『壹』 數據加工處理的方法有哪些
數據處理,是對數據的採集、存儲、檢索、加工、變換和傳輸。根據處理設備的結構方式、工作方式,以及數據的時間空間分布方式的不同,數據處理有不同的方式。不同的處理方式要求不同的硬體和軟體支持。每種處理方式都有自己的特點,應當根據應用問題的實際環境選擇合適的處理方式。根據處理設備的結構方式、工作方式,以及數據的時間空間分布方式的不同,數據處理有不同的方式。不同的處理方式要求不同的硬體和軟體支持。每種處理方式都有自己的特點,應當根據應用問題的實際環境選擇合適的處理方式。數據處理主要有四種分類方式①根據處理設備的結構方式區分,有聯機處理方式和離線處理方式。②根據數據處理時間的分配方式區分,有批處理方式、分時處理方式和實時處理方式。③根據數據處理空間的分布方式區分,有集中式處理方式和分布處理方式。④根據計算機中央處理器的工作方式區分,有單道作業處理方式、多道作業處理方式和互動式處理方式。
數據處理對數據(包括數值的和非數值的)進行分析和加工的技術過程。包括對各種原始數據的分析、整理、計算、編輯等的加工和處理。比數據分析含義廣。隨著計算機的日益普及,在計算機應用領域中,數值計算所佔比重很小,通過計算機數據處理進行信息管理已成為主要的應用。如側繪制圖管理、倉庫管理、財會管理、交通運輸管理,技術情報管理、辦公室自動化等。在地理數據方面既有大量自然環境數據(土地、水、氣候、生物等各類資源數據),也有大量社會經濟數據(人口、交通、工農業等),常要求進行綜合性數據處理。故需建立地理資料庫,系統地整理和存儲地理數據減少冗餘,發展數據處理軟體,充分利用資料庫技術進行數據管理和處理。
『貳』 數據處理經歷了哪幾個階段
數據治理流程是從數據規劃、數據採集、數據儲存管理到數據應用整個流程的無序到有序的過程,也是標准化流程的構建過程。
根據每一個過程的特點,我們可以將數據治理流程總結為四個字,即「理」、「采」、「存」、「用」。
1.理:梳理業務流程,規劃數據資源
對於企業來說,每天的實時數據都會超過TB級別,需要採集用戶的哪些數據,這么多的數據放在哪裡,如何放,以什麼樣的方式放?
這些問題都是需要事先進行規劃的,需要有一套從無序變為有序的流程,這個過程需要跨部門的協作,包括了前端、後端、數據工程師、數據分析師、項目經理等角色的參與。
2.采:ETL採集、去重、脫敏、轉換、關聯、去除異常值
前後端將採集到的數據給到數據部門,數據部門通過ETL工具將數據從來源端經過抽取(extract)、轉換(transform)、載入(load)至目的端的過程,目的是將散落和零亂的數據集中存儲起來。
3.存:大數據高性能存儲及管理
這么多的業務數據存在哪裡?這需要有一高性能的大數據存儲系統,在這套系統裡面將數據進行分門別類放到其對應的庫裡面,為後續的管理及使用提供最大的便利。
4.用:即時查詢、報表監控、智能分析、模型預測
數據的最終目的就是輔助業務進行決策,前面的幾個流程都是為最終的查詢、分析、監控做鋪墊。
這個階段就是數據分析師的主場,分析師們運用這些標准化的數據可以進行即時的查詢、指標體系和報表體系的建立、業務問題的分析,甚至是模型的預測。
『叄』 數據處理是什麼意思
數據處理是對數據(包括數值的和非數值的)進行分析和加工的技術過程。包括對各種原始數據的分析、整理、計算、編輯等的加工和處理。數據處理的基本目的是從大量的、可能是雜亂無章的、難以理解的數據中抽取並推導出對於某些特定的人們來說是有價值、有意義的數據。
數據處理是系統工程和自動控制的基本環節。數據處理貫穿於社會生產和社會生活的各個領域。數據處理技術的發展及其應用的廣度和深度,極大地影響著人類社會發展的進程。
(3)數據處理包括數據的什麼擴展閱讀:
計算機數據處理主要包括8個方面:
1、數據採集:採集所需的信息。
2、數據轉換:把信息轉換成機器能夠接收的形式。
3、數據分組:指定編碼,按有關信息進行有效的分組。
4、數據組織:整理數據或用某些方法安排數據,以便進行處理。
5、數據計算:進行各種算術和邏輯運算,以便得到進一步的信息。
6、數據存儲:將原始數據或計算的結果保存起來,供以後使用。
7、數據檢索:按用戶的要求找出有用的信息。
8、數據排序:把數據按一定要求排成次序。
參考資料來源:網路-數據處理