因是數據創建的實時性特點,以及將流數據結合到業務流程和決策過程中的需求。數據處理速度快,處理模式已經開始從批處理轉向流處理。

業界對大數據的處理能力有一個稱謂——「 1 秒定律」,也就是說,可以從各種類型的數據中快速獲得高價值的信息。大數據的快速處理能力充分體現出它與傳統的數據處理技術的本質區別。

3)Variety:表示大數據的數據類型繁多。

傳統 IT 產業產生和處理的數據類型較為單一,大部分是結構化數據。隨著感測器、智能設備、社交網路、物聯網、移動計算、在線廣告等新的渠道和技術不斷涌現,產生的數據類型無以計數。

現在的數據類型不再只是格式化數據,更多的是半結構化或者非結構化數據,如 XML、郵件、博客、即時消息、視頻、照片、點擊流、 日誌文件等。企業需要整合、存儲和分析來自復雜的傳統和非傳統信息源的數據,包括企業內部和外部的數據。

4)Value:表示大數據的數據價值密度低。

大數據由於體量不斷加大,單位數據的價值密 度在不斷降低,然而數據的整體價值在提高。以監控視頻為例,在一小時的視頻中,有用的數據可能僅僅只有一兩秒,但是卻會非常重要。現在許多專家已經將大數據等同於黃金和石油,這表示大數據當中蘊含了無限的商業價值。

通過對大數據進行處理,找出其中潛在的商業價值,將會產生巨大的商業利潤

Ⅳ 大數據技術的特性有哪些

大數據技術是指從各種各樣海量類型耐渣核的數據中,快速獲得有價值信息的能力。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,梁腔分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。

大數據具備以下4個特性:

一是數據量巨大。例如,人類生產的所有昌掘印刷材料的數據量僅為200PB。典型個人計算機硬碟的容量為TB量級,而一些大企業的數據量已經接近EB量級。

二是數據類型多樣。現在的數據類型不僅是文本形式,更多的是圖片、視頻、音頻、地理位置信息等多類型的數據,個性化數據占絕對多數。

三是處理速度快。數據處理遵循「1秒定律」,可從各種類型的數據中快速獲得高價值的信息。

四是價值密度低。以視頻為例,一小時的視頻,在不間斷的測試過程中,可能有用的數據僅僅只有一兩秒。

Ⅳ 數據分析技術有哪些

1、數據採集


對於任何的數據分析來說,首要的就是數據採集,因此大數據分析軟體的第一個技術就是數據採集的技術,該工具能夠將分布在互聯網上的數據,一些移動客戶端中的 數據進行快速而又廣泛的搜集,同時它還能夠迅速的將一些其他的平台中的數據源中的數據導入到該工具中,對數據進行清洗、轉換、集成等,從而形成在該工具的資料庫中或者是數據集市當中,為聯系分析處理和數據挖掘提供了基礎。


2、數據存取


數據在採集之後,大數據分析的另一個技術數據存取將會繼續發揮作用,能夠關系資料庫,方便用戶在使用中儲存原始性的數據,並且快速的採集和使用,再有就是基礎性的架構,比如說運儲存和分布式的文件儲存等,都是比較常見的一種。


3、數據處理


數據處理可以說是該軟體具有的最核心的技術之一,面對龐大而又復雜的數據,該工具能夠運用一些計算方法或者是統計的方法等對數據進行處理,包括對它的統計、歸納、分類等,從而能夠讓用戶深度的了解到數據所具有的深度價值。


4、統計分析


統計分析則是該軟體所具有的另一個核心功能,比如說假設性的檢驗等,可以幫助用戶分析出現某一種數據現象的原因是什麼,差異分析則可以比較出企業的產品銷售在不同的時間和地區中所顯示出來的巨大差異,以便未來更合理的在時間和地域中進行布局。


5、相關性分析


某一種數據現象和另外一種數據現象之間存在怎樣的關系,大數據分析通過數據的增長減少變化等都可以分析出二者之間的關系,此外,聚類分析以及主成分分析和對應分析等都是常用的技術,這些技術的運用會讓數據開發更接近人們的應用目標。

Ⅵ 大數據的核心技術是什麼

大數據技術的體系龐大且復雜,基礎的技術包含數據的採集、數據預處理、分布式存儲、資料庫、數據倉庫、機器學習、並行計算、可視化等。
1、數據採集與預處理:FlumeNG實時日誌收集系統,支持在日誌系統中定製各類數據發送方,用於收集數據;Zookeeper是一個分布式的,開放源碼的分布式應用程序協調服務,提供數據同步服務。
2、數據存儲:Hadoop作為一個開源的框架,專為離線和大規模數據分析而設計,HDFS作為其核心的存儲引擎,已被廣泛用於數據存儲。HBase,是一個分布式的、面向列的開源資料庫,可以認為是hdfs的封裝,本質是數據存儲、NoSQL資料庫。
3、數據清洗:MapRece作為Hadoop的查詢引擎,用於大規模數據集的並行計算。
4、數據查詢分析:Hive的核心工作就是把SQL語句翻譯成MR程序,可以將結構化的數據映射為一張資料庫表,並提供HQL(HiveSQL)查詢功能。Spark啟用了內存分布數據集,除了能夠提供互動式查詢外,它還可以優化迭代工作負載。
5、數據可視化:對接一些BI平台,將分析得到的數據進行可視化,用於指導決策服務。

閱讀全文

與技術性數據是什麼相關的資料

熱點內容
一根數據線多少錢oppo 瀏覽:622
費用較高的網路類型是 瀏覽:570
怎麼查看一個網站的後台 瀏覽:967
核桃編程有什麼用處 瀏覽:796
如何用文本把數據導入列印系統 瀏覽:629
電信5s3g能升級4g嗎 瀏覽:153
linux內核缺頁異常 瀏覽:258
word2010取消畫布 瀏覽:943
javajframe更新界面 瀏覽:63
機械硬碟u盤放不進4g文件 瀏覽:81
linux下如何復制黏貼 瀏覽:479
蘋果安裝ipa文件 瀏覽:757
5sqq分享視頻文件 瀏覽:67
華為各版本系統 瀏覽:145
編程中的封裝性是什麼意思 瀏覽:43
程序設計畢業答辯ppt 瀏覽:742
美版5s有鎖版本好 瀏覽:200
解壓文件電腦很卡 瀏覽:551
現金比率在哪個資料庫找到 瀏覽:682
c獲取路徑下所有文件 瀏覽:478

友情鏈接