導航:首頁 > 數據分析 > 大數據依靠什麼進行處理

大數據依靠什麼進行處理

發布時間:2023-07-28 05:14:05

1. 如何進行大數據處理

大數據處理之一:收集


大數據的收集是指運用多個資料庫來接收發自客戶端(Web、App或許感測器方式等)的 數據,而且用戶能夠經過這些資料庫來進行簡略的查詢和處理作業,在大數據的收集進程中,其主要特色和應戰是並發數高,因為同時有可能會有成千上萬的用戶 來進行拜訪和操作


大數據處理之二:導入/預處理


雖然收集端本身會有許多資料庫,但是假如要對這些海量數據進行有效的剖析,還是應該將這 些來自前端的數據導入到一個集中的大型分布式資料庫,或許分布式存儲集群,而且能夠在導入基礎上做一些簡略的清洗和預處理作業。導入與預處理進程的特色和應戰主要是導入的數據量大,每秒鍾的導入量經常會到達百兆,甚至千兆等級。


大數據處理之三:核算/剖析


核算與剖析主要運用分布式資料庫,或許分布式核算集群來對存儲於其內的海量數據進行普通 的剖析和分類匯總等,以滿足大多數常見的剖析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及根據 MySQL的列式存儲Infobright等,而一些批處理,或許根據半結構化數據的需求能夠運用Hadoop。 核算與剖析這部分的主要特色和應戰是剖析觸及的數據量大,其對系統資源,特別是I/O會有極大的佔用。


大數據處理之四:發掘


主要是在現有數據上面進行根據各種演算法的核算,然後起到預測(Predict)的作用,然後實現一些高等級數據剖析的需求。主要運用的工具有Hadoop的Mahout等。該進程的特色和應戰主要是用於發掘的演算法很復雜,並 且核算觸及的數據量和核算量都很大,常用數據發掘演算法都以單線程為主。


關於如何進行大數據處理,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

2. 我想問一下大數據的數據處理包括哪些方面

大數據的數據處理一共包括四個方面分別是收集,存儲,變形,和分析。
收集:原始數據種類多樣,格式、迅橡位置、存儲、時效性等迥異。數據收集從異構數據源中收集數據並轉換成相應的格式方便處理。
存儲:收集好的數據需要根據成本、格式、查詢、業務邏輯等需求,存放在合適的存儲中,方便進一步的分析。
變形:原始數據需要變形與增強之喊耐後才適合分析,比如網頁日誌中把IP地址替換成省市、感測器數據的糾錯、用戶行為統計等。
分析:通過整理好鄭昌春的數據分析whathappened、whyithappened、whatishappening和whatwillhappen,幫助企業決策。
更多關於大數據的數據處理包括哪些方面,進入:https://m.abcgonglue.com/ask/49f18f1615839526.html?zd查看更多內容

3. 大數據解決方案_大數據的應用解決方案

目前常用的大數據解決方案包括以下幾類

一、Hadoop。Hadoop是頌斗盯一個能夠對大量數據進行分布式處理的軟體框架。但是Hadoop是以一種可靠、高效、可伸縮的方式進行處理的。此外,Hadoop依賴於社區伺服器,因此它的成本比較低,任何人都可以使用。

二、HPCC。HPCC,HighPerformanceComputingand(高性能計算與通信)的縮寫。HPCC主要目標要達到:開發可擴展的計算系統及相關軟體,以支持太位級網路傳輸性能,開發千兆比特網路技術,擴展研究和教育機構及野和網路連接能力。

三、Storm。Storm是自由的開源軟體,一個分布式的、容錯的實時計算系統。Storm可以非常可靠的處理龐大的數據流,用於處理Hadoop的批量數據。Storm支持許多種編程語言,使用起來非常有趣。Storm由Twitter開源而來

四、ApacheDrill。為了幫助企業用戶尋找更為有效、加快Hadoop數據查詢的方法,Apache軟體基金會近日發起了一項名為「Drill」的開源項目。該項目幫助谷歌實現海量數據集的分析處理,包括分析抓取Web文檔、跟蹤安裝在AndroidMarket上的應用程序數銷敗據、分析垃圾郵件、分析谷歌分布式構建系統上的測試結果等等。

4. 大數據處理的四個主要流程

大數據處理的四個主要流程:
1.數據收集:收集大數據,包括結構化數據和非結構化數據,收集的數據可以來自外部源,或者是內鎮薯慧部的數據源;
2.數據存儲:將收集的數據存儲在可靠的數據倉庫中,以便更好的管理數據;
3.數據處理:對收集的數據進行清洗、結構化和標准化,以便從中獲得有用的信息;
4.數據分析:利用大數據分析工具對數據進行挖掘,以便發現有用的信息和規律。手唯

拓展:
5.數據可視化:運用數據可視化技術御答,將處理後的數據進行圖形化展示,以便更直觀的分析數據;
6.結果分享:將處理結果通過報告等形式分享出去,以便更多的人可以參與到數據處理過程中來。

5. 「大數據」時代下如何處理數據

現在科技發達有許多能把復雜的東西用一個小工具就能做好,科技的進步我們也要進步,要適應社會的發展,跟著時代走,學會先進的工具,就會簡化我們的生活,為了更方便的處理方法,你還在等什麼呢?

在工作當中經常遇到數據統計,在以前計算和整理數據需要很長的時間,浪費時間就算了,還可能把數據整理錯了,錯誤的數據交上去的話,會給你所在公司造成損失的,這種錯誤是經常出現的,不但費時費力,好吃力不討好的工作。

當然了,現在科技這么發達,就有了許許多多的電子產品出現,它們可以幫助你解決難題。比如大數據如何處理吧,大數據就是因為數據太多,太復雜,所以計算和整理起來有些困難。

不要擔心他的麻煩,因為我們有Excel表格。這個表格包含很多東西,大數據通過一定的方法,幾分鍾就可以求出你幾天來的成果,而且它是比較可靠准確的。

節省了寶貴的時間,這樣公司也不會擔心數據有誤了。學好Excel很重要,現在大學生都會學計算機應用基礎,在這本書中你會學會表格怎麼做,word怎麼做等。讓你從零基礎學起,你也可以選擇在家自學,在網上找一些製作表格的方法及其理論。

處理數據應用適當的方法,你就可以輕輕鬆鬆的整理資料。不要認為這很簡單,他也有難處的,沒有老師教的情況下,光看書是不行的,因為有些理論你是看不懂的。

6. 大數據分析一般用什麼工具分析

大數據分析的前瞻性使得很多公司以及企業都開始使用大數據分析對公司的決策做出幫助,而大數據分析是去分析海量的數據,所以就不得不藉助一些工具去分析大數據,。一般來說,數據分析工作中都是有很多層次的,這些層次分別是數據存儲層、數據報表層、數據分析層、數據展現層。對於不同的層次是有不同的工具進行工作的。下面小編就對大數據分析工具給大家好好介紹一下。

首先我們從數據存儲來講數據分析的工具。我們在分析數據的時候首先需要存儲數據,數據的存儲是一個非常重要的事情,如果懂得資料庫技術,並且能夠操作好資料庫技術,這就能夠提高數據分析的效率。而數據存儲的工具主要是以下的工具。

1、MySQL資料庫,這個對於部門級或者互聯網的資料庫應用是必要的,這個時候關鍵掌握資料庫的庫結構和SQL語言的數據查詢能力。

2、SQL Server的最新版本,對中小企業,一些大型企業也可以採用SQL Server資料庫,其實這個時候本身除了數據存儲,也包括了數據報表和數據分析了,甚至數據挖掘工具都在其中了。

3、DB2,Oracle資料庫都是大型資料庫了,主要是企業級,特別是大型企業或者對數據海量存儲需求的就是必須的了,一般大型資料庫公司都提供非常好的數據整合應用平台;

接著說數據報表層。一般來說,當企業存儲了數據後,首先要解決報表的問題。解決報表的問題才能夠正確的分析好資料庫。關於數據報表所用到的數據分析工具就是以下的工具。

1、Crystal Report水晶報表,Bill報表,這都是全球最流行的報表工具,非常規范的報表設計思想,早期商業智能其實大部分人的理解就是報表系統,不藉助IT技術人員就可以獲取企業各種信息——報表。

2、Tableau軟體,這個軟體是近年來非常棒的一個軟體,當然它已經不是單純的數據報表軟體了,而是更為可視化的數據分析軟體,因為很多人經常用它來從資料庫中進行報表和可視化分析。

第三說的是數據分析層。這個層其實有很多分析工具,當然我們最常用的就是Excel,我經常用的就是統計分析和數據挖掘工具;

1、Excel軟體,首先版本越高越好用這是肯定的;當然對Excel來講很多人只是掌握了5%Excel功能,Excel功能非常強大,甚至可以完成所有的統計分析工作!但是我也常說,有能力把Excel玩成統計工具不如專門學會統計軟體;

2、SPSS軟體:當前版本是18,名字也改成了PASW Statistics;我從3.0開始Dos環境下編程分析,到現在版本的變遷也可以看出SPSS社會科學統計軟體包的變化,從重視醫學、化學等開始越來越重視商業分析,現在已經成為了預測分析軟體。

最後說表現層的軟體。一般來說表現層的軟體都是很實用的工具。表現層的軟體就是下面提到的內容。

1、PowerPoint軟體:大部分人都是用PPT寫報告。

2、Visio、SmartDraw軟體:這些都是非常好用的流程圖、營銷圖表、地圖等,而且從這里可以得到很多零件;

3、Swiff Chart軟體:製作圖表的軟體,生成的是Flash

7. 大數據處理工具有哪些

互聯網的迅速發展推動信息社會進入到大數據時代,大數據催生了人工智慧,也加速推動了互聯網的演進。再對大數據的應用中,有很多工具大大提高了工作效率,本篇文章將從大數據可視化工具和大數據分析工具分別闡述。

大數據分析工具:
RapidMiner
在世界范圍內,RapidMiner是比較領先的一個數據挖掘的解決方案。很大程度上,RapidMiner有比較先進的技術。RapidMiner數據挖掘的任務涉及了很多的范圍,主要包括可以簡化數據挖掘的過程中一些設計以及評價,還有各類數據藝術。
HPCC
某個國家為了實施信息高速路施行了一個計劃,那就是HPCC。這個計劃總共花費百億美元,主要目的是開發可擴展的一些計算機系統及軟體,以此來開發千兆比特的網路技術,還有支持太位級網路的傳輸性能,進而拓展研究同教育機構與網路連接的能力。
Hadoop
這個軟體框架主要是可伸縮、高效且可靠的進行分布式的處理大量數據。Hadoop相當可靠,它假設了計算元素以及存儲可能失敗,基於此,它為了保證可以重新分布處理失敗的節點,維護很多工作數據的副本。Hadoop可伸縮,是因為它可以對PB級數據進行處理。
Pentaho BI
Pentaho BI和傳統的一些BI產品不一樣,這個框架以流程作為中心,再面向Solution(解決方案)。Pentaho BI的主要目的是集成一系列API、開源軟體以及企業級別的BI產品,便於商務智能的應用開發。自從Pentaho BI出現後,它使得Quartz、Jfree等面向商務智能的這些獨立產品,有效的集成一起,再構成完整且復雜的一項項商務智能的解決方案。
大數據可視化工具:
Excel2016
Excel作為一個入門級工具,是快速分析數據的理想工具,也能創建供內部使用的數據圖,但是Excel在顏色、線條和樣式上課選擇的范圍有限,這也意味著用Excel很難製作出能符合專業出版物和網站需要的數據圖。
SPSS 22
SPSS 22版本有強大的統計圖製作功能,它不但可以繪制各種常用的統計圖乃至復雜的3D視圖,而且能夠由製作者自定義顏色,線條,文字等,使制圖變得豐富多彩,善心悅目。
Modest Maps
Modest Maps是一個輕量級、可擴展的、可定製的和免費的地圖顯示類庫,這個類庫能幫助開發人員在他們自己的項目里能夠與地圖進行交互。
Raw
Raw局域非常流行的D3.js庫開發,支持很多圖表類型,例如泡泡圖、映射圖、環圖等。它可以使數據集在途、復制、粘貼、拖曳、刪除於一體,並且允許我們定製化試圖和層次。
R語言
R語言是主要用於統計分析、繪圖的語言和操作環境。雖然R主要用於統計分析或者開發統計相關的軟體,但也有用作矩陣計算。其分析速度可比美GNUOctave甚至商業軟體MATLAB。

8. 如何進行大數據分析及處理

1.可視化分析

大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了。

2. 數據挖掘演算法

大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計 學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。

另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如 果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。

3. 預測性分析

大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。

4. 語義引擎

非結構化數據的多元化給數據分析帶來新的挑戰,我們需要一套工具系統的去分析,提煉數據。

語義引擎需要設計到有足夠的人工智慧以足以從數據中主動地提取信息。

5.數據質量和數據管理。

大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。

大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。

大數據的技術

數據採集: ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。

數據存取: 關系資料庫、NOSQL、SQL等。

基礎架構: 雲存儲、分布式文件存儲等。

數據處理: 自然語言處理(NLP,Natural Language Processing)是研究人與計算機交互的語言問題的一門學科。

處理自然語言的關鍵是要讓計算機」理解」自然語言,所以自然語言處理又叫做自然語言理解也稱為計算語言學。

一方面它是語言信息處理的一個分支,另一方面它是人工智慧的核心課題之一。

統計分析: 假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、 方差分析 、 卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、 因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。

數據挖掘: 分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)

模型預測 :預測模型、機器學習、建模模擬。

結果呈現: 雲計算、標簽雲、關系圖等。

大數據的處理

1. 大數據處理之一:採集

大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的 數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。

比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除 此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。

在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶 來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。

並且如何在這些資料庫之間 進行負載均衡和分片的確是需要深入的思考和設計。

2. 大數據處理之二:導入/預處理

雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這 些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。

也有一些用戶會在導入時使 用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。

導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。

3. 大數據處理之三:統計/分析

統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通 的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於 MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。

統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。

4. 大數據處理之四:挖掘

與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數 據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。

比較典型演算法有用於聚類的Kmeans、用於 統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。

該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並 且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。

整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理。

閱讀全文

與大數據依靠什麼進行處理相關的資料

熱點內容
京東熱點代碼 瀏覽:484
慧博app下載的文件放在哪裡 瀏覽:859
PDF文件橫向太長顯示不出來 瀏覽:974
js緩存文件怎麼打開 瀏覽:983
網頁如何打開編程碼 瀏覽:369
網站被終止安全訪問怎麼辦 瀏覽:672
用微信送達文件 瀏覽:655
win7硬碟安裝文件損壞 瀏覽:394
最終幻想14版本職業 瀏覽:175
紅警2哪個版本好 瀏覽:290
app開發短視頻頁面用什麼技術 瀏覽:471
魅族mx3手機後台運行程序圖標怎麼去掉 瀏覽:344
微信號突然被永久封 瀏覽:298
代碼質量度量模型 瀏覽:338
狗幣doge挖礦教程 瀏覽:976
硬幣問題java 瀏覽:834
什麼能查看csgo戰績app 瀏覽:822
dnf怎麼修復文件損壞 瀏覽:609
ubuntu1004安裝教程 瀏覽:764
華為榮耀a5怎麼刷機教程 瀏覽:982

友情鏈接