⑴ 倉庫ERP系統怎麼操作是可以回答我。
首先,ERP不是具體軟體的名稱,它是一個軟體的類別,就像操作系統有WINDOWS,有UNIX,ERP也有很多品牌,比如SAP,ORACLE,BAN,QAD,等等。
另外,ERP系統里會包含十幾個到上百個模塊(因品牌而異),其中一定會有存貨管理模塊,但沒有「倉庫ERP系統」的說法。
至於怎麼用,那不同的ERP系統會有不同的操作方法不同的程序界面,沒有統一的操作步驟。
同時,ERP是一個系統,大多數的操作是自動完成的,比如,當系統下達一個車間訂單後,它會自動按照物料清單生成發料單,倉庫管理員只要按單發料,並把發料信息輸入到ERP系統即可。
同樣采購單會生成收貨單;客戶訂單會生成發貨單;產品完工下線會生成完工入庫單;倉庫盤點後需要輸入盤盈盤虧數量;其他還有半成品線邊庫,轉移倉庫,庫位,貨架等等概念。
總之,你要用哪個ERP就要讓它的生產商的顧問對你進行培訓,或者你自己拿培訓資料自學,或者讓會使用的同事教你。你想在這里碰到一個你的那種ERP的顧問,然後讓他免去一天幾百美金的培訓費,免費教你,我覺得可能性不大。
⑵ 國內報表工具都有哪些,要牛逼的
思邁特企業報表軟體(Smartbi Spreadsheet)是針對企業客戶、系統集成商SI、軟體開發商ISV推出的內獨立產品。該容產品以「真Excel」為最大特色,顛覆了企業軟體必須登陸WEB瀏覽器的傳統習慣,允許用戶在Excel插件的幫助下,即可完成數據分析應用的設計,並發布到WEB應用中。
Spreadsheet從報表開發的數據准備、樣式設計、數據計算、數據可視化、互動邏輯、共享發布六大步驟上都有特色的功能,充分利用了Excel的現有能力,堪稱企業報表平台的解決方案專家。尤其集成了Excel和ECharts後,使得Spreadsheet具有豐富的展現力、強大的互動性(基於單元格和對象的數據模型)、超級靈活的布局能力,而且這些都可以在Excel界面上全部完成。
⑶ 數據倉庫是做什麼的
目前,數據倉庫一詞尚沒有一個統一的定義,著名的數據倉庫專家W.H.Inmon在其著作《Building the Data Warehouse》一書中給予如下描述:數據倉庫(Data Warehouse)是一個面向主題的(Subject Oriented)、集成的(Integrate)、相對穩定的(Non-Volatile)、反映歷史變化(Time Variant)的數據集合,用於支持管理決策。對於數據倉庫的概念我們可以從兩個層次予以理解,首先,數據倉庫用於支持決策,面向分析型數據處理,它不同於企業現有的操作型資料庫;其次,數據倉庫是對多個異構的數據源有效集成,集成後按照主題進行了重組,並包含歷史數據,而且存放在數據倉庫中的數據一般不再修改。
根據數據倉庫概念的含義,數據倉庫擁有以下四個特點:
1、面向主題。操作型資料庫的數據組織面向事務處理任務,各個業務系統之間各自分離,而數據倉庫中的數據是按照一定的主題域進行組織。主題是一個抽象的概念,是指用戶使用數據倉庫進行決策時所關心的重點方面,一個主題通常與多個操作型信息系統相關。
2、集成的。面向事務處理的操作型資料庫通常與某些特定的應用相關,資料庫之間相互獨立,並且往往是異構的。而數據倉庫中的數據是在對原有分散的資料庫數據抽取、清理的基礎上經過系統加工、匯總和整理得到的,必須消除源數據中的不一致性,以保證數據倉庫內的信息是關於整個企業的一致的全局信息。
3、相對穩定的。操作型資料庫中的數據通常實時更新,數據根據需要及時發生變化。數據倉庫的數據主要供企業決策分析之用,所涉及的數據操作主要是數據查詢,一旦某個數據進入數據倉庫以後,一般情況下將被長期保留,也就是數據倉庫中一般有大量的查詢操作,但修改和刪除操作很少,通常只需要定期的載入、刷新。
4、反映歷史變化。操作型資料庫主要關心當前某一個時間段內的數據,而數據倉庫中的數據通常包含歷史信息,系統記錄了企業從過去某一時點(如開始應用數據倉庫的時點)到目前的各個階段的信息,通過這些信息,可以對企業的發展歷程和未來趨勢做出定量分析和預測。
企業數據倉庫的建設,是以現有企業業務系統和大量業務數據的積累為基礎。數據倉庫不是靜態的概念,只有把信息及時交給需要這些信息的使用者,供他們做出改善其業務經營的決策,信息才能發揮作用,信息才有意義。而把信息加以整理歸納和重組,並及時提供給相應的管理決策人員,是數據倉庫的根本任務。因此,從產業界的角度看,數據倉庫建設是一個工程,是一個過程。
整個數據倉庫系統是一個包含四個層次的體系結構,具體由下圖表示。
數據倉庫系統體系結構
·數據源:是數據倉庫系統的基礎,是整個系統的數據源泉。通常包括企業內部信息和外部信息。內部信息包括存放於RDBMS中的各種業務處理數據和各類文檔數據。外部信息包括各類法律法規、市場信息和競爭對手的信息等等;
·數據的存儲與管理:是整個數據倉庫系統的核心。數據倉庫的真正關鍵是數據的存儲和管理。數據倉庫的組織管理方式決定了它有別於傳統資料庫,同時也決定了其對外部數據的表現形式。要決定採用什麼產品和技術來建立數據倉庫的核心,則需要從數據倉庫的技術特點著手分析。針對現有各業務系統的數據,進行抽取、清理,並有效集成,按照主題進行組織。數據倉庫按照數據的覆蓋范圍可以分為企業級數據倉庫和部門級數據倉庫(通常稱為數據集市)。
·OLAP伺服器:對分析需要的數據進行有效集成,按多維模型予以組織,以便進行多角度、多層次的分析,並發現趨勢。其具體實現可以分為:ROLAP、MOLAP和HOLAP。ROLAP基本數據和聚合數據均存放在RDBMS之中;MOLAP基本數據和聚合數據均存放於多維資料庫中;HOLAP基本數據存放於RDBMS之中,聚合數據存放於多維資料庫中。
·前端工具:主要包括各種報表工具、查詢工具、數據分析工具、數據挖掘工具以及各種基於數據倉庫或數據集市的應用開發工具。其中數據分析工具主要針對OLAP伺服器,報表工具、數據挖掘工具主要針對數據倉庫。
⑷ 典型的數據倉庫系統包括哪幾部分
典型的數據倉庫系統包括以下幾個部分:
數據源
ETL(數據抽取、轉換和載入)
數據倉庫
數據集市
前端展示(包括報表、多維展示等)
⑸ 大數據分析工具有哪些,有什麼特點
數據分析再怎麼說也是一個專業的領域,沒有數學、統計學、資料庫這些知識的支撐,對於我們這些市場、業務的人員來說,難度真的不是一點點。從國外一線大牌到國內宣傳造勢強大的品牌,我們基本試用了一個遍,總結一句話「人人都是數據分析師」這個坑實在太大,所有的數據分析工具無論宣傳怎樣,都有一定的學習成本,尤其是要深入業務實際。今天就我們用過的幾款工具簡單總結一下,與大家分享。
1、Tableau
這個號稱敏捷BI的扛把子,魔力象限常年位於領導者象限,界面清爽、功能確實很強大,實至名歸。將數據拖入相關區域,自動出圖,圖形展示豐富,交互性較好。圖形自定義功能強大,各種圖形參數配置、自定義設置可以靈活設置,具備較強的數據處理和計算能力,可視化分析、互動式分析體驗良好。確實是一款功能強大、全面的數據可視化分析工具。新版本也集成了很多高級分析功能,分析更強大。但是基於圖表、儀錶板、故事報告的邏輯,完成一個復雜的業務匯報,大量的圖表、儀錶板組合很費事。給領導匯報的PPT需要先一個個截圖,然後再放到PPT裡面。作為一個數據分析工具是合格的,但是在企業級這種應用匯報中有點局限。
2、PowerBI
PowerBI是蓋茨大佬推出的工具,我們也興奮的開始試用,確實完全不同於Tableau的操作邏輯,更符合我們普通數據分析小白的需求,操作和Excel、PPT類似,功能模塊劃分清晰,上手真的超級快,圖形豐富度和靈活性也是很不錯。但是說實話,畢竟剛推出,系統BUG很多,可視化分析的功能也比較簡單。雖然有很多復雜的數據處理功能,但是那是需要有對Excel函數深入理解應用的基礎的,所以要支持復雜的業務分析還需要一定基礎。不過版本更新倒是很快,可以等等新版本。
3、Qlik
和Tableau齊名的數據可視化分析工具,QlikView在業界也享有很高的聲譽。不過Qlik Seanse產品系列才在大陸市場有比較大的推廣和應用。真的是一股清流,界面簡潔、流程清晰、操作簡單,交互性較好,真的是一款簡單易用的BI工具。但是不支持深度的數據分析,圖形計算和深度計算功能缺失,不能滿足復雜的業務分析需求。
最後將視線聚焦國內,目前搜索排名和市場宣傳比較好的也很多,永洪BI、帆軟BI、BDP等。不過經過個人感覺整體宣傳大於實際。
4、永洪BI
永洪BI功能方面應該是相對比較完善的,也是拖拽出圖,有點類似Tableau的邏輯,不過功能與Tableau相比還是差的不是一點半點,但是操作難度居然比Tableau還難。預定義的分析功能比較豐富,圖表功能和靈活性較大,但是操作的友好性不足。宣傳擁有高級分析的數據挖掘功能,後來發現就集成了開源的幾個演算法,功能非常簡單。而操作過程中大量的彈出框、難以理解含義的配置項,真的讓人很暈。一個簡單的堆積柱圖,就研究了好久,看幫助、看視頻才搞定。哎,只感嘆功能藏得太深,不想給人用啊。
5、帆軟BI
再說號稱FBI的帆軟BI,帆軟報表很多國人都很熟悉,功能確實很不錯,但是BI工具就真的一般般了。只能簡單出圖,配合報表工具使用,能讓頁面更好看,但是比起其他的可視化分析、BI工具,功能還是比較簡單,分析的能力不足,功能還是比較簡單。帆軟名氣確實很大,號稱行業第一,但是主要在報表層面,而數據可視化分析方面就比較欠缺了。
6、Tempo
另一款工具,全名叫「Tempo大數據分析平台」,宣傳比較少,2017年Gartner報告發布後無意中看到的。是一款BS的工具,申請試用也是費盡了波折啊,永洪是不想讓人用,他直接不想賣的節奏。
第一次試用也是一臉懵逼,不知道該點那!不過抱著破罐子破摔的心態稍微點了幾下之後,操作居然越來越流暢。也是拖拽式操作,數據可視化效果比較豐富,支持很多便捷計算,能滿足常用的業務分析。最最驚喜的是它還支持可視化報告導出PPT,徹底解決了分析結果輸出的問題。深入了解後,才發現他們的核心居然是「數據挖掘」,演算法十分豐富,也是拖拽式操作,我一個文科的分析小白,居然跟著指導和說明做出了一個數據預測的挖掘流,簡直不要太驚喜。掌握了Tempo的基本操作邏輯後,居然發現他的易用性真的很不錯,功能完整性和豐富性也很好。不過沒有宣傳也是有原因的,系統整體配套的介紹、操作說明的完善性上還有待提升。