導航:首頁 > 數據分析 > 頁眉文字數據分析報告怎麼操作

頁眉文字數據分析報告怎麼操作

發布時間:2023-07-15 09:38:21

⑴ 如何做一份完整的數據分析報告

了解整理數據來源或者採集數據;

理解數據、處理數據;用內工具Excel、資料庫等對數據進行處理。

掌握數據整理、可容視化和報表製作:數據整理,是將原始數據轉換成方便實用的格式,Excel在協同工作上並不是一個好工具,報表FineReport比較推薦。項目部署的Tableau、FineBI、Qlikview一類BI工具,有沒有好好培訓學習,這些便捷的工具都能淡化數據分析時一些重復性操作,把精力更多留於分析。

⑵ 數據分析報告怎麼寫 數據分析報告寫法介紹

1、分析報告一般都要寫一段導語,以此來說明這次情況分析的目的、對象、范圍、經過情況、收獲、基本經驗等,這些方面應有側重點,不必面面俱到。或側重於情況分析的目的、時間、方法、對象、經過的說明,或側重於主觀情況,或側重於收獲、基本經驗,或對領導所關注和情況分析所要迫切解決的問題作重點說明。如果是幾個部門共同調查分析的。

2、還可在導語中寫上參加調查分析的單位、人員等。總之,導語應文字精練,概括性強。應按情況分析主旨來寫,扣住中心內容,使讀者對調查分析內容獲得總體認識,或提出領導所關注和調查分析所要迫切解決的問題,引人注目,喚起讀者重視。

3、主體是分析報告的主要部分,一般是寫調查分析的主要情況、做法、經驗或問題。如果內容多、篇幅長,最好把它分成若幹部分,各加上一個小標題。

4、結尾的寫法靈活多樣,一般有以下幾種:(1)自然結尾。如果主體部分已把觀點闡述清楚,作出了明確結論,就不必再硬加一條尾巴。(2)總結性結尾。為加深讀者的印象,深化主旨,概括前文,把調查分析後對事物的看法再一次強調,作出結論性的收尾。(3)啟示性結尾。在寫完主要事實和分析結論之後,如果還有些問題或情況需要指出,引起讀者的思考和探討,或為了展示事物發展的趨勢,指出努力方向,就可以寫一個富有啟示性的結尾。(4)預測性結語。有的報告在提出調查分析情況和問題之後,又寫出作者的預測,說明發展的趨向,指出可能引起的後果和影響。這是在更廣闊的視野上來深化主題。

⑶ 怎麼寫好一份數據分析報告

每到周五,估計都會有很多童鞋為本周的周報發愁不已!今天就結合幾個真實案例來教大家如何玩轉數據分析報告。不過,場景的主角名字都做了簡單的處理!

立即登錄BDP,1分鍾製作你的專屬數據分析報告,簡答又高效!

⑷ 數據分析怎麼寫報告

數據分析怎麼寫報告

數據分析怎麼寫報告。現代社會是一個大數據的時代,很多東西都可以通過大數據分析一些基本的概況,職場上是需要我們寫數據分析報告的。接下來就由我帶大家了解數據分析怎麼寫報告的相關內容。

數據分析怎麼寫報告1

目錄

標題頁

目錄

前言

正文

結論與建議

附錄

在數據分析報告結構中,「總—分—總」結構的開篇部分包括標題頁、目錄和前言罩仔(主要包括分析背景、目的與思路);正文部分主要包括具體分析過程與結果;結尾部分包括結論、建議及附錄。

一、標題頁

標題頁物悄汪需要寫明報告的題目,題目要精簡干練,根據版面的要求在一兩行內完成。標題是一種語言藝術,好的標題不僅可以表現數據分析的主題,而且能夠激發讀者的閱讀興趣,因此需要重視標題的製作,以增強其藝術性的表現力。

(1)標題常用的類型

A.解釋基本觀點:往往用觀點句來表示,點明數據分析報告的基本觀點,如《不可忽視高價值客戶的保有》《語音業務是公司發展的重要支柱》等;

B.概括主要內容:重在敘述數據反映的基本事實,概括分析報告的主要內容,讓讀者能抓住全文的中心,如《我公司銷售額比去年增長30%》《2010年公司業務運營情況良好》等;

C.交代分析主題:反映分析的對象、范圍、時間、內容等情況,並不點明分析師的運畢看法和主張,如《發展公司業務的途徑》《2010年運營分析》《2010年部門業務對比分析》等;

D.提出問題:以設問的方式提出報告所要分析的問題,引起讀者的注意和思考,如《客戶流失到哪裡去了》《公司收入下降的關鍵何在》《1500萬利潤是怎樣獲得的》

(2)標題的製作要求

A.直接:數據分析報告是一種應用性較強的文體,它直接用來為決策者的決策和管理服務,所以標題必須用毫不含糊的語言,直截了當、開門見山地表達基本觀點,讓讀者一看標題就能明白數據分析報告的基本精神,加快對報告內容的理解。

B.確切:標題的撰寫要做到文題相符,寬窄適度,恰如其分地表現分析報告的內容和對象的特點。

C.簡潔:標題要直接反映出數據分析報告的主要內容和基本精神,就必須具有高度的概括性,用較少的文字集中、准確、簡潔地進行表述。

(3)標題的藝術性

標題的撰寫除了要符合直接、確切、簡潔三點基本要求,還應力求新鮮活潑、獨具特色、增強藝術性。要使標題具有藝術性,就要抓住對象的特徵展開聯想,適當運用修辭手法給予突出和強調,如《我的市場我做主》《我和客戶有個約會》等。有時,報告的作者也要在題目下方出現,或者在報告中要給出所在部門的名稱,為了將來方便參考,完成報告的日期也應當註明,這樣能夠體現出報告的時效性。

二、目錄

目錄可以幫助讀者快捷方便地找到所需的內容,因此,要在目錄中列出報告主要章節的名稱。如果是在word中撰寫報告,在章節名稱後面還要加上對應的.頁碼,對於比較重要的二級目錄,也可以將其列出來。所以,從另外一個角度說,目錄也就相當於數據分析大綱,它可以體現出報告的分析思路。但是目錄也不要太過詳細,因為這樣閱讀起來讓人覺得冗長並且耗時。

此外,通常公司或企業的高層管理人員沒有時間閱讀完整的報告,他們僅對其中一些以圖表展示的分析結論會有興趣,因此,當書面報告中沒有大量圖表時,可以考慮將各章圖表單獨製作成目錄,以便日後更有效地使用。

三、前言

前言的寫作一定要經過深思熟慮、前沿內容是否正確,對最終報告是否能解決業務問題,能夠給決策者決策提供有效依據起決定性作用。前沿是分析報告的一個重要組成部分,主要包括分析背景、目的及思路三方面:為何要開展此次分析?有何意義?通過此次分析要解決什麼問題?達到何種目的?如何開展此次分析,主要通過哪幾方面開展?

(1)分析背景

對數據分析背景進行說明主要是為了 讓報告閱讀這對整個分析研究的背景有所了解,主要闡述此項分析的主要原因、分析的意義、以及其他相關信息,如行業發展現狀等內容。

(2)分析目的

數據分析報告中陳述分析目的是為了讓報告的閱讀者了解開展此次分析能帶來何種效果,可以解決什麼問題。有時將研究背景和目的意義合二為一。

(3)分析思路

分析思路用來指導數據分析師如何進行一個完整的數據分析,即確定需要分析的內容或指標。這是分析方法論中的重點,也是很多人常常感到困惑的問題。只有在營銷、管理理論的指導下,才能確保數據分析維度的完整性,分析結果的有效性及正確性。

四、正文

正文是數據分析報告的核心部分,它將系統全面地表述數據分析的過程與結果。

撰寫正文報告時,根據之前分析思路中確定的每項分析內容,利用各種數據分析方法,一步步地展開分析,通過圖表及文字相結合的方式,形成報告正文,方便閱讀者理解。

正文通過展開論題,對論點進行分析論證,表達報告撰寫者的見解和研究成果的核心部分,因此正文佔分析報告的絕大部分篇幅。一篇報告只有想法和主張是不行的 ,必須經過科學嚴密的論證,才能確認觀點的合理性和真實性,才能使別人信服。因此,報告主題部分的論證是極為重要的。

報告正文具有以下幾個特點:是報告最長的主題部分、包含所有數據分析事實和觀點、通過數據圖表和相關的文字結合分析、正文各部分具有邏輯關系。

我們通常通過金字塔原理來組織報告邏輯,整個報告的核心觀點是什麼,又由哪些子觀點構建,支持每個子觀點的數據是什麼,如圖所示:

五、結論與建議

結論是以數據分析結果為依據得出的分析結果,通常以綜述性文字來說明。它不是分析結果的簡單重復,而是結合公司實際業務,經過綜合分析、邏輯推理形成的總體論點。結論是去粗取精、由表及裡而抽象出的共同、本質的規律,它與正文緊密銜接,與前言相呼應,使分析報告首尾呼應。結論應該措辭嚴謹、准確、鮮明。

建議是根據數據分析結論對企業或業務等所面臨的問題而提出的改進方法,建議主要關注在保持有時候及改進劣勢等方面。因為分析人員所給出的建議主要是基於數據分析結果而得到的。會存在局限性,因此必須結合公司的具體業務才能得出切實可行的建議。

六、附錄

附錄是數據分析報告的一個重要組成部分。一般來說,附錄提供正文中涉及而未予闡述的有關資料,有時也含有正文中提及的資料,從而向讀者提供一條深入數據分析報告的途徑。它主要包括報告中涉及的專業名詞解釋、計算方法、重要原始數據、地圖等內容。每個內容都需要編號,以備查詢。

當然並不是要求每篇報告都有附錄,附錄是數據分析報告的補充,並不是必需的,應該根據各自的情況再決定是否需要在報告結尾處添加附錄。

注意事項

1、分析結論要明確,要精,要有邏輯

如果沒有明確的結論那分析就不叫分析了,也失去了意義,因為我們是要去尋找或者印證一個結論才會去做分析的,所以千萬不要忘本舍果;

如果可以的話一個分析一個最重要的結論就好了,很多時候分析就是發現問題,如果一個分析能發現一個重大問題,就達到目的了,不要事事求多,寧要仙桃一口,不要爛杏一筐,精簡的結論也容易讓閱讀者接受,減少重要閱讀者(通常是事務繁多的領導,沒有太多時間看那麼多)的閱讀心理門檻,如果別人看到問題太多,結論太繁,讀不下去,一百個結論也等於零;

不要有猜測性的結論,太主觀的東西會沒有說服力,如果一個結論連自己都沒有肯定的把握就不要拿出來誤導別人了。

2、數據分析報告盡量圖表化,風格統一

用圖表代替大量堆砌的數字會有助於人們更形象更直觀地看清楚問題和結論,當然,圖表也不要太多,過多的圖表一樣會讓人無所適從;

數據分析報告本身是一個很嚴肅的東西,跟樣式、美觀程度也有一定關系,不是說做的花銷,而是基本的美觀度要保證,風格要統一。

例如一些常識性的配色:

餐飲類(暖色調,例如橘色、紅色、黃色);

國際貿易類(藍色、灰色、霧藍色、灰綠色等);

社會人文類(按照感情顏色進行配色,例如較嚴峻的社會問題,要用灰色、深藍;較喜慶的,使用紅色、綠色、黃色;具體可按需搭配對比色和互補色等)。

3、好的分析一定要基於可靠的數據源,同時具有可讀性

其實很多時候收集數據會占據更多的時間,包括規劃定義數據、協調數據上報、讓開發人員提取正確的數據或者建立良好的數據體系平台,最後才在收集的正確數據基礎上做分析,既然一切都是為了找到正確的結論,那麼就要保證收集到的數據的正確性, 否則一切都將變成為了誤導別人的努力;

除此之外,每個人都有自己的閱讀習慣和思維方式,寫東西總會按照自己的思維邏輯來寫,別人不一定了解,要知道閱讀者往往只會花10分鍾以內的時間來閱讀,所以要考慮你的報告閱讀者是誰?他們最關心什麼?必須站在讀者的角度去寫分析報告。

數據分析怎麼寫報告2

一般來說,數據分析報告有很多的類型,這是很多數據分析師都知道的,數據報告的對象、內容、時間和方法是不同的,對於數據分析報告的內容不同需要有不同形式的報告類型,一般來說,數據分析報告有專題分析報告、綜合分析報告和日常數據通報等內容。

首先說說日常數據通報。一般來說,日常數據通報需要按日、周、月、季等時間階段定期進行的,因此也叫定期分析報告。日常數據通報需要對進度、規范、時效設置高標准。首先說說規范性。日常數據分析報告需要有規范的結構形式,也就是反映計劃執行的基本情況、分析完成和未完成的原因、總結計劃執行中的成績和經驗,找出存在的問題、提出措施和建議。而時效性就是由日常數據通報的性質和任務決定,這是時效性最強的一種分析報告,這是幫助決策者掌握企業的最新動態,一般來說,這些報告主要通過微軟的word、Excel和PPT來表現。而進度性由於日常數據通報主要反映計劃的執行情況,因此必須把執行進度和時間的進展結合分析,觀察比較兩者是否一致,從而判斷計劃完成的好壞。

然後說說專題分析報告吧,專題分析報告是對社會經濟現象的某一方面或某一個問題進行專門研究的一種數據分析報告,它的主要作用是為決策者制定某項政策、解決某個問題提供決策參考和依據。專題分析報告需要注意兩個地方,第一個就是注意專題分析的單一性。專題分析不要求反映事務的全貌,主要針對某一方面或者某一問題進行分析,如用戶流失分析、提升用戶轉化率等分析。第二個就是需要注意深入性。有的分析報告由於內容單一,重點突出,因此要集中精力解決主要的問題,包括對問題的具體描述,原因分析和提出可行的解決辦法。這需要對公司業務有足夠的認識。

最後說說綜合分析報告,一般來說綜合分析報告是全面評價一個地區、單位、部門業務或其他方面發展情況的一種數據分析報告。綜合分析報告需要注意很多的內容,比如需要注意的是數據分析報告的全面性。這就需要站在全局高度反映總體特徵,做出總體評價。其次需要注意的是聯系性。綜合分析報告要把互相關聯的一些現象、問題綜合其他進行系統的分析。這種分析不系統地分析指標體系的基礎上,考察現象之間的內部聯系和外部聯系。做到了這些就是一個合適的綜合分析報告。

房地產市場數據分析報告

8月份商品房市場出現供應量、成交量雙高位情況。成交量較7月份相比,變化情況不大,成交量走勢略微上升。供應量變化較大,環比增長近一倍。本月全市商品房供應量為148.03萬平方米,與去年同期相比減少18.5%,但環比上升95.99%。8月份商品房成交量為139.7萬平,成交量環比增長3.7%,與7月份基本持平。8月份商品住宅成交量121.6萬平,環比增長4.6%,商品住宅成交量較上月無明顯變化,但同比增長64.8%。

商品房供應量分析

本月全市商品房供應量為310.4萬平方米,環比增長109.68%,供應套數為33269套。其中商品住宅供應面積為287.6萬平方米,占總供應量92.66%,商品住宅供應套數為30518套,商業用房供應面積為19.8萬平方米,占總供應量6.38%,供應套數為1452套。

商品房供應量走勢

由於秋季房交會的推動作用,全市2009年9月份的商品房供應面積達到310.4萬平,供應套數為33269套,超越2008年9月份的供應量,成為近一年來的新高。從整體上看,2009年以來,商品房供應量呈持續上升的態勢,房地產開發商對市場普遍看好。隨著房交會的結束,預計10月份商品房供應量相比9月份將會出現下降,但作為傳統的銷售旺季,不會改變整體上升的趨勢。

本月各區供應量分布情況

本月和平區和沈北新區的商品房供應量排在首位,所佔比例分別為21.2%和21.1%,供應量分別為65.4萬平和65.1萬平。鐵西區商品房供應量排第三位,供應面積為45.5萬平,所佔比例為14.9%。

商品房成交走勢分析

受秋季房交會的影響,全市2009年9月份的商品房的成交面積達到195.6萬平米,超越6月份夏季房交會的成交量,成為今年的新高。從整體上看,2009年以來,全市的商品房的成交量呈持續上升的態勢,市場信心較足。隨著房交會的結束,預計10月份區內商品住宅交易量相比9月份也將會出現下降,但作為傳統的銷售旺季,不會改變整體上升的趨勢。

商品住宅市場綜述

9月份商品房市場延續了供應量、成交量雙高位情況。受秋季房交會的影響,商品房供應量大幅度增長,銷售量達到了2009年的新高,市場表現良好;但供求比相對下降,商品房的市場將趨於平穩,隨著房交會的結束,預計10月份商品房的供應量和成交量將出現下降。

商品住宅供應量分析

由於秋季房交會的推動作用,全市2009年9月份的商品住宅供應面積達到287.6萬平,供應套數為30518套,超越2008年9月份的供應量,成為近一年來的新高。從整體上看,2009年以來,商品住宅供應量呈持續上升的態勢,房地產開發商對市場普遍看好。隨著房交會的結束,預計10月份商品住宅供應量相比9月份將會出現下降,但不會改變整體上升的趨勢。

成交量分析

受秋季房交會的影響,全市2009年9月份的商品住宅的成交面積達到192.2萬平米,超越6月份夏季房交會的成交量,成為今年的新高。從整體上看,2009年以來,全市的商品住宅的成交量呈持續上升的態勢,市場信心較足。隨著房交會的結束,預計10月份區內商品住宅交易量相比9月份也將會出現下降,但作為傳統的銷售旺季,不會改變整體上升的趨勢。

各區商品住宅成交情況分析

9月份商品住宅成交量排在首位的仍為鐵西區,成交面積46.7萬平,成交套數5375套。於洪區成交情況位居第二,成交面積38.4萬平,成交套數4327套。瀋河區成交量最少,成交面積42.9萬平米,成交套數469套。

商業用房市場綜述

9月份商品住宅市場延續了供應量、成交量雙高位情況。受秋季房交會的影響,商品住宅供應量大幅度增長,銷售量達到了2009年的新高,市場表現良好;但供求比相對下降,商品住宅市場將趨於平穩,隨著房交會的結束,預計10月份商品住宅的供應量和成交量將出現下降。

供應量分析

9月份商業用房供求比為0.79,供求比相對上升,但仍處低位,商業用房的供應出現小幅下降,成交情況出現小幅上升。從2009年以來整體上看,商業用房市場供求相對平衡,市場趨於穩定。

成交量分析

9月份商業用房市場成交情況較為平穩,本月成交面積15.7萬平米,成交量小幅上升,並達到了2009年的最高值,市場接受度較高。從整體上來看,2009年商業用房市場是穩中有升,市場情況較為平穩。

各區商業用房成交情況分析

9月份商業用房成交量排在首位的仍為鐵西區,成交面積4.88萬平,成交套數320套。於洪區成交情況位居第二,成交面積4.22萬平,成交套數275套。大東區和渾南新區成交量次之,分別為1.92和1.9萬平米。

商業用房市場綜述

9月份商品住宅市場延續了供應量、成交量雙高位情況。受秋季房交會的影響,商品住宅供應量大幅度增長,銷售量達到了2009年的新高,市場表現良好;但供求比相對下降,商品住宅市場將趨於平穩,隨著房交會的結束,預計10月份商品住宅的供應量和成交量將出現下降。

⑸ 如何寫數據分析報告

相信很多數據分析師在寫數據分析報告的時候也會遇到一些困惑,因為我最近也在寫一個報告,在這里就梳理一下如何寫數據分析報告

數據分析報告是數據分析師常見的工具,寫好一份數據分析報告,不但能夠清楚描述問題,洞察數據並且提出一些有思考的舉措,也很能反映出一個數據分析師的思維和用數據講故事的能力,網上雖然也有很多關於寫好數據分析報告的文章,但是大部分都是偏重於理論,具體實踐的很少,我就在這里做一個匯總,希望能幫助一些朋友,以期拋磚引玉

--------分割線--------正式開始--------

一份好的數據分析報告離不開兩部分:數據部分和分析部分。巧婦難為無米之炊,數據之於數據分析師就好像食材之於巧婦,數據的重要性可見一斑,分析部分是數據分析師將數據做成報告的最重要一步,是最體現一個數據分析師功底的部分,也是拉開差距的部分,下面就針對兩部分分別進行闡述

一. 數據部分

數據部分最重要的就是數據質量,數據質量的好壞直接決定一份數據分析報告的好壞,如果報告中某一個數據被質疑,會直接影響這份數據分析報告的可信度,本章說一說跟數據有關的一些內容

1.數據的質量

1.1數據類型

數據類型比較好理解,就是數據以什麼樣的類型存儲的,不同的數據類型有不同的使用方法,因此在處理數據之前,必須要先了解數據類型,常見的數據類型有(這里只說一些常見的數據類型):

整數型

int :用於存儲整數,存儲從-2的31次方到2的31次方之間的所有正負整數,每個INT類型的數據按4 個位元組存儲

bigint :用於存儲大整數,存儲從-2的63次方到2的63次方之間的所有正負整數,每個BIGINT 類型的數據佔用8個位元組的存儲空間

smallint :用於存儲小整數,存儲從-2的15次方到2的15次方之間的所有正負整數。每個SMALLINT 類型的數據佔用2 個位元組的存儲空間

浮點型

real :存儲的數據可精確到第7 位小數,其范圍為從-3.40E -38 到3.40E +38。 每個REAL類型的數據佔用4 個位元組的存儲空間

float :存儲的數據可精確到第15  位小數,其范圍為從-1.79E -308 到1.79E +308。 每個FLOAT 類型的數據佔用8 個位元組的存儲空間。  FLOAT數據類型可寫為FLOAT[ n ]的形式。n 指定FLOAT 數據的精度。n 為1到15 之間的整數值。當n 取1 到7  時,實際上是定義了一個REAL 類型的數據,系統用4 個位元組存儲它;當n 取8 到15 時,系統認為其是FLOAT 類型,用8 個位元組存儲它

字元型

char : 數據類型的定義形式為CHAR[ (n) ],n 表示所有字元所佔的存儲空間,n  的取值為1 到8000, 即可容納8000 個ANSI 字元。若不指定n 值,則系統默認值為1。  若輸入數據的字元數小於n,則系統自動在其後添加空格來填滿設定好的空間。若輸入的數據過長,將會截掉其超出部分

nchar : 它與CHAR 類型相似。不同的是NCHAR數據類型n 的取值為1 到4000。 因為NCHAR 類型採用UNICODE  標准字元集(CharacterSet)。 UNICODE 標准規定每個字元佔用兩個位元組的存儲空間,所以它比非UNICODE  標準的數據類型多佔用一倍的存儲空間。使用UNICODE  標準的好處是因其使用兩個位元組做存儲單位,其一個存儲單位的容納量就大大增加了,可以將全世界的語言文字都囊括在內,在一個數據列中就可以同時出現中文、英文、法文、德文等,而不會出現編碼沖突

varchar :VARCHAR數據類型的定義形式為VARCHAR  [ (n) ]。 它與CHAR 類型相似,n 的取值也為1 到8000,  若輸入的數據過長,將會截掉其超出部分。不同的是,VARCHAR數據類型具有變動長度的特性,因為VARCHAR數據類型的存儲長度為實際數值長度,若輸入數據的字元數小於n  ,則系統不會在其後添加空格來填滿設定好的空間。一般情況下,由於CHAR 數據類型長度固定,因此它比VARCHAR 類型的處理速度快

時間和日期型

date :『2018-01-17』

time :『10:14:00』

timestamp :『2018-01-17 10:14:00.45』

以上就是常用的數據類型,如果有其他的數據類型沒有說到,可以去網上搜一下,都比較好理解

1.2噪音數據

因為網上有非常多的關於噪音數據的解釋,都非常專業,我就不在這里做過多的詳細解釋了,我們只探討從sql取出數據的時候有一些異常值的處理辦法:

null

一般跑過sql的朋友肯定會發現,在跑出來的數據中會有null的情況,這個時候需要對null進行替換,如果是計算用,就把null替換成0,這個步驟可以在sql裡面完成,也可以在excel裡面完成

極大值

極大值會影響數據的計算結果,一般會進行處理,要麼替換成除極大值以外的最大值,要麼直接棄用

作為分母的0

如果0作為分母,在excel里會出現#DIV/0,這個時候可以直接把結果替換,或者在sql裡面直接進行替換,用case……when……就可以替換

1.3數據的口徑

數據的口徑很重要,根據經驗看,大部分的數據出現問題是口徑造成的,數據的口徑一定要跟業務的口徑一致,拿留存率舉例:

留存率是周期比率型指標,一般在計算留存率的時候需要確定 留存周期 和 活躍判定的口徑

留存周期:留存周期通俗來講就是指用戶在多長時間范圍內活躍,並在下一個周期內仍然活躍,這里的多長時間就是指留存周期

活躍判定:指怎麼判定一個用戶活躍,可以是啟動App,可以是登陸,也可以是完成了一次其他特定行為,這個主要依照業務需求而定

實際計算:

周留存率的計算

分子:本周活躍 且 上周也活躍的用戶數

分母:上周活躍的用戶數

2.可能會用到的工具

在處理數據的過程中可以用很多工具,在這里就介紹一些比較常見的工具,大家耳熟能詳,學起來也不是特變難

2.1提取數據

mysql

hivesql

兩者的查詢語句有相似的地方也有不同的地方,主要看自己所在公司的數據存儲情況

2.2數據處理

python:一般寫個腳本做一些機械的操作(我目前是這么用),也可以用來做計算

mysql:在查詢的時候可以進行處理

excel:數據量比較小的時候,可以在excel上簡單處理

2.3數據可視化

python:可以用來做一些詞雲圖

Tableau:可視化一些圖表,可以和sql結合著用

excel:做一些簡單的圖表,實際上數據處理的好的話,一般用excel就足夠了

二. 分析部分

在處理了數據以後就要開始進行報告的撰寫,寫報告會涉及到幾個部分的工作,這里分別進行介紹一下:

1.報告結構

一篇數據分析報告的結構是十分重要的,一個好的結構能夠將他人帶入到你的報告中,讓他人更好的明白你的意圖,減少信息傳遞之間的丟失,同時你的思維也主要展現在結構上,這就意味著在寫數據分析報告前,一定好想清楚數據分析報告的結構,當然這里說的報告結構即包括整個報告的結構,也包括每一個章節的結構,這里就放到一起說了

1.1 總 - 分 - 總(多用在整體結構)

我們在讀一本書的時候,打開目錄,會發現整部書的結構一般包括:

前言

第一篇

第二篇

……

第n篇

結尾

這就是典型的總 - 分 - 總結構,是最常見的結構,如果是對一個專題進行分析,用這種形式是非常好的,舉個例子:

某電商App近一個月內的銷售額出現下滑,讓你針對這個問題進行一次專題分析

分析思路:拿到這個問題,我們很容易想到的是,銷售額出現下滑出現的原因有兩個,一個是付費用戶數減少了,另一個是付費用戶的人均付費金額減少了,這兩個原因屬於並列的原因,不存在遞進關系,也就是說付費用戶數減少了與人均付費金額減少並不存在因果關系,沒有什麼相關性,因此需要對兩個原因共同分析,最後輸出結論和提升建議,分析完以後,會發現總

- 分 - 總結構很適合這樣的分析,所以列出以下提綱

問題描述

銷售額近一個月下降多少?絕對值,環比,同比數據

原因假設:付費用戶數下降/人均付費金額下降

付費用戶數下降分析

付費用戶數降幅是多少?絕對值,環比,同比數據

定位下降人群:是整體下降還是某一群體用戶數下降

這里就涉及到用戶分群,用戶分群的方法有很多,涉及到用戶價值的分群常見的就是RFM模型,將分完群的用戶進行數據對比,看看上個月付費用戶的結構佔比跟本月有什麼不同,當然用戶分群的方法也不止這一個,還有按照會員等級分群(主要用會員等級進行用戶分群),按照活躍程度(新用戶/留存用戶/迴流用戶),按照消費習慣(一般用戶表裡面都會有用戶的標簽,標識這個用戶的消費習慣,表示這個用戶更喜歡購買哪一類的商品),不管用什麼分群方法,都需要縱向對比,也就是這個月和上個月付費人群的對比

原因分析:

如果是付費用戶整體下降(這種是大家都不想看到的現象,欣慰大盤數據的驅動需要投入大量的資源,也有可能是自然波動),考慮可能的原因主要有:用戶整體流失,比如用戶流失到竟對;或者本月有什麼特殊情況,影響到了整體的用戶活躍;或者是從活動維度去觀察,是不是活動的力度減小,影響了用戶付費的慾望

如果是某一個用戶群體下降:考慮的原因可能有商品品類的影響,是不是某一類商品在平台沒有上架,或者某一類商品漲價;或者這一類用戶受到了哪些影響,一般可以從屬性和行為角度去分析

提出策略:

針對分析出的原因提出可落地的策略(策略一定要落地,要具體,比如如果你提出一條策略是:提升新注冊用戶數,那麼等於沒說,老闆多數會diss你,但是你如果說,通過減少注冊時填寫的非必要欄位,如年齡/職業,來簡化注冊流程,挺升注冊轉化率,進而提升新注冊用戶數,那感覺是不一樣的)

人均付費金額下降分析

人均付費金額的降幅是多少?絕對值,環比,同比數據

定位原因

人均付費金額下降可能的原因主要有:訂單數量下降;每個訂單包含的商品數的下降/某一個品類購買數下降

提出策略:針對分析出的原因提出可落地的策略

總結問題

明確造成銷售額下降的原因到底是什麼(定性以後,記得一定要量化,不量化會被diss)

提出有針對性的建議

如何預防再次發生

1.2 遞進(可用於整體結構和章節內部結構)

這種結構適合對一個問題進行探索,就像上一個例子中,我們針對每一個可能原因進行分析的時候,就是採用的這種分析方法,這種分析結構特別適合對一個小問題進行深入的探索分析,層層遞進,深挖原因,這里在舉一個例子:

某一個App的新注冊用戶數環比上個月減少,需要你做一個深入的分析,找到原因,提供改進策略

分析思路:新注冊用戶數的的影響因素是一個典型的漏斗結構,也是一個典型的單向性用戶旅程,畫一張圖就能說明白:

如圖所示,影響注冊用戶數的原因全部標注在漏斗裡面,但是注冊全流程這個漏斗只能看個大概流失,所以我們會對某一步進行細化,這張圖上,我們對用戶從啟動到注冊成功進行細化,細化到用戶行為,這樣能夠提出一些產品上的改進意見,這個時候,如果想要提升新注冊用戶數,只需要針對每一步流失原因進行分析,找到提升策略就可以了,基本上是所見即所得的分析

比如:我們想對提交注冊信息到注冊成功這一步進行優化,那麼首先我們要找到用戶注冊失敗的原因有什麼,一般有:

用戶已注冊

密碼格式不合規

系統錯誤

未勾選《隱私協議》

在提出建議的時候,只要針對以上原因提出具體改進意見就可以了

1.3並列結構(多用於整體結構)

這種結構一般遇到的情況不多,常見的有對不同的校區進行經營分析/對不同品類的商品進行售賣分析,基本都是以描述型分析為主,因為分析的主體是並列關系,所以只需要每個主體就行單獨分析就好,基本採用的分析思路是一樣的

1.4因果結構(多用於章節內部結構)

這種結構一般用在復盤分析報告中,復盤是常見的數據分析報告類型之一,也是很多公司比較重視的一個報告,比如雙十一復盤/新手活動復盤等等, 以電商某一次大促復盤為例 ,這里直接寫結構:

總體描述:

本次大促整體數據表現,整體活動節奏的介紹;銷售額是多少,同比提升多少;利潤情況;參與用戶有多少,同比提升多少;賣出商品有多少,同比提升多少;各個子活動的貢獻是多少

子活動1的效果分析

子活動1的簡介,作用,發力點

子活動1的貢獻是什麼,對於直接提升結果指標或者間接提升指標有哪些貢獻

子活動1的成本是什麼?投入產出比是多少?

子活動2的效果分析

子活動x的效果分析

最後匯總,提出優化建議

2.分析方法

講完了整體結構,我們就該進入到具體分析的過程裡面,這里的分析方法,主要想說說怎麼去針對不同的數據進行分析,也就是說怎麼通過數據看出問題,這里介紹常用的5種分析方法,但是有一句話非常重要,想寫這節的最前面: 數據分析師一定要懂業務,在分析之前最好能把問題定位個大概,再去撈數,再去分析,否則每天會沉浸在漫無目的取數中,我認為一個數據分析師最重要的能力是要懂業務,從數據的角度看業務,才能驅動業務

2.1 對比分析

橫向對比

橫向對比就是把一個指標按照不同維度拆分,去對比不同維度的變化,舉個簡單的例子來說就是:

昨天的DAU增長了30%,那麼把DAU進行拆分,可以拆分成以下三種方式:

DAU=新注冊用戶數+留存用戶數+迴流用戶數

DAU=北京活躍用戶數+河北活躍用戶數+山東活躍用戶數+……

DAU=北京活躍用戶數+河北的活躍用戶數+……

                =北京的新增用戶數+北京的留存用戶數+北京的迴流用戶數+河北的新增用戶數+河北的留存用戶數+河北的迴流用戶數+……

這里留一個疑問,怎麼去選擇優先下鑽的維度?想明白以後分析的效率就會有很大提升

縱向對比

在進行完橫向對比以後,就要開始進行縱向對比,縱向對比主要是在時間維度上,還拿上一個例子來說,我們按照第一種方式進行橫向對比以後,就要縱向對比,見下表:

2.2分布分析

分布分析一般是應用的場景比如用累計消費金額去分組/按照用戶一個月活躍天數去分組,這些場景都有兩個共性的特徵:

屬性值都是數值類型,或者日期類型

屬性值非常多,比如累計消費金額可能從1-90000中間任意一個數字,也就是屬性值非常多,沒辦法用每一個屬性值去單獨分析,因此需要分組

還是上圖說明:

2.3交叉分析

交叉分析一般指多維度交叉,或者不同指標之間的交叉

多維度交叉其實有點類似對比分析的第三類分類方法,這里不在贅述了,還是那個圖,但是在實際分析中的作用其實很是強大,具體如何應用就需要大家舉一反三啦,仔細看看這張圖,可以換成哪些分析場景下的哪些場景的交叉分析:

不同指標交叉一般用在分析變化趨勢中,或者尋找相關因素的時候,上圖:

這樣既能看絕對值的變化,又能一目瞭然的看出變化趨勢,如果不同指標之間呈現一定的相關性,那就是相當完美了

2.4漏斗分析

漏斗分析模型比較好理解了,一般在行為分析中常用到,直接上圖吧:

是不是有點眼熟?漏斗分析一般分析應用在分析用戶使用某項業務時,經過一系列步驟轉化的效果,因為用戶會沿著產品設計的路徑到達最終目標事件,在分析每一步轉化的時候會用到這個模型

2.5矩陣分析

矩陣分析是一個不錯的分析模型,主要用在分類上面,常見的有用戶分類、產品分類等,比如像常見的RFM模型是一個三維矩陣,有八個象限,上兩個圖看看:

矩陣分析其實不難理解,但是涉及到一個比較關鍵的問題,就是臨界點怎麼選擇,通俗來說就是第一象限和第二象限的臨界值是多少,有的是0,有的不是0,舉個例子:

我想用活躍度和累計消費金額對1萬個用戶進行分群,使用矩陣分析

我建好了這個二維矩陣,我第一件事就是先要確定原點的坐標值,也就是說用戶的累計消費金額大於x,就會出現在第一/四象限,如果小於x,就會出現在第二/三象限,想確定這個值需要一定的方法,會用到一些分類演算法,這個可以去網上查一些關於分類的教程,有很多,後續我會寫一盤文章來介紹分類,這里就不細講了

以上就是數據分析最重要的兩個模塊,當然在實際操作中還有很多需要思考的地方,太細節的東西不太能夠面面俱到,這里留給大家去思考的空間,比如:

數據分析報告怎麼講成一個故事,比如背景-現狀-原因-策略-預期結果-復盤結果?

每一頁PPT怎麼排版會讓你的數據分析報告可讀性更高?

如果你的數據分析報告不採用上述的結構,還能用哪些結構?

怎麼讓你的數據分析報告顯得更高大上?

可以留言交流哦

閱讀全文

與頁眉文字數據分析報告怎麼操作相關的資料

熱點內容
蝴蝶錢包app 瀏覽:681
聯通查詢賬號密碼修改 瀏覽:774
文件頭線到上紙邊距離是多少 瀏覽:36
蘋果手機怎樣備份文件在哪裡 瀏覽:425
zemax在哪裡編程ZPL 瀏覽:563
如何撤銷word空白頁 瀏覽:296
什麼叫網路連接超時 瀏覽:49
京東熱點代碼 瀏覽:484
慧博app下載的文件放在哪裡 瀏覽:859
PDF文件橫向太長顯示不出來 瀏覽:974
js緩存文件怎麼打開 瀏覽:983
網頁如何打開編程碼 瀏覽:369
網站被終止安全訪問怎麼辦 瀏覽:672
用微信送達文件 瀏覽:655
win7硬碟安裝文件損壞 瀏覽:394
最終幻想14版本職業 瀏覽:175
紅警2哪個版本好 瀏覽:290
app開發短視頻頁面用什麼技術 瀏覽:471
魅族mx3手機後台運行程序圖標怎麼去掉 瀏覽:344
微信號突然被永久封 瀏覽:298

友情鏈接