⑴ 大數據體現在哪些方面
1、疫情期間的大數據
就比如疫情期間我們所用的健康碼,其實也就是基於大數據,採集每位用戶的行動軌跡,然後自動生成綠碼或者紅碼。又比如說,在疫情爆發時,浙江通過使用交通流大數據技術,排查分析從疫情嚴重地區駛入的車輛,幫助提高疫情防控效率。另外,大數據也被廣泛應用到語音智能識別、智慧城市和信息安全、醫療、交通等方方面面。
2、業務流程優化
大數據還會更多的幫助業務流程的優化。我們可以通過利用社交媒體數據、網路搜索以及天氣預報等等去挖掘出大量的有價值的數據,其中大數據的應用最廣泛的就是供應鏈以及配送路線的優化。從這兩個方面,地理定位和無線電頻率的識別追蹤貨物和送貨車,利用實時交通路線數據制定更加優化的路線。
3、更了解用戶需求
大數據的應用目前在這領域是最廣為人知的。重點是如何應用大數據更好的了解客戶以及他們的愛好和行為。企業非常喜歡搜集社交方面的數據、瀏覽器的日誌、分析出文本和感測器的數據,為了更加全面的了解客戶。在一般情況下,建立出數據模型進行預測。舉一個比較簡單的例子就是通過大數據的應用,電信公司可以更好預測出流失的客戶,沃爾瑪則會更加精準的預測哪個產品會大賣,汽車保險行業會了解客戶的需求和駕駛水平,政府也能了解到選民的偏好。
4、提高醫療和研發
大數據分析應用的計算能力可以讓我們能夠在幾分鍾內就可以解碼整個DNA。並且讓我們可以制定出最新的治療方案。同時可以更好的去理解和預測疾病。就好像人們戴上智能手錶等可以產生的數據一樣,大數據同樣可以幫助病人對於病情進行更好的治療。大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。這樣可以幫助醫生更好的救助嬰兒。
5、金融交易
大數據在金融行業主要是應用金融交易。高頻交易(HFT)是大數據應用比較多的領域。其中大數據演算法應用於交易決定。現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。
6、改善安全和執法
大數據現在已經廣泛應用到安全執法的過程當中。想必大家都知道美國安全局利用大數據進行恐怖主義打擊,甚至監控人們的日常生活。而企業則應用大數據技術進行防禦網路攻擊。警察應用大數據工具進行捕捉罪犯,信用卡公司應用大數據工具來檻車欺詐性交易。
⑵ 大數據是做什麼的
目前大數據已經在營銷、金融 、工業、醫療、教育、交通、保險、執法、體育、政府、旅遊、物流等領域廣泛應用。
一句話 大數據就是管理和利用大量數據的。
分開來講就是數據如何產生、數據如何搬運、數據如何存儲、數據有效的整理起來方便使用、數據如何進行加工提高價值、數據怎麼使用,管理這整個生命周期。
數據的產生:就是數據的源頭,我們怎麼來生產數據。有業務上用的數據比如MySQL中的用戶表,有前端埋點(監控用戶的每個操作),有程序輸出的日誌數據,有爬蟲爬來的數據。這么多數據的源頭,我們需要一個數據該怎麼產生數據。
數據接入:數據怎麼從這么多源頭搬運到數據中心進行統一處理。用什麼方法搬運,搭建個管道讓它一直進來,還是隔段時間搬運一次,這都是要考慮的。
數據存儲:大量數據如何存,才能不會丟,而且讀取快。
數據倉庫:數據怎麼進行有效的管理就是數據倉庫該考慮的事情了。
數據計算:大量的數據要進行加工,才能產生價值,那麼加工工具的效率就影響著你的效率。
數據應用:數據能用來做什麼。
⑶ 大數據都體現在哪些方面
1、對大量消費者提供產品或服務的企業可以利用大數據進行精準營銷。2、做小而美模式的中小微企業可以利用大數據做服務轉型。3、面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。大數據(bigdata)是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據有五大特點,即大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。大數據的用法傾向於預測分析、用戶行為分析或某些其他高級數據分析方法的使用。對於「大數據」(Bigdata)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
⑷ 大數據能做到什麼
現在能夠做到的有:
1.量化投資
2.銀行風控
3.輿情預測(雹鄭包括疾病預測等)
4.精準營銷
5.用戶畫像和企告寬業畫像
6.精準醫療
…
很多網站都在招數據分析師,其實他們都是服務於營銷的,即把東西精準地推銷給用戶;再者,交通大數據,比如你打車,軟體可能根據當時的交通狀況給你選擇源友頌規出一條更加通暢的線路等等。
總之,大數據目前能夠解決的事情很多,在未來,大數據是很有前景的領域。
⑸ 大數據可以做什麼
現在大家可能都聽說過大數據,大數據的出現使得各個行業的發現具有了方向性,為推動社會做出了巨大的貢獻,大數據離不開數據挖掘,那麼大家知道不知道大數據可以做什麼呢?簡單來說,大數據可以讓預測未來。
一、大數據可以預測未來
簡而言之,大數據和數據挖掘能夠賦予我們預測能力。而現在我們的生活已經數字化了,我們每天所做的任何事情都可以通過大數據記錄下來,就好比每張信用卡交易都是數字化和可查詢的。對於企業來說,大多數財務和運營數據都保存在資料庫中。而現在,隨著可穿戴設備的興起,大家的每一次心跳和呼吸都被數字化並保存為可用數據。使得機器了解我們。
二、如果模式保持不變,那麼未來就不再是未來
現在,我們生活中的許多不同事物都有不同的表現形式。比如說,一個人可能在任何工作日內在工作和家庭之間旅行,在周末到某個地方遊玩,這種模式很少改變。商店將擁有任何一天的高峰時段和閑置時間,這種模式不太可能改變。企業將在一年中的某些月份要求更高的勞動力投入,這種模式不太可能改變。
由此,計算機通過終端去進行搜集到這些數據,就去分析這些數據,然後對受眾群體進行合理的安排。計算機也就能夠知道什麼時候是適合促銷的最佳時間,例如,如果這個人每周五的星期五都要洗車,或者是優惠券,那就是洗車促銷如果這個人每年三月都要去度假,那就可以進行全方位的服務。同時計算機還可以預測商店全天的銷售預測,然後制定業務戰略以最大化總收入。一旦未來變得可預測,我們可以隨時提前計劃並為可能的最佳行動做好准備。這就說明了大數據給了我們預測未來的力量。這是數據挖掘的力量。數據挖掘始終與大數據聯系在一起,因為大數據支持大量數據集,從而為所有預測提供了基礎。
三、機器學習是什麼?
剛才我們根據一塊數據的處理方式進行了分析。假設這條數據包含一組購物者的購買行為,包括購買的商品總數,每個購物者購買的商品數量。這是迄今為止最簡單的統計分析。如果我們的目標是分析不同類型的購物者之間的聯系,或者如果我們想要推測特定類型的購物者的特殊偏好,或者甚至預測任何購物者的性別或年齡,我們將需要更多復雜的模型,通過錄入的數據,我們稱之為演算法。機器學習可以更容易理解為為數據挖掘目的而開發的所有不同類型的演算法,方便我們的生活。
四、數據挖掘是什麼?
通過計算機去學習演算法,用現有數據去預測未知數,這正是數據挖掘的奇跡與機器學習密切相關的原因。然而,任何機器學習演算法的強度在很大程度上取決於大量數據集的供應。無論演算法有多復雜,都不能從幾行數據中做出預測,需要大量的數據作為樣本。大數據技術是機器學習的前提,通過計算機的學習,我們能夠從現有數據集中獲得有價值的見解,這就是數據挖掘。
以上的內容就是對於大數據可以做什麼?這兩個問題的具體的解釋了,大數據的出現能夠讓我們更好的預測未來,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。
⑹ 大數據應用案例有哪些
案例如下:
1、交通大數據暢通出行
交通作為人類行為的重要組成和重要條件之一,對於大數據的感知也是最急迫的。近年來,我國的智能交通已實現了快速發展,許多技術手段都達到了國際領先水平。交通的大數據應用主要在兩個方面,一方面可以利用大數據感測器數據來了解車輛通行密度,合理進行道路規劃包括單行線路規劃。另一方面可以利用大活數據來實現即時信號燈調度,提高已有線路運行能力。
2、教育大數據因材施教
在課堂上,數據不僅可以幫助改善教育教學,在重大教育決策制定和教育改革方面,大數據更有用武之地。利用數據來診斷處在輟學危險期的學生、探索教育開支與學生學習成績提升的關系、探索學生缺課與成績的關系。
3、環保大數據對抗PM2.5
在美國NOAA(國家海洋暨大氣總署)其實早就在使用大數據業務。每天通過衛星、船隻、飛機、浮標、感測器等收集超過35億份觀察數據。收集完畢後,NOAA會匯總大氣數據,海洋數據,以及地質數據,進行直接測定,繪制出復雜的高保真預測模型,將其提供給NWS(國家氣象局)做出氣象預報的參考數據。
大數據特點
1、大容量
例如,IDC最近的報告預測到2020年,世界數據量將擴大50倍.目前,大數據的規模仍然是不斷變化的指標,單一數據集的規模範圍從數十TB到數PB不同.簡單來說,存儲1PB數據需要2萬台配備50GB硬碟的PC.此外,各種意想不到的來源可以產生數據。
2、多樣性
數據多樣性的增加主要是由於網路日誌、社交媒體、網路檢索、手機通話記錄、感測器網路等數據類型。
3、高速
高速描述的是數據創建和移動的速度.在高速網路時代,通過實現軟體性能優化的高速計算機處理器和伺服器,創建實時數據流已成為流行趨勢.企業不僅要知道如何快速創建數據,還要知道如何快速處理、分析和返回用戶,以滿足他們的實時需求。
⑺ 大數據具體是做什麼有哪些應用
大數據即海量的數據,一般至少要達到TB級別才能算得上大數據,相比於傳統的企業內數據,大數據的內容和結構要更加多樣化,數值、文本、視頻、語音、圖像、文檔、XML、HTML等都可以作為大數據的內容。
提到大數據,最常見的應用就是大數據分析,大數據分析的數據來源不僅是局限於企業內部的信息化系統,還包括各種外部系統、機器設備、感測器、資料庫的逗吵渣數據,如:政府、銀行、國計民生、行業產業、社交網站等數據,通過大數據分析技術及工具將海量數據進行統計匯總後,以圖形圖表的方式進行數據展現,實現數據的可視化,在此基礎上結合機器學習演算法,對數據進行深度挖掘,發掘數據的潛在價值。
應用部分,大數據不僅包括企業內部應用系統的數據分析,還包括與行業、產業的深度融合,大數據分析的應用場景具有行業性,不同行業所呈現碰肢的內容與分析維度各不相同,具體場景包括:互聯網行業、政府行業、金融行業、傳統企業中的地產、醫療、能源、製造、電信行業等等。
1.互聯網行業大數據的應用代表為電商、社交、網路檢索領域,可以根據銷售數據、客戶行為(活躍度、商品偏好、購買率等)數據、交易數據、商品收藏數據、售後數據等、搜索數據刻畫用戶畫像,根據客戶的喜好為其推薦對應的產品。
2.政府行業在大數據分析部分包括質檢部門、公安部門、氣象部門、醫療部門等,質檢部門包括對商品生產、加工、物流、貿易、消費全過程的信息進行採集、驗證、檢查,保證食品物品安全;氣象部門通過構建大氣運動規律評估模型、氣象變化關聯性分析等路徑,精準地預測氣象變化,尋找最佳的解決方案,規劃應急、救災工作。
3.金融行業的大數據分析多應用於銀行、證券、保險等細分領域,在大山悄數據分析方面結合多種渠道數據進行分析,客戶在社交媒體上的行為數據、在網站上消費的交易數據、客戶辦理業務的預留數據,結合客戶年齡、資產規模、消費偏好等對客戶群進行精準定位,分析其在金融業的需求等。
4.傳統行業包括:能源、電信、地產、零售、製造等。電信行業藉助大數據應用分析感測器數據異常情況,預測設備故障,提高用戶滿意度;能源行業利用大數據分析挖掘客戶行為特徵、消費規律,提高能源需求准確性;地產行業通過內外部數據的挖掘分析,使管理者掌握和了解房地產行業潛在的市場需求,掌握商情和動態,針對細分市場實施動態定價和差別定價等;製造行業通過大數據分析實現設備預測維護、優化生產流程、能源消耗管控、發現潛在問題並及時預警等。
伴隨著信息化的快速發展、數據量加大,已經進入數據時代,相信各行業間日後對於大數據的應用會更多、更深入。
⑻ 生活中的大數據有哪些例子
一、在金融行業的應用
金融行業應該是運用大數據技術最頻繁的一個行業,證券和銀行經常會運用大數據技術進行數據分析,通過對數據的監控和分析,有效規避風險。
金融行業面臨的行業挑戰有很多,證券欺詐預警,超高金融分析,信用卡欺詐和企業信用風險等一系列數據數據風險挑戰,行業內面臨的種種問題,都需要大數據發揮其預測的核心功能,有效規避風險。
二、在娛樂媒體的運用
大數據行業在各個行業都有涉足,舉一個簡單的例子,通過社交媒體明星粉絲數量分析和行業內新聞動態,可以預測影視視頻的播放量和受喜愛程度;通過智能產品的點擊數量和瀏覽量,可以推測用戶的個性偏好,並且推薦其喜愛的產品。
前段時間大火的美劇《紙牌屋》,通過大數據分析,選取適合網友的視頻偏好和明星選擇,造成轟動的播放量。大數據在社交媒體和娛樂行業的大數據分析,一部分也在引導觀眾和粉絲,讓其為娛樂產業消費。
三、在醫療行業的運用
iPhone用戶手機上都有這個功能,通過健康APP里的健康步數統計和鍛煉情況,為你記錄你的健康狀況,並且預測可能發生的疾病,這就是在運用大數據技術,通過一系列的記錄分析,預測可能要發生的事情並且及時解決。
醫療行業可以通過用戶的身體情況和大量病例數據,分析提高醫療行業的監控力度,並且進行有效檢測,降低用戶的患病率。
四、提高體育成績
現在很多運動員在訓練的時候應用大數據技術來分析。很多精英運動隊還追蹤比賽環境外運動員的活動-通過使用智能技術來追蹤其營養狀況以及睡眠,以及社交對話來監控其情感狀況。
五、醫療保健
大數據可以更好的去理解和預測疾病。人們戴上智能手錶等可以產生的數據一樣,大數據同樣可以幫助病人對於病情進行更好的治療。大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。
大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。
⑼ 大數據可以應用在哪些方面
大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。
1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。
9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。
11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。
12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。
大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。
(9)大數據的事情有哪些擴展閱讀
七個典型的大數據應用案例
1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了悉指培90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對睜唯沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推逗改特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
⑽ 大數據能做什麼用
如果說砍樹是一個職業,那你手中的斧頭就是大數據。大數據是一種覆蓋政專商等領屬域的超大型平台,你可以用大數據來瞄準你所關心領域的長短點並很快很准地得出預判,升華概念,你能通過數據預測未來,行業的未來你能掌握了,就能賺錢。