『壹』 如何選擇數據分析方法
數據其實是非常的客觀的,但是數據本身並不會告訴你多少有價值的東西,其中蘊涵的內容才是我們應該去發掘的。我們通過數據分析將現實中的問題簡化成數字問題,從而得到解決問題的建議。
需要注意的是,數據分析只是工具,不是目的。我們進行數據分析是為了讓分析結果能反映現階段的情況,並對下一步計劃產生指導意義,所以千萬不要為了分析而分析。
1、明確目標
一切分析的基礎都是需要明確目標,在此之前,不要開始任何分析,因為那很可能是無用功。
一般來說,目的主要有以下三種。
分析現狀,反映目前的狀況,並且幫助我們制定下一步計劃。
分析問題,針對出現的問題,分析其中的原因並找到解決辦法。
分析變化,當產品的情況出現變化時反映變化的情況,並找出原因,有針對性的進行下一步行動。
2、明確分析范圍
因為數據的量和維度都非常的多,我們在明確目標後,就必須選定我們分析的范圍,明確的分析范圍能避免分析報告內容太多,而且不深入。
需要注意的是,確定范圍後我們就需要進行數據採集了,但是具體要採集什麼樣的數據,不是我們平常的「自然語言」描述就可以實現的,需要抽象成「數學語言」表達出來。
3、數據採集
確定了范圍後,我們就可以採集數據了,需要採集哪些數據也是有講究的,它也是需要我們用「數學語言」來表達的。一般來說,需要採集的數據分為以下3類,這是最基礎的:名稱、數量和轉化率。
名稱:某些數據的結果不是以數字形式展現的,比如某某功能
數量:這個比較簡單,比如:某某功能的點擊次數
轉化率:有些數據單獨的看,是不能說明問題的,例如:光看一個功能的點擊次數,我們不能得出這個功能是否吸引人,是否需要改進,我們還需要看完成這個功能的人數。然後將兩個數據相除後得到這個功能的轉化率。
以上都是一個分析中最基礎的指標,在實際數據分析中,還會有更多更細致的維度。比如:用戶點擊這個功能後,停留時間,退出的數量,在中途放棄的數量等等。
4、數據清洗
採集數據後,這些數據並不是直接就可以用的。因為可能會有一部分「臟數據」會污染我們的數據,進而影響我們的分析結果。這就需要進行數據清洗,將不符合要的「臟數據」清洗掉。
比如,某個用戶一直在點擊某個功能,每秒固定點擊1次,然後退出,那麼這個「用戶」很可能是個機器,而不是人。這些數據是不能用的。
一般「臟數據」有以下幾個類型。
頻率異常:正常用戶的使用一個功能的頻率一般會保持在一定范圍內,不會太頻繁。
總數異常:比如某一個用戶一個人就拉高了整個數據的水平,讓某個功能點擊率陡然上升。
行為異常:這個就比較復雜了,對應不同的業務有不同的理解。比如:比如一個購物APP,一個用戶的多次的下單,然後退貨,這類數據就是應該排除的。
5、數據整理
收集完成後,我們需要對收集到的原始數據進行整理。因為收集出來的數據必然是比較亂的,不能直接拿來分析。整理分析分為匯總和拆分兩種。
(1)匯總
有些數據比較雜亂無章,我們要按照某個維度匯總才能進行效果的觀察。比如:我們需要觀察某個功能上線後用戶行為的變化,就可以按照上線前和上線後的用戶行為數據進行分類匯總,然後通過兩份數據的對比來得到結論。
(2)拆分
有些原始數據並不足夠細致,需要我們依據數據的關系進行數據拆分。例如,一個功能的入口可能有多個,我們就需要確認每個入口的量,甚至完成整個功能的量,這些數據會讓我們更加了解我們的用戶行為。
6、數據對比
整理完數據後,我們要進行數據對比。這也是數據分析中非常重要的步驟,因為數據分析的結果絕大多數都來自於對數據的對比。比如:一個功能改進前和改進後的轉化率,肯定要經過對比才能知道我們的改進是不是有效的,有效多少。通常對比方法有以下幾種。
時間對比。通過時間節點前後進行對比數據。例如:某個營銷活動,促進注冊、活躍等,我們就可以得出這個營銷活動能夠帶動日活的結論。
空間對比。在我們生活的世界中,因為人們所存在的空間不同,會有不同的行為。比如:通過數據分析,我們會發現,東北的羽絨服效率比海南高,於是我們就可以判斷羽絨服在東北更加暢銷。
人群屬性對比。在用戶畫像中也提高過。不同的年齡層對於不同事物的看法不同,會導致某個功能在不同人群中的差異性。
依據分析目的靈活地選定對比范圍,能讓我們從數據中挖掘到我們想要的東西。
7、原因探尋
數據,通過對比呈現出來,能夠反映一定的現象,但是造成這些現象的原因還需要我們來尋找。
原因的分析方法有很多,可以正推導、反推導。我們可以結果,那假設原因,再去求證。或者通過某個功能的整個流程進行梳理和復盤,結合數據來分析每一步發生這種情況的原因。
或者通過數據來復盤某一個活動,來分析活動輸出的這種數據或好的或壞的原因是什麼。
8、展現結果
完成上面的7步,我們的數據分析報告也就差不多了,當然我們必須形成一個比較完整的文檔來反饋給相關人員。
我們可以把報告分成以下3部分。
數據分析背景:向大家交代分析的背景與原因。
主要結論:給出主要結論,方便不需要了解細節的人閱讀,或領導。
具體分析過程:向大家說明分析的步驟並展示具體數據。
這樣就完成了一篇還比較靠譜的數據分析報告。
『貳』 錄入好的調查問卷,該如何進行數據分析
SPSS分析調查問卷數據的方法
當我們的調查問卷在把調查數據拿回來後,我們該做的工作就是用相關的統計軟體進行處理,在此,我們以spss為處理軟體,來簡要說明一下問卷的處理過程,它的過程大致可分為四個過程:定義變數﹑數據錄入﹑統計分析和結果保存.下面將從這四個方面來對問卷的處理做詳細的介紹.
Spss處理:
第一步:定義變數
大多數情況下我們需要從頭定義變數,在打開SPSS後,我們可以看到和excel相似的界面,在界面的左下方可以看到Data View, Variable View兩個標簽,只需單擊左下方的Variable View標簽就可以切換到變數定義界面開始定義新變數。在表格上方可以看到一個變數要設置如下幾項:name(變數名)、type(變數類型)、width(變數值的寬度)、decimals(小數位) 、label(變數標簽) 、Values(定義具皮螞體變數值的標簽)、Missing(定義變數缺失值)、Colomns(定義顯示列寬)、Align(定義顯示對齊方式)、Measure(定義變數類型是連續、有序分類還是無序分類).
我們知道在spss中,我們可以把一份問卷上面的每一個問題設為一個變數,這樣一份問卷有多少個問題就要有多少個變數與之對應,每一個問題的答案即為變數的取值.現在我們以問卷第一個問題為例來說明變數的設置.為了便於說明,可假設此題為:
1.請問你的年齡屬於下面哪一個年齡段( )?
A:20—29 B:30—39 C:40—49 D:50--59
那麼我們的變數設置可如下: name即變數名為1,type即類型可根據答案的類型設置,答案我們可以用1、2、3、4來代替A、B、寬握櫻C、D,所以我們選擇數字型的,即選擇Numeric, width寬度慎叢為4,decimals即小數位數位為0(因為答案沒有小數點),label即變數標簽為「年齡段查詢」。Values用於定義具體變數值的標簽,單擊Value框右半部的省略號,會彈出變數值標簽對話框,在第一個文本框里輸入1,第二個輸入20—29,然後單擊添加即可.同樣道理我們可做如下設置,即1=20—29、2=30—39、3=40—49、4=50--59;Missing,用於定義變數缺失值, 單擊missing框右側的省略號,會彈出缺失值對話框, 界面上有一列三個單選鈕,默認值為最上方的「無缺失值」;第二項為「不連續缺失值」,最多可以定義3個值;最後一項為「缺失值范圍加可選的一個缺失值」,在此我們不設置預設值,所以選中第一項如圖;Colomns,定義顯示列寬,可自己根據實際情況設置;Align,定義顯示對齊方式,有居左、居右、居中三種方式;Measure,定義變數類型是連續、有序分類還是無序分類。
以上為問卷中常見的單項選擇題型的變數設置,下面將對一些特殊情況的變數設置也作一下說明.
1.開放式題型的設置:諸如你所在的省份是_____這樣的填空題即為開放題,設置這些變數的時候只需要將Value 、Missing兩項不設置即可.
2.多選題的變數設置:這類題型的設置有兩種方法即多重二分法和多重分類法,在這里我們只對多重二分法進行介紹.這種方法的基本思想是把該題每一個選項設置成一個變數,然後將每一個選項拆分為兩個選項項,即選中該項和不選中該項.現在舉例來說明在spss中的具體操作.比如如下一例:
請問您通常獲取新聞的方式有哪些( )
1 報紙 2 雜志 3 電視 4 收音機 5 網路
在spss中設置變數時可為此題設置五個變數,假如此題為問卷第三題,那麼變數名分別為3_1、3_2、3_3、3_4、3_5,然後每一個選項有兩個選項選中和不選中,只需在Value一項中為每一個變數設置成1=選中此項、0=不選中此項即可.
使用該窗口,我們可以把一個問卷中的所有問題作為變數在這個窗口中一次定義。
到此,我們的定義變數的工作就基本上可以結束了.下面我們要作就是數據的錄入了.首先,我們要回到數據錄入窗口,這很簡單,只要我們點擊軟體左下方的Data View標簽就可以了.
第二步:數據錄入
Spss數據錄入有很多方式,大致有一下幾種:
1.讀取SPSS格式的數據
2.讀取Excel等格式的數據
3.讀取文本數據(Fixed和Delimiter)
4.讀取資料庫格式數據(分如下兩步)
(1)配置ODBC (2)在SPSS中通過ODBC和資料庫進行
但是對於問卷的數據錄入其實很簡單,只要在spss的數據錄入窗口中直接輸入就可以了,只是在這里有幾點注意的事項需要說明一下.
1. 在數據錄入窗口,我們可以看到有一個表格,這個表格中的每一行代表一份問卷,我們也稱為一個個案.
2. 在數據錄入窗口中,我們可以看到表格上方出現了1、2、3、4、5…….的標簽名,這其實是我們在第一步定義變數中,我們為問卷的每一個問題取的變數名,即1代表第一題,2代表第二題.以次類推.我們只需要在變數名下面輸入對應問題的答案即可完成問卷的數據錄入.比如上述年齡段查詢的例題,如果問卷上勾選了A答案,我們在1下面輸入1就行了(不要忘記我們通常是用1、2、3、4來代替A、B、C、D的).
3.我們知道一行代表一份問卷,所以有幾分問卷,就要有幾行的數據.
在數據錄入完成後,我們要做的就是我們的關鍵部分,即問卷的統計分析了,因為這時我們已經把問卷中的數據錄入我們的軟體中了.
第三步:統計分析
有了數據,可以利用SPSS的各種分析方法進行分析,但選擇何種統計分析方法,即調用哪個統計分析過程,是得到正確分析結果的關鍵。這要根據我們的問卷調查的目的和我們想要什麼樣的結果來選擇.SPSS有數值分析和作圖分析兩類方法.
1.作圖分析:
在SPSS中,除了生存分析所用的生存曲線圖被整合到Analyze菜單中外,其他的統計繪圖功能均放置在graph菜單中。該菜單具體分為以下幾部分::
(1)Gallery:相當於一個自學向導,將統計繪圖功能做了簡單的介紹,初學者可以通過它對SPSS的繪圖能力有一個大致的了解。
(2)Interactive:互動式統計圖。
(3)Map:統計地圖。
(4)下方的其他菜單項是我們最為常用的普通統計圖,具體來說有:
條圖
散點圖
線圖
直方圖
餅圖
面積圖
箱式圖
正態Q-Q圖
正態P-P圖
質量控制圖
Pareto圖
自回歸曲線圖
高低圖
交互相關圖
序列圖
頻譜圖
誤差線圖
作圖分析簡單易懂,一目瞭然,我們可根據需要來選擇我們需要作的圖形,一般來講,我們較常用的有條圖,直方圖,正態圖,散點圖,餅圖等等,具體操作很簡單,大家可參閱相關書籍,作圖分析更多情況下是和數值分析相結合來對試卷進行分析的,這樣的效果更好.
2.數值分析:
SPSS 數值統計分析過程均在Analyze菜單中,包括:
(1)、Reports和Descriptive Statistics:又稱為基本統計分析.基本統計分析是進行其他更深入的統計分析的前提,通過基本統計分析,用戶可以對分析數據的總體特徵有比較准確的把握,從而選擇更為深入的分析方法對分析對象進行研究。Reports和Descriptive Statistics命令項中包括的功能是對單變數的描述統計分析。
Descriptive Statistics包括的統計功能有:
Frequencies(頻數分析):作用:了解變數的取值分布情況
Descriptives(描述統計量分析):功能:了解數據的基本統計特徵和對指定的變數值進行標准化處理
Explore(探索分析):功能:考察數據的奇異性和分布特徵
Crosstabs(交叉分析):功能:分析事物(變數)之間的相互影響和關系
Reports包括的統計功能有:
OLAP Cubes(OLAP報告摘要表):功能: 以分組變數為基礎,計算各組的總計、均值和其他統計量。而輸出的報告摘要則是指每個組中所包含的各種變數的統計信息。
Case Summaries(觀測量列表):察看或列印所需要的變數值
Report Summaries in Row:行形式輸出報告
Report Summaries in Columns:列形式輸出報告
(2)、Compare Means(均值比較與檢驗):能否用樣本均值估計總體均值?兩個變數均值接近的樣本是否來自均值相同的總體?換句話說,兩組樣本某變數均值不同,其差異是否具有統計意義?能否說明總體差異?這是各種研究工作中經常提出的問題。這就要進行均值比較。
以下是進行均值比較及檢驗的過程:
MEANS過程:不同水平下(不同組)的描述統計量,如男女的平均工資,各工種的平均工資。目的在於比較。術語:水平數(指分類變數的值數,如sex變數有2個值,稱為有兩個水平)、單元Cell(指因變數按分類變數值所分的組)、水平組合
T test 過程:對樣本進行T檢驗的過程
單一樣本的T檢驗:檢驗單個變數的均值是否與給定的常數之間存在差異。
獨立樣本的T檢驗:檢驗兩組不相關的樣本是否來自具有相同均值的總體(均值是否相同,如男女的平均收入是否相同,是否有顯著性差異)
配對T檢驗:檢驗兩組相關的樣本是否來自具有相同均值的總體(前後比較,如訓練效果,治療效果)
one-Way ANOVA:一元(單因素)方差分析,用於檢驗幾個(三個或三個以上)獨立的組,是否來自均值相同的總體。
(3)、ANOVA Models(方差分析):方差分析是檢驗多組樣本均值間的差異是否具有統計意義的一種方法。例如:醫學界研究幾種葯物對某種疾病的療效;農業研究土壤、肥料、日照時間等因素對某種農作物產量的影響;不同飼料對牲畜體重增長的效果等,都可以使用方差分析方法去解決
(4)、Correlate(相關分析):它是研究變數間密切程度的一種常用統計方法,常用的相關分析有以下幾種:
1、線性相關分析:研究兩個變數間線性關系的程度。用相關系數r來描述。
2、偏相關分析:它描述的是當控制了一個或幾個另外的變數的影響條件下兩個變數間的相關性,如控制年齡和工作經驗的影響,估計工資收入與受教育水平之間的相關關系
3、相似性測度:兩個或若干個變數、兩個或兩組觀測量之間的關系有時也可以用相似性或不相似性來描述。相似性測度用大值表示很相似,而不相似性用距離或不相似性來描述,大值表示相差甚遠
(5)、Regression(回歸分析):功能:尋求有關聯(相關)的變數之間的關系在回歸過程中包括:Liner:線性回歸;Curve Estimation:曲線估計;Binary Logistic:二分變數邏輯回歸;Multinomial Logistic:多分變數邏輯回歸;Ordinal 序回歸;Probit:概率單位回歸;Nonlinear:非線性回歸;Weight Estimation:加權估計;2-Stage Least squares:二段最小平方法;Optimal Scaling最優編碼回歸;其中最常用的為前面三個.
(6)、Nonparametric Tests(非參數檢驗):是指在總體不服從正態分布且分布情況不明時,用來檢驗數據資料是否來自同一個總體假設的一類檢驗方法。由於這些方法一般不涉及總體參數故得名。
非參數檢驗的過程有以下幾個:
1.Chi-Square test 卡方檢驗
2.Binomial test 二項分布檢驗
3.Runs test 遊程檢驗
4.1-Sample Kolmogorov-Smirnov test 一個樣本柯爾莫哥洛夫-斯米諾夫檢驗
5.2 independent Samples Test 兩個獨立樣本檢驗
6.K independent Samples Test K個獨立樣本檢驗
7.2 related Samples Test 兩個相關樣本檢驗
8.K related Samples Test 兩個相關樣本檢驗
(7)、Data Rection(因子分析)
(8)、Classify(聚類與判別)等等
以上就是數值統計分析Analyze菜單下幾項用於分析的數值統計分析方法的簡介,在我們的變數定義以及數據錄入完成後,我們就可以根據我們的需要在以上幾種分析方法中選擇若干種對我們的問卷數據進行統計分析,來得到我們想要的結果.
第四步:結果保存
我們的spss軟體會把我們統計分析的多有結果保存在一個窗口中即結果輸出窗口(output),由於spss軟體支持復制和粘貼功能,這樣我們就可以把我們想要的結果復制﹑粘貼到我們的報告中,當然我們也可以在菜單中執行file->save來保存我們的結果,一般情況下,我們建議保存我們的數據,結果可不保存.因為只要有了數據,如果我們想要結果的,我們可以隨時利用數據得到結果.
總結:
以上便是spss處理問卷的四個步驟,四個步驟結束後,我們需要spss軟體做的工作基本上也就結束了,接下來的任務就是寫我們的統計報告了.值得一提的是.spss是一款在社會統計學應用非常廣泛的統計類軟體,學好它將對我們以後的工作學習產生很大的意義和作用.
SPSS的問卷分析中一份問卷是一個案,首先要根據問卷問題的不同定義變數。定義變數值得注意的兩點:一區分變數的度量,Measure的值,其中Scale是定量、Ordinal是定序、Nominal是指定類;二 注意定義不同的數據類型Type
各色各樣的問卷題目的類型大致可以分為單選、多選、排序、開放題目四種類型,他們的變數的定義和處理的方法各有不同,我們詳細舉例介紹如下:
1 單選題:答案只能有一個選項
例一 當前貴組織機構是否設有面向組織的職業生涯規劃系統?
A有 B 正在開創 C沒有 D曾經有過但已中斷
編碼:只定義一個變數,Value值1、2、3、4分別代表A、B、C、D 四個選項。
錄入:錄入選項對應值,如選C則錄入3
2 多選題:答案可以有多個選項,其中又有項數不定多選和項數定多選。
(1)方法一(二分法):
例二 貴處的職業生涯規劃系統工作涵蓋哪些組群?畫鉤時請把所有提示
考慮在內。
A月薪員工 B日薪員工 C鍾點工
編碼:把每一個相應選項定義為一個變數,每一個變數Value值均如下定義:「0」 未選,「1」 選。
錄入:被調查者選了的選項錄入1、沒選錄入0,如選擇被調查者選AC,則三個變數分別錄入為1、0、1。
(2)方法二:
例三 你認為開展保持黨員先進性教育活動的最重要的目標是那三項:
1( ) 2 ( ) 3( )
A、提高黨員素質 B、加強基層組織 C、堅持發揚民主
D、激發創業熱情 E、服務人民群眾 F、促進各項工作
編碼:定義三個變數分別代表題目中的1、2、3三個括弧,三個變數Value值均同樣的以對應的選項定義,即:「1」 A,「2」B,「3」 C,「4」 D,「5」 E,「6」 F
錄入:錄入的數值1、2、3、4、5、6分別代表選項ABCDEF,相應錄入到每個括弧對應的變數下。如被調查者三個括弧分別選ACF,則在三個變數下分別錄入1、3、6。
註:能用方法二編碼的多選題也能用方法編碼,但是項數不定的多選只能用二分法,即方法一是多選題一般處理方法。
3 排序題: 對選項重要性進行排序
例四 您購買商品時在 ①品牌 ②流行 ③質量 ④實用 ⑤價格 中對它們的關注程度先後順序是(請填代號重新排列)
第一位 第二位 第三位 第四位 第五位
編碼:定義五個變數,分別可以代表第一位 第五位,每個變數的Value都做如下定義:「1」 品牌,「2」 流行,「3」 質量,「4」 實用,「5」 價格
錄入:錄入的數字1、2、3、4、5分別代表五個選項,如被調查者把質量排在第一位則在代表第一位的變數下輸入「3「。
4 選擇排序題:
例五 把例三中的問題改為「你認為開展保持黨員先進性教育活動的最重
的目標是那三項,並按重要性從高到低排序」,選項不變。
編碼:以ABCDEF6個選項分別對應定義6個變數,每個變數的Value都做同樣的如下定義:「1」 未選,「2」 排第一,「3」 排第二,「4」 排第三。
錄入:以變數的Value值錄入。比如三個括弧里分別選的是 ECF,則該題的6個變數的值應該分別錄入:1(代表A選項未選)、1、 3(代表C選項排在第二)、1、2、4。
註:該方法是對多選題和排序題的方法結合的一種方法,對一般排序題(例四)也同樣適用,只是兩者用的分析方法不同(例四用頻數分析、例五用描述分析),輸出結果從不同的側面反映問題的重要性(前一種方法從位次從變數的頻數看排序,後一種方法從變數出發看排序)。
5 開放性數值題和量表題:這類題目要求被調查者自己填入數值,或者打分
例六 你的年齡(實歲):______
編碼:一個變數,不定義Value值
錄入:即錄入被調查者實際填入的數值。
6開放性文字題:
如果可能的話可以按照含義相似的答案進行編碼,轉換成為封閉式選項進行分析。如果答案內容較為豐富、不容易歸類的,應對這類問題直接做定性分析。
三 問卷一般性分析
下面具體介紹SPSS中問卷的一般處理方法,操作以版本spss13.0為例,以下提到的菜單項均在Analyze主菜單下
1頻數分析:Frequencies過程可以做單變數的頻數分布表;顯示數據文件中由用戶指定的變數的特定值發生的頻數;獲得某些描述統計量和描述數值范圍的統計量。
適用范圍:單選題(例一),排序題(例四),多選題的方法二(例三)
頻數分析也是問卷分析中最常用的方法。
實現: Descriptive statistics……Frequencies
2 描述分析:Descriptives:過程可以計算單變數的描述統計量。這些述統計量有平均值、算術和、標准差,最大值、最小值、方差、范圍和平均數標准誤等。
適用范圍:選擇並排序題(例五)、開放性數值題(例六)。
實現: Descriptive statistics……Descriptives,需要的統計量點擊按鈕Statistics…中選擇
3 多重反應下的頻次分析:
適用范圍:多選題的二分法(例二)
實現:第一步在Multiple Response……Define Sets把一道多選問題中定義了的所有變數集合在一起,給新的集合變數取名,在Dichotomies Counted value中輸入1。第二步在Multiple Response……Frequencies中做頻數分析。
4 交叉頻數分析:解決對多變數的各水平組合的頻數分析的問題
適用范圍:,適用於由兩個或兩個以上變數進行交叉分類形成的列聯表,對變數之間的關聯性進行分析。比如要知道不同工作性質的人上班使用交通工具的情況,可以通過交叉分析得到一個二維頻數表則一目瞭然。
實現:第一步根據分析的目的來確定交叉分析的選項,確定控制變數和解釋變數(如上例中不同工作性質的人是控制變數,使用交通工具是解釋變數)。第二步選擇Descriptive statistics……Crosstabs
四 簡單圖形描述介紹
在做上述頻數分析、描述分析等分析時就可以直接做出圖形,簡單方便,同時也可以另外作圖。SPSS的作圖功能在菜單Graphs下,功能強大,圖形清晰優美。現在把常用圖簡單介紹如下
1餅圖:又稱圓圖,是以圓的面積代表被研究對象的總體,按各構成部分佔總體比重的大小把圓面積分割成若干扇形,用以表示現象的部分對總體的比例關系的統計圖。頻數分析的結果宜用餅圖表示。
2曲線圖:是用線段的升降來說明數據變動情況的一種統計圖。它主要表示現象在時間上的變化趨勢、現象的分配情況和2個現象的依存關系等。
3面積圖:用線段下的陰影面積來強調現象變化的統計圖。
4條形圖:利用相同寬度條形的長短或高低表現統計數據大小及變化的統計圖。
五 問卷深入分析
除了以上簡單的分析,spss強大的功能還可以對問卷進行深入分析,比如常用的有聚類分析、交叉分析、因子分析、均值比分析(參數檢驗)、相關分析、回歸分析等。因為涉及到很專業的統計知識,下面只將個人覺得比較有用的方法的適用范圍和分析目的簡單做介紹:
1聚類分析
樣本聚類,可以將被調查者分類,並按照這些屬性計算各類的比例,以便明確研究所關心的群體。比如按消費特徵對被調查者的進行聚類。
2 相關分析
相關分析是針對兩變數或者多變數之間是否存在相關關系的分析方法,要根據變數不同特徵選擇不同的相關性的度量方式。問卷分析中的多數用的變數都屬於分類變數,要採用斯皮爾曼相關系數。
其中可以用卡方檢驗,其是對兩變數之間是否具有顯著性影響的分析方法
3均值的比較與檢驗
(1)Means過程:對指定變數綜合描述分析,分組計算計算均值再比較。比如可以按性別變數分為男和女來研究二者收入是否存在差距。
(2)T 檢驗:
獨立樣本t檢驗用於不相關的樣本是否開來自具有相同均值的總體的檢驗。比如,研究購買該產品的顧客和不購買的顧客的收入是否有明顯差異。
如果樣本不獨立則要用配對t檢驗。比如研究參加職業培訓後 工作效率是否提高。
4 回歸分析
問卷分析中的回歸分析常採用的是用離散回歸模型,一般是邏輯斯蒂模型,解釋一個變數對另一變數的影響具體有多大。比如,研究對某商品的消費受收入的影響程度。
問卷調查表
可以進行很多種統計分析的,包含描述性分析,信度,效度分析,差異性分析,相關性分析,回歸分析等等
分析方法太多了
我替別人做這類的數據分析蠻多的
把你問卷發一份過來[email protected]
首先你可以計算每個部門每個工作職責滿意不滿意度,然後看那個業務在這個部門中不滿意度最高,滿意度最高,需要加強哪一個業務,需要表揚哪一個業務;然後部門之間進行比較,看看哪個部門滿意度最高,哪個部門滿意度最低,需要表揚需要批評的都知道了。
數據分析最重要的思維就是,不斷確定業務中兩組變數之間的關系,用以解釋業務。
收入、轉化、用戶規模、用戶活躍等,我們稱為現象。而只有通過數據量化的現象,我們才能精準感知。所以,數據是用來描述現象的,是被量化的現象。
關於數據,有兩種常見的情況。從騰訊出來的一個朋友曾告訴我「騰訊的數據太多,都不知道怎麼看」,而另一個在創業公司工作的朋友告訴我「老闆為了省開發資源,數據給的少得可憐」。這兩種情況都有點走極端,那麼,怎樣看數據比較合理呢?答案是:需要想清楚3個問題。 1、我為什麼要看數據? 看數據的理由有很多,有不少PM看數據純粹為了在吵架中能占上風,也有的人是為了炫技,還有一些人是因為老闆要他們這樣做。但我認為,看數據最好的理由是「你真的渴望持續改進自己的產品,而數據能給你客觀的建議 」。如果你沒有這個渴望,覺得「我已經做的很好了,沒有幾個人能比我做得更好」,不但可以不看數據,連用戶都可以不要。 2、數據的由哪些成分組成?這些成分每天/周/月都發生了什麼變化? 分析數據的構成可以更精確的知道是哪些產品、運營方案發揮作用,數據的變化可以知道某個方案起了多大的作用。 拿PV來說,分析PV的地域結構,可以知道適合的推廣渠道;分析用戶的年齡結構可以知道活動策劃偏向什麼主題;分析用戶的職業結構可以知道用戶的使用習慣。 3、這些數據為什麼發生了這些變化? 分析數據為什麼變化,可以找到關鍵的原因,或者洞悉用戶真正的需求,最終形成產品的改進。
免費的?建議先輸入數據,然後按照教程練習以後自行分析吧
如果給錢,樓上估計應該會幫你分析的很好。
不過也有可能你人品大爆發,他不收你錢
首先要清楚spss數據分析軟體,對於數據格式的要求。
通常用spss軟體進行數據分析時,數據格式要求是橫向一行為一份問卷,一列對應問卷中的一個題目,所以有多少份問卷,最終錄完後就有多少行,而問卷中有多少個題目,最終就有多少列。
其次在錄的時候 可以在excel中錄,也可以直接在spss中錄入,因為格式是完全一樣的,如果對excel很熟悉,就可以現在excel中錄,錄完再通過spss直接可以打開excel數據就好了。
數據分析是以現有網站的內容為基礎,展示用戶喜歡的內容,降低網站的跳出率增加網站黏性,具體步驟如下:
1、分析pv、uv、ip、跳出率和平均訪問時長
通常情況下uv要大於ip,pv是uv的倍數關系,而pv:uv多少合適呢?要看同行業的平均數據,比如一個知識性網站,pv:uv的比例接近10:1,而如果是企業站,可能3:1或者4:1。
跳出率越高說明網站內容質量越差,平均訪問時長也體現網站的內容質量。時長越長說明網站內容質量越高、內鏈系統越好。
2、分析來源、地域和搜索引擎
從來源分析可以評測外鏈和推廣效果,可以選擇效果更好的推廣和外鏈方式,節省時間。地域分析可以幫我我們做地域關鍵詞,搜索引擎分析用於明白用戶的搜索習慣。
3、受訪頁面、著陸頁和搜索詞
分析受訪頁面可以看出推廣、外鏈以及內鏈效果,分析搜索詞可以得出現在內容排名效果。
受訪頁面主要來自於外鏈、推廣鏈接、排名頁面和內鏈布局。受訪頁面越高的網頁說明展示次數越多,被用戶看到的概率越大。
著陸頁分數據純碎的體現外鏈、推廣鏈接和排名的效果,如果沒有關鍵詞排名,可以直接評測推廣、外鏈的效果。
可以通過搜索詞得知那些關鍵詞給我們帶來了流量,以及訪問的頁面是哪些,訪問頁的跳出率是多少,是不是應該推廣這個頁面幫助它提升排名。
4、分析頁面點擊圖和頁面上下游
頁面點擊圖,可以根據頁面點擊圖調整網站首頁布局。顏色越深的內容放置的位置越靠近左上角,顏色越淺的內容位置越靠近右下角。點擊很少或者沒有點擊的內容可以從首頁移除,或者放置在欄目頁。
頁面上下游是體現用戶瀏覽網頁的軌跡,從上下游的數據可以統計布局的內鏈用戶點擊最多的文章是哪一篇,以及哪些頁面的跳出率高。頁面上下游數據最能說明內鏈布局效果。
注意:數據分析的魅力是常人無法感受的,如果你的網站在中後期還是憑證感覺做,那麼你就相當於盲人摸象,你的網站排名只能看運氣了。
『叄』 問卷調查數據分析方法有哪些
1、描述性統計分析
包括樣本基本資料的描述,作各變數的次數分配及百分比分析,以了解樣本的分布情況。
2、Cronbach』a信度系數分析
信度是指測驗結果的一致性、穩定性及可靠性,一般多以內部一致性來加以表示該測驗信度的高低。信度系數愈高即表示該測驗的結果愈一致、穩定與可靠。
3、探索性因素分析和驗訌性因素分析
用以測試各構面衡量題項的聚合效度與區別效度。
4、結構方程模型分析
可同時處理多個因變數,容許自變數和因變數含測量誤差,可同時估計因子結構和因子關系。
問卷調查的種類
問卷調查根據載體的不同,可分為紙質問卷調查和網路問卷調查。
紙質問卷調查就是傳統的問卷調查,調查公司通過雇傭工人來分發這些紙質問卷,以回收答卷。這種形式的問卷存在一些缺點,分析與統計結果比較麻煩,成本比較高。
網路問卷調查,就是用戶依靠一些在線調查問卷網站,這些網站提供設計問卷,發放問卷,分析結果等一系列服務。這種方式的優點是無地域限制,成本相對低廉,缺點是答卷質量無法保證。
問卷調查,按照問卷填答者的不同,可分為自填式問卷調查和代填式問卷調查。
自填式問卷調查,按照問卷傳遞方式的不同,可分為報刊問卷調查、郵政問卷調查和送發問卷調查;代填式問卷調查,按照與被調查者交談方式的不同,可分為訪問問卷調查和電話問卷調查。
『肆』 調查問卷的數據分析該怎麼寫
一、問卷類型
問卷調查分為兩大類:即量表問卷和非量表問卷。
量表問卷通常更多用於學術研究,其特點在於更多的態度認知題項,體現樣本人群對於某事物的態度看法態度情況等,通過對各研究變數的關系研究,找出其中內涵邏輯關系。
非量表問卷更多體現對某現狀的事實情況和基本態度調研,比如樣本進行網購的原因,不進行網購原因,網購平台的使用現狀情況等。此類問卷更多在於分析思路的邏輯和現狀情況的了解分析,以及樣本的基本態度情況。
二、分析方法
從分析方法上,量表類問卷最大的特點是:非常多的量表題,而且量表題對應著『變數』或者『維度』。便於研究『變數』間的關系情況。以及可以使用信度、效度、因子分析等方法。
SPSSAU智能分析
四、撰寫調研報告
根據問卷分析順序將分析結果寫成有邏輯性的報告,並且在結論基礎上對應提出有意義有價值的建議措施等。
關於數據報告的撰寫,單獨從數據分析角度上看,建議以實際需求出發,比如研究差異關系,那麼首先得需要知道有沒有差異,接著有了差異,具體差異情況如何。有了差異或者沒有差異時,對應的建議措施應該如何。按照這樣的思路,相信數據研究報告的撰寫並非難事。
『伍』 調查問卷數據如何分析
如何用數據分析方法對調查問卷進行分析
看圖演示。 其中開始新建了一個叫「匯總」的表,作為模板,然後復制這個表,改名叫1,輸入第一張問卷結果,再復制一張表,輸入第二張問卷結果。。。直至輸入完畢。 然後在匯總表輸入求和公式。 B2公式如下: =SUM('匯總 (2):匯總 (4)'!B3) 其中匯總 (2)是第一張問卷結果表名,匯總 (4)是最後一張問卷表名,我這圖為了簡便就做了3個結果表,然後復制公式到所有單元格。
如何用Excel分析調查問卷數據
看圖演示。
其中開始新建了一個叫「匯總」的表,作為模板,然後復制這個表,改名叫1,輸入第一張問卷結果,再復制一張表,輸入第二張問卷結果。。。直至輸入完畢。
然後在匯總表輸入求和公式。
B2公式如下:
=SU嘩('匯總 (2):匯總 (4)'!B3)
其中匯總 (2)是第一張問卷結果表名,匯總 (4)是最後一張問卷表名,我這圖為了簡便就做了3個結果表,然後復制公式到所有單元格。
如何用Excel來進行調查問卷的整理、統計和分析?
2007版 數據——數據分析
97-2003版 好像是工具里忘了
你用幫助搜索一下,
錄入好的調查問卷,該如何進行數據分析?
在設計時就需要考慮到統計方便,才能便於匯總。用excel就可以。
如何寫調查問卷的數據分析
這個你要根據設計的問卷、然後結合你的分析思路,也就是你要通過問卷得出什麼結論 這個就是數據分析
問卷調查如何分析和整理
從你的提問,是要了解如何分析和整理調查得來的數據。
通常使用表格「整理數據」,用「條形圖友模」、折線圖或「扇形圖」等來「描述數據」。
用表格整理數據時,要注意列表,第一列是你要了解的情況「悉告棗分類」,第二列就是「劃記」,第三列是「人數」,第四列是「百分比」。
用劃記法記錄數據時,通常用「正」字,一筆代表一個數據。
分類的人數統計表做好後,就可以利用「條形圖」或折線圖或「扇形圖」來「描述數據」,也可以用「頻率分布直方圖」來分析數據。
問卷調查,「數據分析」具體指什麼
就是對進行問卷調查後,回收回來的問卷數據進行分析。
首先你要明確數據分析的目的,也可以說是這個問卷調查的問題。
然後根據目的 並結合問卷,來構思分析思路,通過怎麼樣的分析能夠實現目的
之後就是用軟體對數據進行分析 以實現目的
如何處理問卷調查數據進行統計分析
你提到了統計分析表格,這個提法是錯誤的
沒有這個說法
你可以先設計研究目的,做出研究假設,然後根據假設做分析,然後製作成表格
我經常幫別人做這類的數據統計分析
調查問卷的數據分析是定量分析法嗎
是的。
定量分析法是以企業財務報表為主要數據來源,按照某種數理方式進行加工整理,得出企業信用結果。
定量研究一般是為了對特定研究對象的總體得出統計結果而進行的。定性研究具有探索性、診斷性和預測性等特點,它並不追求精確的結論,而只是了解問題之所在,摸清情況,得出感性認識。定性研究的主要方法包括: 與幾個人面談的小組訪問,要求詳細回答的深度訪問,以及各種投影技術等。在定量研究中,信息都是用某種數字來表示的。在對這些數字進行處理、分析時,首先要明確這些信息資料是依據何種尺度進行測定、加工的,史蒂文斯(S. S. Stevens)將尺度分為四種類型,即名義尺度、順序尺度、間距尺度和比例尺度。
定量研究的四種測定尺度及特徵
名義尺度所使用的數值,用於表現它是否屬於同一個人或物。
順序尺度所使用的數值的大小,是與研究對象睜拆的特定順序相對應的。例如,給社會階層中的上上層、中上層、中層、中下層、下下層等分別標為「5、4、3、2、1」或者「3、2.5、2、1.5、1」就屬於這一類。只是其中表示上上層的5與表示中上層的4的差距,和表示中上層的4與表示中層的3的差距, 並不一定是相等的。5、4、3 等是任意加上去的符號,如果記為 100、50、10 也無妨。
間距尺度所使用的數值,不僅表示測定對象所具有的量的多少,還表示它們大小的程度即間隔的大小。不過,這種尺度中的原點可以是任意設定的,但並不意味著該事物的量為「無」。例如,O°C 為絕對溫度 273°K,華氏32°F。
名義尺度和順序尺度的數值不能進行加減乘除,但間距尺度的數值是可以進行加減運算的。然而,由於原點是任意設定的,所以不能進行乘除運算。例如,5℃和 10℃之間的差,可以說與15℃和20℃之間的差是相同的, 都是5°C。但不能說 20℃就是比5℃高4倍的溫度。
比例尺度的意義是絕對的,即它有著含義為「無」量的原點0。長度、重量、時間等都是比例尺度測定的范圍。比例尺度測定值的差和比都是可以比較的。例如:5分鍾與10 分鍾之間的差和10分鍾與15分鍾之間的差都是5 分鍾,10 分鍾是2分鍾的5倍。比例尺度可以進行加減乘除運算。
調查問卷數據怎麼輸入spss,怎麼進行分析的
打開spss,您會發現軟體左下角有兩個按鈕,date view和variable view。第一個是錄入數據的,第二個是錄入變數相關數據的
2.我們先來建模,點擊variable view,你會發現上面一排有name,type,width,decimals,label,value,missing,columns,align,measure。
2-1,name那一列你就輸入問卷中數據的變數名,比如說,你的問卷中問了調查對象的姓名,性別,年齡,那就在name那一列輸入姓名,性別,年齡
2-2,點擊你所輸入變數的value(姓名性別,年齡),裡面有value和label兩個框,value就是你問卷各個選項的值,比如你把性別定義了0為男,1為女,那你就在value框里輸入0,在label里輸入男,然後點擊add,不要關掉,繼續在value里輸入1,在label里輸入女,點擊add,就定義了性別的value
3.點擊軟體左下角的date view,然後就可以根據變數,一份份的輸入數據了。