導航:首頁 > 數據分析 > 為什麼用數據分析

為什麼用數據分析

發布時間:2023-09-15 06:14:50

⑴ 為何要進行數據分析如何提高數據分析的效率

【導讀】數據剖析是指用恰當的統計剖析方法對收集來的很多數據進行剖析,提取有用信息和構成結論而對數據加以具體研究和歸納總結的過程。在實際應用中,數據剖析可協助人們作出判別,以便採取恰當行動。面臨海量數據時,進步數據剖析的功率成為困擾剖析師的難題。那麼,為何要進行數據分析?如何提高數據分析的效率呢?

為何要進行數據分析?

1、評價產品時機

產品構思初期,必要的需求調研及市場調研顯得尤為關鍵。產品時機評價對後期產品設計及迭代都至關重要,甚至說決議了一個產品的未來和核心理念。

2、剖析解決問題

產品出現欠好狀況,肯定是存在緣由的。不可能憑空想像臆造問題,必須尊重客觀現實。那麼只要通過必要的數據實驗才幹追溯到問題源頭,進而制定合理的解決計劃,徹底解決問題。

3、支撐運營活動

你這個產品功能上線後作用怎麼樣?A計劃和B計劃哪個更好些呢?諸如此類的問題,都牽涉到一個「標准」的問題。評判一個問題的好壞,最牢靠的恐怕就是數據了。曾經我就說過「人是不牢靠的,人們總是樂意相信自己想看見的東西。」只要給出實在、牢靠、客觀的事實——數據,才幹對具體的活動作出最實在的評判。

4、猜測優化產品

數據剖析的成果不只能夠反應出以往產品的狀況,即所謂的後見性數據;也能夠給出產品未來時間段內可能會遇到的問題,即所謂的先見性數據。一個真正的數據指標必須是可付諸行動的。後見性和先見性的數據都能夠付諸行動,差異只是先見性數據能猜測未來發生什麼,縮短迭代周期,精雕細鏤。

如何提高數據分析的效率?

一、明晰剖析的意圖

數據剖析的數據源往往龐大且無規矩,這個時分就需要明晰數據剖析的意圖。需要經過數據剖析展現什麼樣的成果。數據需求直接源於最終的剖析結果,如果你現已全面地規劃了要做哪些剖析、產生什麼結果,那麼你將知道數據需求是什麼。

二、剖析思路系統化,邏輯話

在進行數據剖析時,能夠借鑒管理學營銷學等理論知識,打開剖析思路,將數據剖析形成系統化,邏輯化的剖析模式。

三、掌握有效的剖析辦法

熟練掌握數據剖析的一般流程,掌握剖析辦法。理論與實踐相結合,培育數據剖析辦法與數據之前邏輯能力的把控,全面深刻的認識數據的價值,科學進行數據剖析工作。

四、選擇適宜的剖析東西

一個適宜的數據剖析東西是協助數據剖析的利器,但是面臨市場上很多的剖析東西,怎麼才能找到簡略易用的剖析東西似乎成為困擾業務人員的問題。大數據魔鏡作為一款調集數據剖析挖掘一體的可視化軟體,易用性極強,只需簡略拖拽即可完成數據剖析工作。

五、用圖表說話

簡略明晰的圖表能夠協助更好的展現數據結果,發現問題所在。在數據剖析的過程中,圖表能夠協助理清剖析思路,跳出剖析瓶頸。

六、多種可視化展現

跟著信息化的發展,數據井噴時代帶來海量數據,以往一般單調的展現方式現已無法滿足需求。一起,關於企業來說,明晰多元的數據能更好的開掘問題所在,為企業決議計劃帶來科學依據和參閱。大數據魔鏡有500多種可視化效果且烘托速度到達秒級。

七、會集精神有規則的歇息

關於相關業務人員或許大數據剖析師來說,高效專注的剖析時刻是有限的,或許會集在幾個小時內,因此在進行數據剖析工作時應該合理分配時刻,有規則的歇息,放鬆大腦。

以上就是小編今天給大家整理分享關於「為何要進行數據分析?如何提高數據分析的效率?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。

⑵ 數據分析作用意義

數據分析目的1:分類

檢查未知分類或暫時未知分類的數據,目的是預測數據屬於哪個類別或屬於哪個類別。使用具有已知分類的相似數據來研究分類規則,然後將這些規則應用於未知分類數據。

數據分析目的2:預測

預測是指對數字連續變數而不是分類變數的預測。

數據分析目的3:關聯規則和推薦系統

關聯規則或關聯分析是指在諸如捆綁之類的大型資料庫中找到一般的關聯模式。

在線推薦系統使用協作過濾演算法,該協作過濾演算法是基於給定的歷史購買行為,等級,瀏覽歷史或任何其他可測量的偏好行為或什至其他用戶購買歷史的方法。協同過濾可在單個用戶級別生成「購買時可以購買的東西」的購買建議。因此,在許多推薦系統中使用了協作過濾,以向具有廣泛偏好的用戶提供個性化推薦。

數據分析目的4:預測分析

預測分析包括分類,預測,關聯規則,協作過濾和模式識別(聚類)之類的方法。

數據分析目標5:數據縮減和降維

當變數的數量有限並且可以將大量樣本數據分類為同類組時,通常會提高數據挖掘演算法的性能。減少變數的數量通常稱為「降維」。降維是部署監督學習方法之前最常見的初始步驟,旨在提高可預測性,可管理性和可解釋性。

數據分析目的6:數據探索和可視化

數據探索的目的是了解數據的整體情況並檢測異常值。通過圖表和儀錶板創建的數據瀏覽稱為「數據可視化」或「可視化分析」。對於數值變數,可以使用直方圖,箱形圖和散點圖來了解其值的分布並檢測異常值。對於分類數據,請使用條形圖分析。

數據分析目的7:有監督學習和無監督學習

監督學習演算法是用於分類和預測的演算法。數據分類必須是已知的。在分類或預測演算法中用於「學習」或「訓練」預測變數和結果變數之間關系的數據稱為「訓練數據」。 。從訓練數據中學到演算法後,將該演算法應用於具有已知結果的另一個數據樣本(驗證數據),以查看其與其他模型相比具有哪些優勢。簡單線性回歸是監督演算法的一個示例。

數據分析的意義(功能)

數據分析的意義(作用)1:告訴你過去發生了什麼

首先,請告訴您此階段企業的整體運營情況,並通過完成各種運營指標來衡量企業的運營狀況,以顯示企業的整體運營情況是好是壞,它的表現如何?不好嗎去哪兒。

其次,告訴您企業每個業務的組成,以便您了解企業每個業務的發展和變化,並對企業的業務狀態有更深入的了解。

現狀分析通常通過每日報告進行,例如每日,每周和每月報告。

數據分析的意義(作用)2:告訴你為什麼這些現狀會發生

在對第一階段的現狀進行分析之後,我們對公司的運營有了基本的了解,但是我們不知道哪裡的運營更好,差異是什麼,以及原因是什麼。這時,我們需要進行原因分析,以進一步確定業務變更的具體原因。

原因分析通常通過主題分析進行。根據企業的經營情況,根據一定的現狀選擇原因分析。

數據分析的意義(作用)3:告訴你未來會發生什麼

了解公司運營的現狀後,有時需要對公司的未來發展趨勢做出預測,為公司制定業務目標,並提供有效的戰略參考和決策依據,以確保公司的持續健康發展。

預測分析通常是通過主題分析完成的,主題分析通常是在制定公司的季度和年度計劃時進行的。它的發展頻率不如現狀分析和原因分析高。

⑶ 為什麼要做數據分析

1、增收益

最直觀的應用,即利用數據分析實現數字化精準營銷。通過深度分析用戶購買行為、消費習慣等,刻畫用戶畫像,將數據分析結果轉化為可操作執行的客戶管理策略,以最佳的方式觸及更多的客戶,以實現銷售收入的增長。

下圖為推廣收支測算分析,為廣告投放提供決策依據。

⑷ 數據分析的意義

數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

⑸ 大數據分析的目的是什麼

1、分析現狀

分析現狀是我們數據分析的基本目的,我們需要明確當前市場環境下,我們的產品市場佔有率是多少,注冊用戶的來源有哪些,注冊轉化率是多少,購買轉化率是多少,競品是什麼,競品的發展現狀如何。

我們和競爭對手相對,優勢有哪些,不足又有哪些等等,都是屬於對於現狀的分析。這里包括兩方面的內容,分析自己的現狀和分析競爭對手的現狀。

2、分析原因

分析原因是數據運營者用得比較多的了,做運營的人,在具體的業務中,不光要知道怎麼了,還需要知道為什麼如此。在業務上,我們經常會遇到某天用戶突然很活躍,有時用戶突然大量流失等,每一個變化都是有原因的,我們要做的就是找出這個原因,並給出解決辦法,這些就是分析原因。

3、預測未來

數據分析的第三個目的就是預測未來,所謂未雨綢繆,用數據分析的方法預測未來產品的變化趨勢,對於產品的運營者來說至關重要。

作為運營者,可根據最近一段時間產品的數據變化,根據趨勢線和運營策略的力度,去預測未來的趨勢,並用接下來的一段時間去驗證這個趨勢是否可行,而且實現數據驅動業務增長。

(5)為什麼用數據分析擴展閱讀:

大數據要分析的數據類型主要有四大類:

1、交易數據(TRANSACTION DATA)

大數據平台能夠獲取時間跨度更大、更海量的結構化交易數據,這樣就可以對更廣泛的交易數據類型進行分析,不僅僅包括POS或電子商務購物數據,還包括行為交易數據,例如Web伺服器記錄的互聯網點擊流數據日誌。

2、人為數據(HUMAN-GENERATED DATA)

非結構數據廣泛存在於電子郵件、文檔、圖片、音頻、視頻,以及通過博客、維基,尤其是社交媒體產生的數據流。這些數據為使用文本分析功能進行分析提供了豐富的數據源泉。

3、移動數據(MOBILE DATA)

能夠上網的智能手機和平板越來越普遍。這些移動設備上的App都能夠追蹤和溝通無數事件,從App內的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)。

4、機器和感測器數據(MACHINE AND SENSOR DATA)

這包括功能設備創建或生成的數據,例如智能電表、智能溫度控制器、工廠機器和連接互聯網的家用電器。這些設備可以配置為與互聯網路中的其他節點通信,還可以自動向中央伺服器傳輸數據,這樣就可以對數據進行分析。

機器和感測器數據是來自新興的物聯網(IoT)所產生的主要例子。來自物聯網的數據可以用於構建分析模型,連續監測預測性行為(如當感測器值表示有問題時進行識別),提供規定的指令(如警示技術人員在真正出問題之前檢查設備)。

閱讀全文

與為什麼用數據分析相關的資料

熱點內容
c向文件中追加資料庫 瀏覽:327
reactjs推薦書籍 瀏覽:157
京東自定義輪播代碼 瀏覽:428
pr的鋼筆工具怎麼用 瀏覽:539
重置win10所有原生應用 瀏覽:626
微信漂流瓶怎麼發照片 瀏覽:908
如皋如何學數控編程培訓 瀏覽:205
extjs如何截取字元串 瀏覽:545
delphitreeview資料庫 瀏覽:148
百度雲Mac版共享文件 瀏覽:623
上三高速代碼 瀏覽:926
手機文件里的游戲為什麼找不到 瀏覽:861
java類作為參數 瀏覽:611
win10打游戲好還是win7系統好 瀏覽:820
數據解壓後找不到文件 瀏覽:360
學習編程感覺沒學到什麼 瀏覽:128
微信收到的文件有幾種圖片 瀏覽:251
iphone4聽筒進水沒有聲音 瀏覽:890
蘋果手機什麼游戲免費 瀏覽:823
什麼軟體可以加密文件夾 瀏覽:953

友情鏈接