導航:首頁 > 數據分析 > 網路服務公司的大數據怎麼來的

網路服務公司的大數據怎麼來的

發布時間:2023-09-05 22:45:51

大數據怎麼實現的

搭建大數據分析平台的工作是循序漸進的,不同公司要根據自身所處階段選擇合適的平台形態,沒有必要過分追求平台的分析深度和服務屬性,關鍵是能解決當下的問題。大數據分析平台是對大數據時代的數據分析產品(或稱作模塊)的泛稱,諸如業務報表、OLAP應用、BI工具等都屬於大數據分析平台的范疇。與用戶行為分析平台相比,其分析維度更集中在核心業務數據,特別是對於一些非純線上業務的領域,例如線上電商、線下零售、物流、金融等行業。而用戶行為分析平台會更集中分析與用戶及用戶行為相關的數據。企業目前實現大數據分析平台的方法主要有三種:(1)采購第三方相關數據產品例如Tableau、Growing IO、神策、中琛魔方等。此類產品能幫助企業迅速搭建數據分析環境,不少第三方廠商還會提供專業的技術支持團隊。但選擇此方法,在統計數據的廣度、深度和准確性上可能都有所局限。例如某些主打無埋點技術的產品,只能統計到頁面上的一些通用數據。隨著企業數據化運營程度的加深,這類產品可能會力不從心。該方案適合缺少研發資源、數據運營初中期的企業。一般一些創業公司、小微企業可能會選擇此方案。(2)利用開源產品搭建大數據分析平台對於有一定開發能力的團隊,可以採用該方式快速且低成本地搭建起可用的大數據分析平台。該方案的關鍵是對開源產品的選擇,選擇正確的框架,在後續的擴展過程中會逐步體現出優勢。而如果需要根據業務做一些自定義的開發,最後還是繞不過對源碼的修改。(3)完全自建大數據分析平台對於中大型公司,在具備足夠研發實力的情況下,通常還是會自己開發相關的數據產品。自建平台的優勢是不言而喻的,企業可以完全根據自身業務需要定製開發,能夠對業務需求進行最大化的滿足。對於平台型業務,開發此類產品也可以進行對外的商業化,為平台上的B端客戶服務。例如淘寶官方推出的生意參謀就是這樣一款成熟的商用數據分析產品,且與淘寶業務和平台優勢有非常強的結合。在搭建大數據分析平台之前,要先明確業務需求場景以及用戶的需求,通過大數據分析平台,想要得到哪些有價值的信息,需要接入的數據有哪些,明確基於場景業務需求的大數據平台要具備的基本的功能,來決定平台搭建過程中使用的大數據處理工具和框架。

❷ 大數據的三大主要來源

1、開源數據
開源數據包括了互聯網數據、移動數據網數據,互聯網平台和移動互回聯網平台通過采、編答、發或者通過用戶互動產生的數據,公之於眾,供網民或用戶訪問、瀏覽。
2、業務數據

業務數據產生於各單位的信息化系統中,尤其是內部的信息化系統,我們統稱為業務系統。在目前的單位業務系統中,存在於單位的OA系統或者CRM之中,其中蘊含了大量的工作數據和交易數據,以及客戶管理數據,包括交易數據、流水數據、記帳數據、借款數據、貸款數據等業務數據,這些數據構建了每天的系統日誌,同時又是帳戶余額、信用額度、購買能力等的有力補充,這些數據不僅對生產系統起到計費支撐作用,同時也是用戶(銀行客戶、電力客戶、擔保公司等)進行相關決策的重要基礎,所以目前很多單位需要對這些數據進行查詢統計和分析。
3、線路數據
無論是互聯網還是各種內網,任何的網路行為都需要經過「線路」進行鏈接和交互,而在這條線路上,要經過無數的路由交換得以完成,這條線路在完成鏈接的同時,也記錄與存貯了大量的數據,我們統稱為線路數據。

❸ 大數據是怎麼定義的,大數據包括什麼

最早提出大數據的是麥肯錫公司,當時的定義是:

滲透在每一個行業和業務領域的數據,通過人們對這些海量數據的挖掘和運用,產生出一波新的生產率增長和消費者盈餘浪潮。

後來麥肯錫全球研究所給出的定義是:

一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

研究機構Gartner給出了這樣的定義:

「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

網路的定義:

指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,所涉及的數據資料量規模巨大到無法通過人腦甚至主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。

簡單理解為:

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單的說就是超級存儲,海量數據上傳到雲平台後,大數據就會對數據進行深入分析和挖掘。

❹ 人人都在說大數據,那大數據概念是怎麼產生的

概念產生:

「大數據」的名稱來自於未來學家托夫勒所著的《第三次浪潮》 盡管「大數據」這個詞直到最近才受到人們的高度關注,但早在1980年,著名未來學家托夫勒在其所著的《第三次浪潮》中就熱情地將「大數據」稱頌為「第三次浪潮的華彩樂章」。《自然》雜志在2008年9月推出了名為「大數據」的封面專欄。從2009年開始「大數據」才成為互聯網技術行業中的熱門詞彙。

❺ 企業的大數據來源是什麼

其實數據的來源可以是多個方面多個維度的。如企業自身的經營管理活動產生的數據、政府或機構公開的行業數據、數據管理咨詢公司或數據交易平台購買數據、或者通過爬蟲工具等在網路上抓取數據等等。

企業的每個崗位、每個人員都在進行著與企業相關的經營和管理活動,都在掌握著企業相關資源,擁有這些資源的信息和記錄,這些資源與資源轉換活動就是企業大數據的發源地。只要每個崗位的員工都能參與到數據採集和數據記錄的過程中,或者配合著相關的設備完成對數據的採集工作,企業積累自己的大數據就是一件非常容易的事情。

政府或機構公開的行業數據其實更好獲取,如國家統計局、中國統計學會、中國投入產出學會等。在這些網站中可以很方便地查詢到一些數據,如農業基本情況、工業生產者出廠價格指數、能源生產總量和構成、對外貿易和利用外資等等數據。並且可以分為月報、季報、年報,如果堅持獲取分析,對行業的發展趨勢等都是有很大的指導作用。

如果需要的數據市場上沒有,或者不願意購買,可以選擇招/做一名爬蟲工程師,自己動手去爬取數據。可以說只要在互聯網上看到的數據都可以把它爬下來。在網路爬蟲的系統框架中主過程由控制器,解析器,資源庫三部分組成,控制器的主要工作是負責給多線程中的各個爬蟲線程分配工作任務,爬蟲的基本工作是由解析器完成,資源庫是用來存放下載到的網頁資源。

關於企業的大數據來源是什麼,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

❻ 互聯網公司是如何做大數據的

互聯網公司是如何做大數據的
大數據」炙手可熱,很多企業都不會錯失機會,谷歌已經從一個網頁索引發展成為一個實時數據中心樞紐,可以估量任何可以測量的數據,將輸入的查詢與所有可用數據相匹配,確定用戶查找的信息;對臉譜網來說大數據就是「人」,公司也利用這一點在十幾年之內成為世界上最大的公司之一。
亞馬遜通過分析用戶習慣,將用戶與其他可能符合用戶需求的產品和建議相匹配;領英幫助求職者根據自己的技能和經驗來匹配空缺職位,幫助招聘人員找到與特定資料相匹配的人才,這些都是大數據應用的典型例子,但也只是其中一部分,越來越多的數據易獲得,復雜工具也會隨之涌現,大數據的利用可以改變我們個人生活和商業活動。
當下,每個人都聽說過人們如何利用大數據治癒癌症、終結恐怖主義和養活飢餓人口來改變世界。
當然,也很明顯,有些人正利用它來賺大錢——據估計,到2030年,世界經濟將增加15萬億美元。
很多人可能會想「那太好了,但實際上和我沒什麼關系。」只有擁有數百萬美元資產的大型科技公司才會真正受益。那你需要大量的數據才能開始一項新的研究嗎?
其實並不是這樣的。事實上,利用近年在數據收集、分析上的巨大突破,很容易改善我們的個人和商業生活。很多人先前可能沒有認識到這點。
以下是大數據作為日常生活工具和服務的一部分的一些細節。
谷歌——語義分析與用戶畫像
盡管谷歌並沒有把自己標榜成數據公司,但實際上它的確是數據寶庫和處理問題的工具。它已經從一個網頁索引發展成為一個實時數據中心樞紐,幾乎可以估量任何可以測量的數據(比如:天氣信息、旅行延遲、股票和股份、購物……以及其他很多事情)。
大數據分析——也就是說,當我們進行搜索時大數據就會起作用,可以使用工具來對數據分類和理解。谷歌計算程序運行復雜的演算法,旨在將輸入的查詢與所有可用數據相匹配。它將嘗試確定你是否正在尋找新聞、事實、人物或統計信息,並從適當的資料庫中提取數據。
對於更復雜的操作,例如翻譯,谷歌會調用其他基於大數據的內置演算法。谷歌的翻譯服務研究了數以百萬計的翻譯文本或演講稿,旨在為顧客提供最准確的解釋。
經常利用大數據分析的對象從最大的企業到單人樂隊,當他們通過谷歌的Adwords進行廣告宣傳時就是對大數據的利用。通過分析我們瀏覽的網頁(很明顯能看出我們喜歡什麼網頁),谷歌可以向我們展示我們可能感興趣的產品和服務的廣告。廣告商使用Adwords和谷歌分析等其他服務,以吸引符合其客戶資料的人員到其網站和商店時,廣告商就利用了大數據分析。
臉譜網——圖像識別與「人」的大數據
盡管臉譜網與谷歌在市場營銷上差異巨大,但實際上它們的業務和數據模式非常相似。眾所周知,兩個公司都選擇將自己的企業形象定位重點放在大數據方面。
對谷歌來說,大數據是在線信息、數據和事實。對臉譜網來說大數據就是「人」。臉譜網讓我們與朋友和家人保持聯系越來越方便,利用這個巨大的吸引力,該公司在十幾年之內成為世界上最大的公司之一。這也意味著他們收集了大量的數據,同時我們也可以自己使用這些大數據。當我們搜索老朋友時,大數據就會發揮作用,將我們的搜索結果與我們最有可能聯系的人進行匹配。
由臉譜網開創的先進技術包括圖像識別——一種大數據技術,通過利用數百萬種其他圖像進行訓練,能教會機器識別圖片或視頻中的主題或細節。在我們告訴它圖片中的人是誰之前,機器可以通過標簽來識別圖片中的人。這也是為什麼,當我們的朋友分享或給圖片「點贊」時,如果它發現我們喜歡看例如嬰兒或貓的圖片,在我們的信息流中就會看到更多這種類型的圖片。
對人們興趣及其利益的詳細了解也使臉譜網能夠向任何企業出售極具針對性的廣告。臉譜網可以幫助企業根據詳細的人口統計數據和興趣數據找到潛在客戶,或者可以僅僅讓他們通過查找與企業已有客戶相似的其他客戶來完成他們的大數據「魔術」。
亞馬遜——基於大數據的推薦引擎
亞馬遜作為世界上最大的在線商店,也是世界上最大的數據驅動型組織之一。亞馬遜和本文提到的其他互聯網巨頭之間的差別很大程度上取決於市場營銷。與谷歌和一樣,亞馬遜提供了廣泛的在線服務,包括信息搜索、關注朋友和家人的賬號以及廣告,但其品牌建立在最初以購物聞名的服務上。
亞馬遜將我們瀏覽和購買的產品與全球數百萬其他客戶進行比較。通過分析我們的習慣,可以將我們與其他可能符合我們需求的產品和建議相匹配。大數據技術在亞馬遜的應用就是推薦引擎,而亞馬遜是推薦引擎的鼻祖,其也是最復雜的。除了購物,亞馬遜還讓客戶利用自己的平台賺錢。任何在自己的平台上建立交易的人都會受益於數據驅動的推薦,從理論上講,這將吸引合適的客戶來購買產品。
領英——被篩選過的精準大數據
如果你是一名僱主,或是正在找工作的人,領英會提供一些可以幫助你的大數據。
求職者可以根據自己的技能和經驗來匹配空缺職位,甚至可以找到與公司其他員工以及其他可能競爭該職位的員工的數據。
對招聘人員來說,領英的大數據可以找到與特定資料相匹配的人才,例如現任員工或前雇員。
領英對其數據採取了「圍牆的花園」方式(註:「圍牆花園」是相對於「完全開放」的互聯網,把用戶限制在一個特定的范圍內,允許用戶訪問指定的內容),當你選擇在何處尋找和使用大數據時,這個不同之處值得考慮。領英的招聘人員和申請人的服務都是由公司內部和由服務本身控制的數據進行的,而谷歌是(在美國也提供招聘信息)從大量外部資源中獲取收數據。領英的方法提供了潛在的更高質量的信息,而另一方面,它可能不全面。谷歌的方法提供了更大容量的數據,但這些數據可能是你想要的,也可能不是。
這些只是應用大數據的幾種方式——遠非資源豐富的公司和技術精英的工具,而是我們大部分人在日常生活中已經從中受益的東西。隨著越來越多的數據變得容易獲取,越來越復雜的工具涌現出來,從中獲得價值,肯定會有更多的數據產生。

❼ 如何獲取大數據

問題一:怎樣獲得大數據? 很多數據都是屬於企業的商業秘密來的,你要做大數據的一些分析,需要獲得海量的數據源,再此基礎上進行挖掘,互聯網有很多公開途徑可以獲得你想要的數據,通過工具可以快速獲得,比如說象八爪魚採集器這樣的大數據工具,都可以幫你提高工作效率並獲得海量的數據採集啊

問題二:怎麼獲取大數據 大數據從哪裡來?自然是需要平時對旅遊客群的數據資料累計最終才有的。
如果你們平時沒有收集這些數據 那自然是沒有的

問題三:怎麼利用大數據,獲取意向客戶線索 大數據時代下大量的、持續的、動態的碎片信息是非常復雜的,已經無法單純地通過人腦來快速地選取、分析、處理,並形成有效的客戶線索。必須依託雲計算的技術才能實現,因此,這樣大量又精密的工作,眾多企業紛紛藉助CRM這款客戶關系管理軟體來實現。
CRM幫助企業獲取客戶線索的方法:
使用CRM可以按照統一的格式來管理從各種推廣渠道獲取的潛在客戶信息,匯總後由專人進行篩選、分析、跟蹤,並找出潛在客戶的真正需求,以提供滿足其需求的產品或服務,從而使潛在客戶轉變為真正為企業帶來利潤的成交客戶,增加企業的收入。使用CRM可以和網站、電子郵件、簡訊等多種營銷方式相結合,能夠實現線上客戶自動抓取,迅速擴大客戶線索數量。

問題四:如何進行大數據分析及處理? 大數據的分析從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?1. 可視化分析。大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。2. 數據挖掘演算法。大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。3. 預測性分析。大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。4. 語義引擎。非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。5.數據質量和數據管理。大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。大數據的技術數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。數據存取:關系資料庫、NOSQL、SQL等。基礎架構:雲存儲、分布式文件存儲等。數據處理:自然語言處理(NLP,Natural Language Processing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理解(NLU,Natural Language Understanding),也稱為計算語言學(putational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。數據挖掘:分類(Classification)、估計(Estimation)、預測(Predic膽ion)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化......>>

問題五:網路股票大數據怎麼獲取? 用「網路股市通」軟體。
其最大特色是主打大數據信息服務,讓原本屬於大戶的「大數據炒股」變成普通網民的隨身APP。

問題六:通過什麼渠道可以獲取大數據 看你是想要哪方面的,現在除了互聯網的大數據之外,其他的都必須要日積月累的

問題七:通過什麼渠道可以獲取大數據 有個同學說得挺對,問題傾向於要的是數據,而不是大數據。
大數據講究是全面性(而非精準性、數據量大),全面是需要通過連接來達成的。如果通過某個app獲得使用該app的用戶的終端信息,如使用安卓的佔比80%,使用iPhone的佔比為20%, 如果該app是生活訂餐的應用,你還可以拿到使用安卓的這80%的用戶平時網上訂餐傾向於的價位、地段、口味等等,當然你還會獲取這些設備都是在什麼地方上網,設備的具體機型你也知道。但是這些數據不斷多麼多,都不夠全面。如果將這部分用戶的手機號或設備號與電子商務類網站數據進行連接,你會獲取他們在電商網站上的消費數據,傾向於購買的品牌、價位、類目等等。每個系統可能都只存儲了一部分信息,但是通過一個連接標示,就會慢慢勾勒出一個或一群某種特徵的用戶的較全面的畫像。

問題八:如何從大數據中獲取有價值的信息 同時,大數據對公共部門效益的提升也具有巨大的潛能。如果美國醫療機構能夠有效地利用大數據驅動醫療效率和質量的提高,它們每年將能夠創造超過3萬億美元的價值。其中三分之二是醫療支出的減少,占支出總額超過8%的份額。在歐洲發達國家, *** 管理部門利用大數據改進效率,能夠節約超過14900億美元,這還不包括利用大數據來減少欺詐,增加稅收收入等方面的收益。
那麼,CIO應該採取什麼步驟、轉變IT基礎設施來充分利用大數據並最大化獲得大數據的價值呢?我相信用管理創新的方式來處理大數據是一個很好的方法。創新管道(Innovation pipelines)為了最終財務價值的實現從概念到執行自始至終進行全方位思考。對待大數據也可以從相似的角度來考慮:將數據看做是一個信息管道(information pipeline),從數據採集、數據訪問、數據可用性到數據分析(4A模型)。CIO需要在這四個層面上更改他們的信息基礎設施,並運用生命周期的方式將大數據和智能計算技術結合起來。
大數據4A模型
4A模型中的4A具體如下:
數據訪問(Access):涵蓋了實時地及通過各種資料庫管理系統來安全地訪問數據,包括結構化數據和非結構化數據。就數據訪問來說,在你實施越來越多的大數據項目之前,優化你的存儲策略是非常重要的。通過評估你當前的數據存儲技術並改進、加強你的數據存儲能力,你可以最大限度地利用現有的存儲投資。EMC曾指出,當前每兩年數據量會增長一倍以上。數據管理成本是一個需要著重考慮的問題。
數據可用性(Availability):涵蓋了基於雲或者傳統機制的數據存儲、歸檔、備份、災難恢復等。
數據分析(Analysis):涵蓋了通過智能計算、IT裝置以及模式識別、事件關聯分析、實時及預測分析等分析技術進行數據分析。CIO可以從他們IT部門自身以及在更廣泛的范圍內尋求大數據的價值。
用信息管道(information pipeline)的方式來思考企業的數據,從原始數據中產出高價值回報,CIO可以使企業獲得競爭優勢、財務回報。通過對數據的完整生命周期進行策略性思考並對4A模型中的每一層面都做出詳細的部署計劃,企業必定會從大數據中獲得巨大收益。 望採納

問題九:如何獲取互聯網網大數據 一般用網路蜘蛛抓取。這個需要掌握一門網路編程語言,例如python

問題十:如何從網路中獲取大量數據 可以使用網路抓包,抓取網路中的信息,推薦工具fiddler

❽ 互聯網公司是如何獲取用戶大數據的

這個問題很大,大數據可以是一種技術類型,也可以是一種應用類型,我們就用頭條這個場景來簡單分析一下吧。

數據量

大數據應用和納孫分析,最大的價值就在於數據量的大,這個大不單單指數塵野據存儲大小,還在於用戶量、覆蓋面、精細程度。用戶數量越大越好,但是同時覆蓋面越廣,對用戶采洞兄鏈集數據的細分程度越細,應用價值也越高,這就是大數據採集的價值。

我們作為用戶,在頭條系的所有產品上的操作都會留痕,這些留痕就是大數據採集的過程,比如我現在正在回答這個問題,這個問題本身上有自帶標簽或者某些屬性的,那我也會被打上標記,後面會通過演算法向我推送對應的內容。這里的回答問題就是採集過程,向我推送內容就是應用過程。

我們經常瀏覽和搜索的內容,都是這個邏輯,通過這些邏輯,我們會被打上「興趣」和「行為」標簽,這些獲取數據的過程是貫穿在我們使用產品的全過程的,需要什麼信息就看產品定義,理論上來說,大數據場景,數據越精細越有價值。

持續性

收集數據的過程是持續性的,唯一不同的是觸發條件可能有所不同。比如進入內容詳情頁是通過點擊來觸發,你是否對某個內容感興趣是通過停留時長、互動來觸發,通過持續不斷的收集數據,保證數據量級,讓結果更加准確。

數據的新鮮度

除了數據量和持續收集,在應用價值上,數據的新鮮度是很重要的一個指標。假如你是個沉默用戶,所有數據分析結果都是很久以前的,那應用價值就不高。所以產品會通過很多喚醒、激活手段,讓你保持活躍,不斷更新數據內容。

❾ 大數據的中的數據是從哪裡來的

大數據應用中的關鍵點有三個,首要的就是大數據的數據來源,我們在分析大數據的時候需要重視大數據中的數據來源,只有這樣我們才能夠做好大數據的具體分析內容。那麼大家知不知道大數據的數據來源都是通過什麼渠道獲得的?下面就由小編為大家解答一下這個問題。
對於數據的來源很多人認為是互聯網和物聯網產生的,其實這句話是對的,這是因為互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。而物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據的數據來源,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,是我們常用的數據來源。
而數據的來源是我們評價大數據應用的第一個關注點。首先需要我們看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是好數據還是壞數據,能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,只有我們找到了好的數據來源,我們就能夠做好大數據的工作。這句需要我們去尋找數據比較密集的領域。
一般來說,我們獲取數據的時候需要數據密集的行業中挖掘數據,主要就是金融、電信、服務行業等等,而金融是一個特別重要的數據密集領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。
我們在這篇文章中為大家介紹了大數據的數據來源以及數據密集的領域,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。

閱讀全文

與網路服務公司的大數據怎麼來的相關的資料

熱點內容
硅膠模具自拆怎麼ug編程 瀏覽:400
win7如何把程序添加到右鍵 瀏覽:489
runouceexe專殺工具 瀏覽:909
tgz解壓工具 瀏覽:634
看古玩哪個網站可以免費拍賣 瀏覽:119
金蝶軟體導出的各種文件都找不到 瀏覽:862
電腦怎麼導出文件 瀏覽:23
金蝶用戶名密碼忘記 瀏覽:147
可以買房嗎上哪個網站 瀏覽:577
應用編程是什麼 瀏覽:753
稅務總局電子申報軟體密碼 瀏覽:702
歐姆龍編程里加繼電器怎麼改程序 瀏覽:930
為什麼選擇數據處理員 瀏覽:882
iphone5耳機音量小 瀏覽:984
長風桌面工具 瀏覽:993
編程中如何把所有的東西分開 瀏覽:90
怎樣連接移動資料庫 瀏覽:716
走字屏為什麼插上u盤找不到文件 瀏覽:399
如何定義根文件系統 瀏覽:258
手游數據統計哪裡看 瀏覽:658

友情鏈接