1. 如何提高數據分析的效率
一、明晰剖析的意圖
數據剖析的數據源往往龐大且無規矩,這個時分就需要明晰數據剖析的意圖。需要經過數據剖析展現什麼樣的成果。數據需求直接源於最終的剖析結果,如果你現已全面地規劃了要做哪些剖析、產生什麼結果,那麼你將知道數據需求是什麼。
二、剖析思路系統化,邏輯話
在進行數據剖析時,能夠借鑒管理學營銷學等理論知識,打開剖析思路,將數據剖析形成系統化,邏輯化的剖析模式。
三、掌握有效的剖析辦法
熟練掌握數據剖析的一般流程,掌握剖析辦法。理論與實踐相結合,培育數據剖析辦法與數據之前邏輯能力的把控,全面深刻的認識數據的價值,科學進行數據剖析工作。
四、選擇適宜的剖析東西
一個適宜的數據剖析東西是協助數據剖析的利器,但是面臨市場上很多的剖析東西,怎麼才能找到簡略易用的剖析東西似乎成為困擾業務人員的問題。大數據魔鏡作為一款調集數據剖析挖掘一體的可視化軟體,易用性極強,只需簡略拖拽即可完成數據剖析工作。
五、用圖表說話
簡略明晰的圖表能夠協助更好的展現數據結果,發現問題所在。在數據剖析的過程中,圖表能夠協助理清剖析思路,跳出剖析瓶頸。
六、多種可視化展現
跟著信息化的發展,數據井噴時代帶來海量數據,以往一般單調的展現方式現已無法滿足需求。一起,關於企業來說,明晰多元的數據能更好的開掘問題所在,為企業決議計劃帶來科學依據和參閱。大數據魔鏡有500多種可視化效果且烘托速度到達秒級。
七、會集精神有規則的歇息
關於相關業務人員或許大數據剖析師來說,高效專注的剖析時刻是有限的,或許會集在幾個小時內,因此在進行數據剖析工作時應該合理分配時刻,有規則的歇息,放鬆大腦。
關於如何提高數據分析的效率,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章能夠對你有所幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
2. 數據分析報告有哪些要點
1、確定報告受眾和分析目的
無論寫什麼類型的數據分析報告,都要先搞清楚報告給誰看,不同的受眾對一份數據分析報告的期待是不一樣的。
2、框架、思路清晰
作為數據分析結論輸出最重要的部分,一份優秀的數據分析報告要能夠准確體現你的分析思路,讓讀者充分接收你的信息,所以在製作報告時,框架和思路要清晰。
這里的框架不單指報告的行文邏輯,更多是指數據分析過程的框架,比方說我們拿到一個分析問題,不可能一下子就找到問題背後的原因,需要利用各種手段將問題拆解分析,直到得出最終結論,這時候就可能會用到我們常提到的MECE、PEST、AAARRR等分析框架
3、保障數據准確
寫一份報告,獲取和整理數據往往會占據 6成以上的時間。要規劃數據協調相關部門組織數據採集、導出處理數據,最後才是寫報告,如果數據不準確,那分析的結果也沒有意義,報告也就失去價值,因此在收集整合數據時需要注意數據是否靠譜,驗證數據口徑和數據范圍。
4、讓圖表傳達更加直接
圖與表之間,圖與圖之間的聯系如何闡述,反映出的問題如何表達,這些都是在做數據分析圖表就要弄明白的。很多細心的領導及專門會針對你的數據分析以及結論來提問,因為現狀和未來是他們最關心的。所以數據圖表展現也要體現你的分析思路,而不單單是為了展示數據。
3. 如何寫好數據分析報告
1、進度性:由於日常數據通報主要反映計劃的執行情況,因此必須把計劃執行的進度與時間的進展結合起來分析,觀察比較兩者是否一致,從而判斷計劃完成的好壞。為此,需要進行一些必要的計算,通過一些絕對數和相對數據指標來突出進度。
2、規范性:日常數據通報基本上成了數據分析部門的例行報告,定時向決策者提供。所以這種分析報告就形成了比較規范的結構形式。一般包括以下幾個基本部分:反映計劃執行的基本情況、分析完成或未完成的原因、總結計劃執行中的成績和經驗,找出存在的問題、提出措施和建議。這種分析報告的標題也比較規范,一般變化不大,有時為了保持連續性,標題只變動一下時間,如《XX月XX日業務發展通報》
3、時效性:由日常數據通報和性質和任務決定,它是時效性最強的一種分析報告。只有及時提供業務發展過程中的各種信息,才能幫助決策者掌握企業經驗的主動權,否則將會喪失良機,貽誤工作。對大多數公司而言,這些報告主要通過微軟Office中的Word、Excel和PowerPoint系列軟體來表現。
4. 如何做好數據分析工作呢
搜狐博客
>
凌雲
>
日誌
2009-10-26
|
如何做好數據分析
數據分析對於零售企業,可以從以下幾個方面進行分析:
顧客分析:主要是指對顧客群體的購買行為的分析。如:客戶細分(普通客戶、會員客戶、vip等),客戶忠誠度分析,客戶貢獻結構分析、客流分析等。
顧客采購相關性分析(即商品分組布局分析,又叫購物籃子分析)
根據對同一個單據同時出現兩個商品的頻率進行分析,來分析顧客采購的相關性,從而根據這些相關程度合理安排商品擺放位置和采購、庫存計劃,提高產品銷量,合理利用庫存。如:顧客采購a商品的同時一般同時相應地要采購b商品,這樣我們就將a商品和b商品盡可能的擺放在一起,在安排a商品采購的同時我們同時做好b商品的采購計劃。
會員卡分析:會員卡分析主要是對會員卡消費情況進行分析,從而更好的為會員進行服務,提高會員的忠誠度,進而保持、提高會員的消費額。
供應商分析
主要分析的主題有供應商的組成結構、送貨情況、結款情況,以及所供商品情況,如銷售貢獻、利潤貢獻等。通過分析,我們可能會發現有些供應商所提供的商品銷售一直不錯,它在某個時間段里的結款也非常穩定,而這個供應商的結算方式是代銷。比如:分析顯示出,這個供應商所供商品銷售風險較小,如果資金不緊張,可以考慮將他們改為購銷,從而降低成本。
庫存分析模型
庫存直接反映企業經營狀況和資金周轉效率,所以對庫存進行分析能夠有效控制庫存、降低經營風險、降低經營成本和提高經營效益。包括:庫存結構情況分析,庫存流動與庫存量比較分析,庫存與效益情況分析,合理庫存區間分析,當前庫存健康狀況,庫存損耗分析等。
數據挖掘專題-客戶關系管理
客戶聚類分析:根據客戶資料的集中程度由系統進行自動分群,分群後的每一組客戶均具備某些共同特徵可以據此擬定差異化營銷策略。
客戶行為分析:
客戶貢獻度分析
客戶忠誠度預測
購物行為分析
關聯規則分析
當然還有很多方面.