㈠ 關於大數據的的相關技術
在大數據中,涉及到了很多技術,這些技術都是比較新穎的,比如說人工智慧、區塊鏈、圖靈測試等等,這些技術都是能夠幫助大數據解決很多問題。在這篇文章中我們就給大家介紹一下關於回歸分析、貪婪演算法、MapRece、數據挖掘的相關知識。
1.貪心演算法
貪心演算法是指,在對問題求解時,總是做出在當前看來是最好的選擇。也就是說,不從整體最優上加以考慮,它所做出的是在某種意義上的局部最優解。貪心演算法不是對所有問題都能得到整體最優解,關鍵是貪心策略的選擇,選擇的貪心策略必須具備無後效性,即某個狀態以前的過程不會影響以後的狀態,只與當前狀態有關。貪心演算法的基本思路是從問題的某一個初始解出發一步一步地進行,根據某個優化測度,每一步都要確保能獲得局部最優解。由此可見,貪心演算法是十分實用的。
2.數據挖掘
數據挖掘是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中通過演算法搜索隱藏於其中信息的過程。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統和模式識別等諸多方法來實現上述目標。數據挖掘工作是一個十分重要的內容,在大數據和數據分析中廣泛實用。
3.回歸分析
回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的變數的多少,分為一元回歸和多元回歸分析;按照因變數的多少,可分為簡單回歸分析和多重回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。如果在回歸分析中,只包括一個自變數和一個因變數,且二者的關系可用一條直線近似表示,這種回歸分析稱為一元線性回歸分析。
4.MapRece
MapRece是一種編程模型,用於大規模數據集的並行運算。概念"映射"和"歸約",是它們的主要思想,都是從函數式編程語言里借來的,還有從矢量編程語言里借來的特性。它極大地方便了編程人員在不會分布式並行編程的情況下,將自己的程序運行在分布式系統上。 當前的軟體實現是指定一個映射函數,用來把一組鍵值對映射成一組新的鍵值對,指定並發的歸約函數,用來保證所有映射的鍵值對中的每一個共享相同的鍵組。這些內容就是大數據分析工作中經常使用的演算法。
在這篇文章中我們介紹了關於回歸分析、貪婪演算法、MapRece、數據挖掘的相關知識,相信大家通過閱讀這篇文章以後對這些技術有了一定的理解。希望這篇文章能夠更好地幫助大家。
㈡ 請問什麼是數據挖掘數據挖掘怎麼樣
數據挖掘就是對觀測到的數據集(經常是很龐大的)進行分析,目的是發現未知的關系和以數據擁有者可以理解並對其有價值的新穎方式來總結數據。
運用基於計算機的方法,包括新技術,從而在數據中獲得有用知識的整個過程,就叫做數據挖掘。
數據挖掘怎麼樣,嚴格地說,數據挖掘並不是一個全新的領域,它頗有點「新瓶裝舊酒」的意味。組成數據挖掘的三大支柱包括統計學、機器學習和資料庫等領域內的研究成果,其它還包含了可視化、信息科學等內容。數據挖掘納入了統計學中的回歸分析、判別分析、聚類分析以及置信區間等技術,機器學習中的決策樹、神經網路等技術,資料庫中的關聯分析、序列分析等技術。
想要學習了解更多數據挖掘的信息,推薦CDA數據分析師課程。「CDA 數據分析師認證」是一套科學化,專業化,國際化的人才考核標准,共分為 CDA LEVELⅠ ,LEVEL Ⅱ,LEVEL Ⅲ三個等級,涉及行業包括互聯網、金融、咨詢、電信、零售、醫療、旅遊等,涉及崗位包括大數據、數據分析、市場、產品、運營、咨詢、投資、研發等。該標准符合當今全球數據科學技術潮流,可以為各行業企業和機構提供數據人才參照標准。點擊預約免費試聽課。
㈢ 數據挖掘常用演算法有哪些
1、 樸素貝葉斯
樸素貝葉斯(NB)屬於生成式模型(即需要計算特徵與類的聯合概率分布),計算過程非常簡單,只是做了一堆計數。NB有一個條件獨立性假設,即在類已知的條件下,各個特徵之間的分布是獨立的。這樣樸素貝葉斯分類器的收斂速度將快於判別模型,如邏輯回歸,所以只需要較少的訓練數據即可。即使NB條件獨立假設不成立,NB分類器在實踐中仍然表現的很出色。它的主要缺點是它不能學習特徵間的相互作用,用mRMR中的R來講,就是特徵冗餘。
2、邏輯回歸(logistic regression)
邏輯回歸是一個分類方法,屬於判別式模型,有很多正則化模型的方法(L0,L1,L2),而且不必像在用樸素貝葉斯那樣擔心特徵是否相關。與決策樹與SVM相比,還會得到一個不錯的概率解釋,甚至可以輕松地利用新數據來更新模型(使用在線梯度下降演算法online gradient descent)。如果需要一個概率架構(比如,簡單地調節分類閾值,指明不確定性,或者是要獲得置信區間),或者希望以後將更多的訓練數據快速整合到模型中去,那麼可以使用它。
3、 線性回歸
線性回歸是用於回歸的,而不像Logistic回歸是用於分類,其基本思想是用梯度下降法對最小二乘法形式的誤差函數進行優化。
4、最近鄰演算法——KNN
KNN即最近鄰演算法,其主要過程為:計算訓練樣本和測試樣本中每個樣本點的距離(常見的距離度量有歐式距離,馬氏距離等);對上面所有的距離值進行排序;選前k個最小距離的樣本;根據這k個樣本的標簽進行投票,得到最後的分類類別;如何選擇一個最佳的K值,這取決於數據。
5、決策樹
決策樹中很重要的一點就是選擇一個屬性進行分枝,因此要注意一下信息增益的計算公式,並深入理解它。
6、SVM支持向量機
高准確率,為避免過擬合提供了很好的理論保證,而且就算數據在原特徵空間線性不可分,只要給個合適的核函數,它就能運行得很好。在動輒超高維的文本分類問題中特別受歡迎。可惜內存消耗大,難以解釋,運行和調參也有些煩人,而隨機森林卻剛好避開了這些缺點,比較實用。
㈣ 數據挖掘的技術有哪些
①決策樹技術
決策樹是一種非常成熟的、普遍採用的數據挖掘技術。在決策樹里,所分析的數據樣本先是集成為一個樹根,然後經過層層分枝,最終形成若干個結點,每個結點代表一個結論。
②神經網路技術
神經網路是通過數學演算法來模仿人腦思維的,它是數據挖掘中機器學習的典型代表。神經網路是人腦的抽象計算模型,數據挖掘中的“神經網路”是由大量並行分布的微處理單元組成的,它有通過調整連接強度從經驗知識中進行學習的能力,並可以將這些知識進行應用。
③回歸分析技術
回歸分析包括線性回歸,這里主要是指多元線性回歸和邏輯斯蒂回歸。其中,在數據化運營中更多使用的是邏輯斯蒂回歸,它又包括響應預測、分類劃分等內容。
④關聯規則技術
關聯規則是在資料庫和數據挖掘領域中被發明並被廣泛研究的一種重要模型,關聯規則數據挖掘的主要目的是找出數據集中的頻繁模式,即多次重復出現的模式和並發關系,即同時出現的關系,頻繁和並發關系也稱作關聯。
⑤聚類分析技術
聚類分析有一個通俗的解釋和比喻,那就是“物以類聚,人以群分”。針對幾個特定的業務指標,可以將觀察對象的群體按照相似性和相異性進行不同群組的劃分。經過劃分後,每個群組內部各對象間的相似度會很高,而在不同群組之間的對象彼此間將具有很高的相異度。
⑥貝葉斯分類技術
貝葉斯分類方法是非常成熟的統計學分類方法,它主要用來預測類成員間關系的可能性。比如通過一個給定觀察值的相關屬性來判斷其屬於一個特定類別的概率。貝葉斯分類方法是基於貝葉斯定理的,樸素貝葉斯分類方法作為一種簡單貝葉斯分類演算法甚至可以跟決策樹和神經網路演算法相媲美。
㈤ 什麼叫數據挖掘、神經網路
數據挖掘是從大量的數據中,抽取出潛在的、有價值的知識(模型或規則)的過程。
1. 數據挖掘能做什麼?
1)數據挖掘能做以下六種不同事情(分析方法):
分類 (Classification)
估值(Estimation)
預言(Prediction)
相關性分組或關聯規則(Affinity grouping or association rules)
聚集(Clustering)
描述和可視化(Des cription and Visualization)
2)數據挖掘分類
以上六種數據挖掘的分析方法可以分為兩類:直接數據挖掘;間接數據挖掘
直接數據挖掘
目標是利用可用的數據建立一個模型,這個模型對剩餘的數據,對一個特定的變數(可以
理解成資料庫中表的屬性,即列)進行描述。
間接數據挖掘
目標中沒有選出某一具體的變數,用模型進行描述;而是在所有的變數中建立起某種關系
。
分類、估值、預言屬於直接數據挖掘;後三種屬於間接數據挖掘
3)各種分析方法的簡介
分類 (Classification)
首先從數據中選出已經分好類的訓練集,在該訓練集上運用數據挖掘分類的技術,建立分
類模型,對於沒有分類的數據進行分類。
例子:
a. 信用卡申請者,分類為低、中、高風險
b. 分配客戶到預先定義的客戶分片
注意: 類的個數是確定的,預先定義好的
估值(Estimation)
估值與分類類似,不同之處在於,分類描述的是離散型變數的輸出,而估值處理連續值的
輸出;分類的類別是確定數目的,估值的量是不確定的。
例子:
a. 根據購買模式,估計一個家庭的孩子個數
b. 根據購買模式,估計一個家庭的收入
c. 估計real estate的價值
一般來說,估值可以作為分類的前一步工作。給定一些輸入數據,通過估值,得到未知的
連續變數的值,然後,根據預先設定的閾值,進行分類。例如:銀行對家庭貸款業務,運
用估值,給各個客戶記分(Score 0~1)。然後,根據閾值,將貸款級別分類。
預言(Prediction)
通常,預言是通過分類或估值起作用的,也就是說,通過分類或估值得出模型,該模型用
於對未知變數的預言。從這種意義上說,預言其實沒有必要分為一個單獨的類。
預言其目的是對未來未知變數的預測,這種預測是需要時間來驗證的,即必須經過一定時
間後,才知道預言准確性是多少。
相關性分組或關聯規則(Affinity grouping or association rules)
決定哪些事情將一起發生。
例子:
a. 超市中客戶在購買A的同時,經常會購買B,即A => B(關聯規則)
b. 客戶在購買A後,隔一段時間,會購買B (序列分析)
聚集(Clustering)
聚集是對記錄分組,把相似的記錄在一個聚集里。聚集和分類的區別是聚集不依賴於預先
定義好的類,不需要訓練集。
例子:
a. 一些特定症狀的聚集可能預示了一個特定的疾病
b. 租VCD類型不相似的客戶聚集,可能暗示成員屬於不同的亞文化群
聚集通常作為數據挖掘的第一步。例如,"哪一種類的促銷對客戶響應最好?",對於這一類問題,首先對整個客戶做聚集,將客戶分組在各自的聚集里,然後對每個不同的聚集,回答問題,可能效果更好。
描述和可視化(Des cription and Visualization)
是對數據挖掘結果的表示方式。
2.數據挖掘的商業背景
數據挖掘首先是需要商業環境中收集了大量的數據,然後要求挖掘的知識是有價值的。有
價值對商業而言,不外乎三種情況:降低開銷;提高收入;增加股票價格。
1)數據挖掘作為研究工具 (Research)
2)數據挖掘提高過程式控制制(Process Improvement)
3)數據挖掘作為市場營銷工具(Marketing)
4)數據挖掘作為客戶關系管理CRM工具(Customer Relationship Management)
3.數據挖掘的技術背景
1)數據挖掘技術包括三個主要部分:演算法和技術;數據;建模能力
2)數據挖掘和機器學習(Machine Learning)
機器學習是計算機科學和人工智慧AI發展的產物
機器學習分為兩種學習方式:自組織學習(如神經網路);從例子中歸納出規則(如決策樹)
數據挖掘由來
數據挖掘是八十年代,投資AI研究項目失敗後,AI轉入實際應用時提出的。它是一個新興
的,面向商業應用的AI研究。選擇數據挖掘這一術語,表明了與統計、精算、長期從事預
言模型的經濟學家之間沒有技術的重疊。
3)數據挖掘和統計
統計也開始支持數據挖掘。統計本包括預言演算法(回歸)、抽樣、基於經驗的設計等
4)數據挖掘和決策支持系統
數據倉庫
OLAP(聯機分析處理)、Data Mart(數據集市)、多維資料庫
決策支持工具融合
將數據倉庫、OLAP,數據挖掘融合在一起,構成企業決策分析環境。
4. 數據挖掘的社會背景
數據挖掘與個人預言:數據挖掘號稱能通過歷史數據的分析,預測客戶的行為,而事實上,客戶自己可能都不明確自己下一步要作什麼。所以,數據挖掘的結果,沒有人們想像中神秘,它不可能是完全正確的。
5.數據挖掘技術實現
在技術上可以根據它的工作過程分為:數據的抽取、數據的存儲和管理、數據的展現等關鍵技術。
1) 數據的抽取
數據的抽取是數據進入倉庫的入口。由於數據倉庫是一個獨立的數據環境,它需要通過抽取過程將數據從聯機事務處理系統、外部數據源、離線的數據存儲介質中導入數據倉庫。數據抽取在技術上主要涉及互連、復制、增量、轉換、調度和監控等幾個方面的處理。在數據抽取方面,未來的技術發展將集中在系統功能集成化方面,以適應數據倉庫本身或數據源的變化,使系統更便於管理和維護。
2) 數據的存儲和管理
數據倉庫的組織管理方式決定了它有別於傳統資料庫的特性,也決定了其對外部數據的表現形式。數據倉庫管理所涉及的數據量比傳統事務處理大得多,且隨時間的推移而快速累積。在數據倉庫的數據存儲和管理中需要解決的是如何管理大量的數據、如何並行處理大量的數據、如何優化查詢等。目前,許多資料庫廠家提供的技術解決方案是擴展關系型資料庫的功能,將普通關系資料庫改造成適合擔當數據倉庫的伺服器。
3) 數據的展現
在數據展現方面主要的方式有:
查詢:實現預定義查詢、動態查詢、OLAP查詢與決策支持智能查詢;報表:產生關系數據表格、復雜表格、OLAP表格、報告以及各種綜合報表;可視化:用易於理解的點線圖、直方圖、餅圖、網狀圖、互動式可視化、動態模擬、計算機動畫技術表現復雜數據及其相互關系;統計:進行平均值、最大值、最小值、期望、方差、匯總、排序等各種統計分析;挖掘:利用數據挖掘等方法,從數據中得到關於數據關系和模式的知識。
6.數據挖掘與數據倉庫融合發展
數據挖掘和數據倉庫的協同工作,一方面,可以迎合和簡化數據挖掘過程中的重要步驟,提高數據挖掘的效率和能力,確保數據挖掘中數據來源的廣泛性和完整性。另一方面,數據挖掘技術已經成為數據倉庫應用中極為重要和相對獨立的方面和工具。
數據挖掘和數據倉庫是融合與互動發展的,其學術研究價值和應用研究前景將是令人振奮的。它是數據挖掘專家、數據倉庫技術人員和行業專家共同努力的成果,更是廣大渴望從資料庫「奴隸」到資料庫「主人」轉變的企業最終用戶的通途。
㈥ 機器學習,數據挖掘的書有哪些
說到數據分析,人們往往會下意識地聯想到另一個耳熟能詳的名詞:數據挖掘。那麼,到底什麼是數據挖掘呢?顧名思義,數據挖掘就是對數據進行處理,並從中提取可用信息的過程。如果你剛好正在尋找這方面的入門書籍,那麼韓家煒老師寫的《數據挖掘:概念與技術》絕對是一個不錯的選擇。
· 更難能可貴的是,隨書還附帶了一批可運行的神經網路實例。試試親自上手改改代碼吧,相信你會有意外的收獲。
㈦ 大數據 和 數據挖掘 的區別
大數據概念:大數據是近兩年提出來的,有三個重要的特徵:數據量大,結構復雜,數據更新速度很快。由於Web技術的發展,web用戶產生的數據自動保存、感測器也在不斷收集數據,以及移動互聯網的發展,數據自動收集、存儲的速度在加快,全世界的數據量在不斷膨脹,數據的存儲和計算超出了單個計算機(小型機和大型機)的能力,這給數據挖掘技術的實施提出了挑戰(一般而言,數據挖掘的實施基於一台小型機或大型機,也可以進行並行計算)。
數據挖掘概念: 數據挖掘基於資料庫理論,機器學習,人工智慧,現代統計學的迅速發展的交叉學科,在很多領域中都有應用。涉及到很多的演算法,源於機器學習的神經網路,決策樹,也有基於統計學習理論的支持向量機,分類回歸樹,和關聯分析的諸多演算法。數據挖掘的定義是從海量數據中找到有意義的模式或知識。
大數據需要映射為小的單元進行計算,再對所有的結果進行整合,就是所謂的map-rece演算法框架。在單個計算機上進行的計算仍然需要採用一些數據挖掘技術,區別是原先的一些數據挖掘技術不一定能方便地嵌入到 map-rece 框架中,有些演算法需要調整。
大數據和數據挖掘的相似處或者關聯在於: 數據挖掘的未來不再是針對少量或是樣本化,隨機化的精準數據,而是海量,混雜的大數據,數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。這一過程也是質量管理體系的支持過程。在實用中,數據分析可幫助人們作出判斷。
拓展資料:
大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》 中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。
㈧ 數據挖掘中分類和回歸的區別
單純就這句話而言不能說錯,只是不完全。
分類是指一類問題,而回歸是一類工具。分類的目的在於給對象按照其類別打上相應的標簽再分門別類,而回歸則是根據樣本研究其兩個(或多個)變數之間的依存關系,是對於其趨勢的一個分析預測。
分類的標簽如果是表示(離散的)有排序關系的類別時,比如說「好」、「較好」、「一般」這樣的時候,也可以用回歸來處理。但是如果標簽是純粹的分類,比如說電影中的「喜劇」、「動作」、「劇情」這樣的無排序關系的標簽時,就很難用回歸去處理了。而且,分類中還存在著「多分類」的問題,也就是一個對象可能有多個標簽的情況,這就更復雜了。
而同時,回歸所能做的也並非只有分類,也可以用來做預測等其他問題。
所以,回歸和分類的區別並非只有輸出的「定性」與「定量」那麼簡單,應該說兩者屬於不同的范疇。