1. 數據分析的方向都有哪些
數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。
01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。
02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。
03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。
04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。
05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。
06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。
07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。
2. 數據科學與大數據技術就業方向
數據科學與大數據技術就業方向如下:
1、大數據系統架構師:大數據平台搭建、系統設計、基礎設施。
2、大數據系統分析師:面向實際行業領域,利用大數據技術進行數據安全生命周期管理、分析和應用。
2011年至2014年四年間,我國大數據處於起步階段,每年均增長在20%以上。2015年,大數據市場 規模已達到98.9億元。2016年增速達到45%,超過160億元。預計2020年,我國大數據市場規模將超過 8000億元,有望成世界第一數據資源大國。但數據開放度低、技術薄弱、人才缺失、行業應用不深入等 都是產業發展中亟待解決的問題。
根據領英發布《2016年中國最熱職位人才報告》顯示,有六類熱門職位的人才當前都處於供不應求 狀態,稀缺程度各有不同,其中,數據分析人才的供給指數最低,僅為0.05,屬於高度稀缺。
3. 大數據的就業方向
總的來說大數據領域有幾大細分 1 數據清洗、收集、爬蟲 //偏腳本、爬蟲能力 2 數據回分析 //偏業務答,偏SQL,偏分析能力 3 數據開發 //偏平台,偏工程化、後端開發能力 4 數據挖掘 //偏演算法,偏挖掘能力 一般來說,數據分析的門檻最低,其次數據開發和爬蟲類,門檻最高的是挖掘,當然薪酬也是相對較高的。 從應用開發入手,你可以往兩個方向房展: 1 進一步熟悉架構,提升開發能力,往數據架構師轉; 2 從應用工程化往挖掘工程師轉,需要自己多學演算法相關的知識;
4. 數據分析行業就業方向有哪些
數據分析行業就業三大方向指的是:大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。
十大職業:ETL研發、Hadoop開發、可視化(前端展現)工具開發、信息架構開發、數據倉庫研究、OLAP開發、數據科學研究、數據預測(數據挖掘)分析、企業數據管理、數據安全研究。
全球最頂尖管理咨詢公司麥肯錫(McKinsey)出具的一份詳細分析報告顯示,預計到2018年,大數據或者數據工作者的崗位需求將激增,其中大數據科學家的缺口在140000到190000之間,對於懂得如何利用大數據做決策的分析師和經理的崗位缺口則將達1500000!
根據中國商業聯合會數據分析專業委員會統計,未來中國基礎性數據分析人才缺口將達到1400萬,而在BAT企業招聘的職位里,60%以上都在招大數據人才。
5. 學習數據科學的就業方向有哪些
學習數據科學的就業方向有很多,以下這些是比較熱門的職業:
1、數據分析師。數據分析師側重於利用統計學、數學等知識進行數據挖掘,日常的主要工作內容為收集數據、清洗數據、然後做一些分析或可視化處理,對編程語言有一定的要求,如R,Python,Javascript,C/C++,SQL等。
2. 商業分析師。商業分析師和純數據科學家都是使用數據的專家,但工作內容是有比較大差別的。通常,商業分析師要對某專業領域具有深入的了解和深刻的認識,商業敏感度高,擅長於從某一領域的數據中挖掘信息,以此評估過去、現在和未來可能的經營業績。確定最有效的分析模型和途徑,為商業用戶提供和解釋解決方案。
3.數據工程師。作為一個新興的職業類型, 數據工程師更傾向於掌握 「戰術層面」 的具體數據技能,專注於使數據可用並能夠在生產環境中對數據進行處理,如具體的編程語言、操作系統與資料庫等;而數據科學家更傾向於「戰略層面」的數據技能,如數據分析、數據挖掘、統計分析、機器學習等。
想要了解更多關於數據分析師就業方向的信息,可以咨詢一下CDA認證機構。CDA是大數據和人工智慧時代面向國際范圍全行業的數據分析專業人才職業簡稱。全球CDA持證者秉承著先進商業數據分析的新理念,遵循著《CDA職業道德和行為准則》新規范,發揮著自身數據專業能力,推動科技創新進步,助力經濟持續發展。
6. 大數據都有哪些就業方向
大數據就業方向一、數據存儲和管理
大數據都是從數據存儲開始。這意味著從大數據框架Hadoop開始。它是由Apache Foundation開發的開源軟體框架,用在計算機集群上分布式存儲非常大的數據集。
顯然,存儲對於大數據所需的大量信息至關重要。但更重要的是,需要有一種方式來將所有這些數據集中到某種形成/管理結構中,以產生洞察力。因此,大數據存儲和管理是真正的基礎,而沒有這樣的分析平台是行不通的。在某些情況下,這些解決方案包括員工培訓。
大數據就業方向二、數據清理
在企業真正處理大量數據以獲取洞察信息之前,先需要對其進行清理、轉換並將其轉變為可遠程檢索的內容。大數據往往是非結構化和無組織的,因此需要進行某種清理或轉換。
在這個時代,數據的清理變得更加必要,因為數據可以來自任何地方:移動網路、物聯網、社交媒體。並不是所有這些數據都容易被「清理」,以產生其見解,因此一個良好的數據清理工具可以改變所有的差異。事實上,在未來的幾年中,將有效清理的數據視為是一種可接受的大數據系統與真正出色的數據系統之間的競爭優勢。
大數據就業方向三、數據挖掘
一旦數據被清理並准備好進行檢查,就可以通過數據挖掘開始搜索過程。這就是企業進行實際發現、決策和預測的過程。
數據挖掘在很多方面都是大數據流程的真正核心。數據挖掘解決方案通常非常復雜,但力求提供一個令人關注和用戶友好的用戶界面,這說起來容易做起來難。數據挖掘工具面臨的另一個挑戰是:它們的確需要工作人員開發查詢,所以數據挖掘工具的能力並不比使用它的專業人員強。