1. 數據調查的具體方法是什麼
一 業務調研
數據倉庫是要涵蓋所有業務領域,還是各個業務領域獨自建設,業務領域內的業務線也同樣面臨著這個問題。所以要構建大數據數據倉庫,就需要了解各個業務領域、業務線的業務有什麼共同點和不同點,以及各個業務線可以細分為哪幾個業務模塊,每個業務模塊具體的業務流程又是怎樣的。業務調研是否充分,將會直接決定數據倉庫建設是否成功。
二 需求調研
了解業務系統的業務後不等於說就可以實施數倉建設了,還需要收集數據使用者的需求,及找分析師、運營人員、產品人員等了解他們對數據的訴求。通常需求調研分下面兩種途徑:
1. 根據與分析師、運營人員、產品人員的溝通獲取需求。
2. 對現有報表、數據進行研究分析獲取數據建設需求。
三 數據調研
前期需要做好數據探查工作,需要了解資料庫類型,數據來源,全量數據情況及數據每年增長情況,更新機制;還需要了解數據是否結構化,是否清洗,是介面調用還是直接訪問庫,有哪些類型的數據,數據結構之怎樣的。
數據開發,模型建設之前,先了解數據結構,數據內容,數據特性,對數據有一個整體把控
探查一下本次需求能不能實現,怎麼實現,有沒有隱藏bug,數據質量如何
2. 品質數據的確認方法有哪些
QC檢驗時一般有三種檢驗方式正常檢驗(NormalInspectin):產線品質較穩定無廠外退貨與客訴。通常採取此種方式檢驗。
加嚴檢驗:(TightenedInspection):
1)新機種投產,品質無把握時;
2)新產線作業,品質不穩定時;
3)客戶抱怨時,當有客戶抱怨某機種有某種不良時,OQC則應清查庫存加嚴重驗並對產線後續入庫之產品,連續三批須加嚴抽驗,若五批後,再無廠內/外及客訴則轉為正常檢驗。
減量檢驗:(RecedInspection)穩定之產品,製程不良率低,無廠內,廠外退貨及客訴,長期生產可減量檢驗。
三者之間的轉換條件為:N(正常檢驗)轉換成T(加嚴檢驗):連續五批中有兩批拒收。T(加嚴檢驗)轉換成N(正常檢驗):連續五批合格。
N(正常檢驗)轉換成R(減量檢驗):連續十批合格。
R(減量檢驗)轉換成N(正常檢驗):十批中有一批拒收。若連續五批不合格則中止檢驗。
3。入庫數量在150PCS以下須全檢,若入庫為200PCS,QC人員應視情況而定,也須全檢。
4。對新產線,新客戶之新料號或老客戶之新料品質無保證的情況下,QC須跟產線全檢。
5。抽樣數及允收數詳見《抽樣計劃》
3. 關於數據人工核查請教
錄入之後。數據核查方法包括人工核查和系統核查,以系統核查為主。1.
系統核查是指用SAS
X.X
軟體編寫核查程序,運行程序對數據進行系統核查並產生數據疑問數據。2.
人工核查內容根據雙方確認的DMP及DVP確定,一般主要包括安全性數據核查(不良事件、合並用葯)、CRF內容修改的研究者簽名和日期及系統核查難以核查的其它異常情況。舉例:程序員根據Check
Specification,編寫程序,對資料庫中的數據進行核查,產生疑問數據;再由數據管理人員,對疑問數據進行Review和人工核查,將確定需要研究者核實、訂正、補充等的疑問數據發出質疑。