導航:首頁 > 數據分析 > 數據時代企業如何實現商業價值

數據時代企業如何實現商業價值

發布時間:2023-06-18 16:17:52

Ⅰ 從支撐到決策 大數據實現企業商業價值

從支撐到決策:大數據實現企業商業價值
電子商務、社交媒體、移動互聯網、物聯網的興起極大地改變了人們生活與工作的方式,它們給世界帶來巨大變化的同時,也讓一個大數據時代真正地到來。與傳統數據相比,大數據主要體現在數據量龐大、數據類型豐富、數據來源廣泛三個方面,大數據的這三大特徵不僅僅悄然改變著企業IT基礎架構,也促使了用戶對數據與商業價值之間關系的再思考。
大數據所蘊含的價值
對於當今的企業而言,數據就是一種重要的戰略資產,它就像新時代的石油一樣,極富開采價值。如果能夠看清大數據的價值並且迅速行動起來,那麼在未來的商業競爭中占據會佔得先機。事實上,美國奧巴馬政府已經投資2億美金啟動了「大數據研究和發展計劃」,從政府層面鼓勵企業收集海量數據、分析萃取信息的能力。英特爾亞太研發有限公司總經理何京翔博士表示:「信息數據就是21世界的石油,石油只有經過開采、提煉最後變成汽油等化學品才能夠體現出價值。大數據與石油一樣,僅僅存儲而不進行分析和處理是體現不出它的價值。」

圖一:全球知名調研機構IDC公司 對全球數據增長以及數據類型分布情況的調研與預測。相對於傳統的結構化數據,非結構化數據、內容數據的增長迅速,且蘊含了極大的價值。
任何企業都希望能夠充分挖掘出像數據這種戰略資源的價值,從而做出更為准確的商業決策。過去傳統的商業智能局限在分析企業信息系統自身產生出來業務數據,這些數據大部分為資料庫等結構化數據,而隨著非結構化數據成為企業數據的主力軍,傳統商業智能的方式方法顯然已經落伍。傳統商業智能就猶如坐在自己車里,通過後視鏡看後面發生的情況;而大數據分析則像是向前看的望遠鏡,用戶通過望遠鏡能夠看到未來可能會發生的情況。之所以會這樣,是因為大數據分析是基於構化和非結構化數據的總和,在數據分析的全面性上是傳統商業智能所不能比擬的,這意味著通過分析結構能夠提供給企業更加全面和准確的商業洞察力。
圖二:全球知名咨詢機構麥肯錫對於不同行業所產生的數據類型的分析。麥肯錫全球研究所認為幾乎所有行業正在大量產生非結構化數據。[page]
大數據打破了企業傳統數據的邊界,改變了過去商業智能僅僅依靠企業內部業務數據的局面,其背後蘊含的商業價值不可低估,IDC就在其大數據相關報告中著重闡述了大數據的商業價值:行業領導企業與其他企業有著本質的區別,行業領導企業會積極將新的數據類型引入到數據分析之中,為商業決策做出更加准確的判斷,那些沒引入新的分析技術和新的數據類型的企業在未來是不可能成為行業領導者。這本質上其實是要求企業能夠從思維的角度徹底顛覆過去的觀點,大數據在未來企業中的角色絕對不是一個支撐者,而是在企業商業決策和商業價值的決策中扮演著重要的作用。
從支撐到決策
傳統IT,從伺服器、存儲、網路、PC這些硬體設施,到CRM、ERP、PLM等應用軟體,本質上是在對企業各個業務流程層面起到了支撐作用,雖然傳統的商業智能分析能夠對於企業的商業決策起到一定的作用,但是傳統商業智能分析在當今這個大數據時代已經舉步維艱。大數據的價值在於它能夠有效的幫助各個行業用戶做出更為准確的商業決策,從而實現更大的商業價值,它從誕生開始就是站在決策的角度出發。
圖三:全球知名咨詢機構麥肯錫對美國不同行業應用大數據技術潛在價值評估。
麥肯錫認為大數據正在為全球創造不可低估的商業價值。首先,大數據能夠能夠明顯提升企業數據的准確性和及時性;此外還能夠降低企業的交易摩擦成本;更為關鍵的是,大數據能夠幫助企業分析大量數據而進一步挖掘細分市場的機會,最終能夠縮短企業產品研發時間、提升企業在商業模式、產品和服務上的創新力,大幅提升企業的商業決策水平,降低了企業經營的風險。
事實上,大數據離我們並不遙遠,現實生活中已經有很多活生生的案例,這些案例充分說明大數據對於未來的商業決策有著不可低估的作用。比如2011年,英國對沖基金Derwent Capital Markets花費4000萬美金首次建立了基於社交網路的對沖基金。該基金通過對Twitter的數據內容來感知市場情緒,從而進行投資。美國加州大學河濱分校也在2012年公布了一項通過對Twitter消息進行分析從而預測股票漲跌的研究報告。

圖四:英國對沖基金Derwent Capital Markets通過分析Twitter數據來預測股市的波動,該應用為典型的大數據應用,通過實時分析數據來獲得更為准確的投資趨勢。圖中紅線代表Tweets中「平靜」數值;藍線表示3天後的道指變化。在這兩條線段重合的部分,「平靜」指數預測了3天後道指收盤指數,從圖中我們可以發現紅、藍兩線經常走勢相近。[page]
可以說,在IT日益滲透到企業和個人方方面面的今天,大數據將逐漸成為很多行業企業實現商業價值的最佳途徑。IDC中國企業級系統與軟體研究部高級研究經理周震剛就表示:「毫無疑問,未來幾年大數據會逐漸向更多行業發展,除了互聯網和電信之外,其他像政府、金融、製造業都會開始有大數據的應用。」當然,可能還有人會質疑大數據的決策效果,但是不可否認的是大數據正在徹底改變商業決策的模式與方法,大數據是IT價值從企業業務支撐到企業決策轉變的最好體現。

圖五:美國德克薩斯大學《measuring the business impacts of effective data》報告,該報告認為數據使用率提升10%對行業人均產出的平均提升幅度有著重要影響,最為明顯的就是零售行業,在零售行業數據使用率提升10%就能夠使得人均產出提升49%,效果異常明顯。
另外值得關注的是,企業的商業決策帶有很強烈的行業特性,不同行業的企業對於大數據分析的需求並不相同,甚至由於不同行業的關系,這種需求可能是千差萬別。這也就要求大數據解決方案不僅僅包括良好的數據分析能力,也需要包含很多行業的知識。IDC中國企業級系統與軟體研究部高級研究經理周震剛就表示:「從傳統概念來講,大數據非常復雜,無法形成打包好的分析應用解決方案。不過在未來幾年中,某個行業的應用會形成一個共性,廠商們會基於這個共性打包出一些大數據的解決方案推向這些行業用戶。另外,會有更多的行業ISV會加入到大數據平台,基於這個大數據平台來開發應用。」從本質上來看,企業用戶在商業決策中需要的是一個包含了靈活可靠的基礎架構、功能強大的數據分析能力與經驗豐富的行業分析能力的大數據綜合性解決方案,僅僅依靠幾套開源軟體和設備是不能滿足企業在商業決策上的長久需求,英特爾亞太研發有限公司總經理何京翔博士就表示:「大數據不僅僅是一個技術問題,英特爾認為大數據需要一個全面的大數據解決方案。英特爾在提供優秀的基礎架構同時,還重點將Hadoop軟體平台進行優化並提供軟體服務,更加重要的是會針對分析工具和用戶界面進行不同行業解決方案的定製。此外,英特爾也和眾多行業ISV進行多角度、多方位的合作,從而構建出一個完善的大數據解決方案。」
從商業支撐到商業決策,大數據的商業魅力正在逐漸顯現。在這個商業迅速信息化、社交化、移動化的時代,大數據必然會成為大部分行業用戶商業價值實現的最佳捷徑,我們需要做的就是認清本質、轉變思路、未雨綢繆、運籌帷幄,在大數據時代中抓住無限商機。

Ⅱ 六個步驟 助你最大化大數據的商業價值

六個步驟:助你最大化大數據的商業價值

對於許多人們津津樂道的大數據企業或組織來說,通過大數據獲取商業價值似乎總是如此容易:有了大數據,我們就能更深入地了解客戶的行為,並運用這些知識來增加客戶的滿意度,從而提高企業的盈利能力。但說的容易做起來難,真正去讓一個新興企業來實現大數據價值時,一切往往變得捉襟見肘,但不管怎麼說,回顧總結一些當下實用的大數據商業實踐方法總歸沒錯。實際上,最大化大數據的商業價值可以歸結為將下述的六件事做好:

1.以商業思維為出發點:對於數據科學家們來說,運用Hadoop或其他先進的大數據分析工具暢游於數據知識的海洋中是在愉快不過的事了,不過如果不把分析的結果轉化為可以應用於解決現實世界商業問題的東西,那麼對於時間和資源則是巨大的浪費。與業務專家合作,了解改進過程中的機遇與挑戰,將會是一個大數據項目成功與否的關鍵。專注於一個具體的商業問題將有助於識別有用的數據集,並針對化選擇適合的技術與工具。與此同時,這樣的過程能夠促使你步步為營,對項目進行進一步推進。

2.把目光投向將理論付諸實踐的途徑上:要實現真正的商業價值,我們必須對理論分析的結果進行實際的運用。這聽起來毫無疑問,但事實上有太多的大數據項目都會因為走不過這一關而從此塵封,將理論分析的結果納入商業活動並使它們因此收益往往並非易事。有時,在實驗室里看起來很美好的數據有可能是不可用的;而當你在商業活動中真正需要某項數據時,它也有可能變得過於昂貴。與此同時,一系列的行業法規也對數據的可用性產生巨大的影響。

3.使用最前沿的分析方法:商業智能與商業分析方法的創新正在改變企業從用戶數據中獲取價值的方式。新興的數據分析平台也因此不再是像傳統的描述性報告或歷史記錄儀表盤那樣的周期性呈現,轉而成為了一個能夠不斷分析傳入的數據,提供指導意見,並且實時可操作的龐大系統。大數據的工具與基礎設施使得當今的數據分析能夠更加快捷簡便地對機器學習方法進行應用,從而對包括各種各樣結構化與非結構化數據類型的巨大數據集進行探索。

4.擁抱多樣化的分析工具:R, Python, Hive, Groovy, Scala, MATLAB, SQL, SAS;哪個才是你的最愛?這個技術創新呈爆炸性發展的世界帶給我們的副作用之一,便是常常需要學習一套新的分析工具。等著你最拿手的分析工具自己升級往往不是一個好的選項,領先的分析團隊將不可避免地需要使用多個工具來支持他們的業務需求,所以最好的方法是去擁抱這樣的多樣性,構建一個靈活多樣的技能儲備,用於實現由不同工具構建的各種分析模型。在一個機械化生產的環境中,將多種類型的分析模型整合到一起往往十分困難。然而,已經有諸如FICO?決策管理平台這樣的現代決策管理系統,通過可擴展包以及網路服務標准等渠道實現了對上述方案的簡化。

5.利用雲端和各類生產力平台:當今時代,進行大數據分析已經不再需要對昂貴的基礎設施和特別的專業技能進行龐大的投資。通過在雲端運行你的分析項目,你可以讓一個專門的第三方處理底層系統和服務,而你專注於手頭的業務問題。同時,你也可以把你所需要的能力和服務外包出去,這也許只會是實現項目的總成本中的一小部分。

6.為業務專家們留足操作的餘地:這是最後也是最重要的一點。最大的商業價值往往來自於商務專家們一系列可以迅速轉化為差異化戰略的新見解,而它們有時也能顯著提高客戶與股東對你的滿意程度。具有交互性和高度可視化的儀錶板或報告可以更好地提供信息,從而幫助業務專家提出更科學有效的商業策略;標準的決策管理組件則可以使專家們更方便迅速地納入新的分析模型,並以此洞察他們的業務規則和相關政策;而模擬和數據可視化則可以更好地探索新的商業模式和策略可能帶來的潛在影響,使它們更容易被理解,從而加快它們的審批進程,使項目最終走向成功。

以上是小編為大家分享的關於六個步驟 助你最大化大數據的商業價值的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅲ 大數據挖掘商業價值的方法包括哪些

1、對顧客群體細分,然後對每個群體量體裁衣般的採取獨特的行動。
2、運內用大數據模擬實容境,發掘新的需求和提高投入的回報率。
3、提高大數據成果在各相關部門的分享程度,提高整個管理鏈條和產業鏈條的投入回報率。
4、進行商業模式,產品和服務的創新。

Ⅳ 實現大數據商業價值的5個要點

實現大數據商業價值的5個要點
通常來說,以往的業務模式是基於歷史數據來決定未來一到兩年內的行為,但是現在則應該是基於過去幾分鍾內的數據來決定未來12到24分鍾(甚至是秒)內的行動。在營銷模式上,以往是基於過去數周或數月內的推廣活動來預測特定人群對產品或者服務的偏好程度,而現在則是基於對客戶個體行為的分析和實驗來為其提供實時的定製化服務(通過各種用戶界面,比如呼叫中心、網站、移動應用等)。可以想見,每個客戶所接收到的東西都是獨一無二的–一旦某客戶接收到了特定的服務或者產品,該服務或產品就不會重復提供給另一個客戶。這才是「大」的真正含義–大數據中的大生意。
對於數據分析人員、IT經理以及整個企業來說,對於大數據,有以下重要的考量和步驟:
·在准備行動之前,和管理層及客戶進行充分的溝通,了解業界最新進展以及企業的真實需求
·基於大數據相關的新業務模式和新技術,積極推動企業戰略的升級
·基於業務戰略和模型,制定相應的數據戰略和監管流程
·以可管理的模式來推進創新,比如較小的、短期的和可迭代的實驗和探索,以此獲得易評測和有意義的結果
·在探索過程中允許錯誤的發生。不斷從失敗中積累經驗才能提高未來工作的成功率
無論出於什麼原因,如果你或者你的公司還未認識到大數據的無窮潛力,Rick Smolan和Jennifer Erwitt的近著《The Human Face of Big Data》可能會對你有所幫助 -- 其中有句話這么說到:「在孩子出生的第一天,人類產生的數據量就相當於國會圖書館的70倍。」想想吧,這得有多少奧利奧餅干。

Ⅳ 大數據的商業價值實現關鍵在於連結

大數據的商業價值實現關鍵在於連結

我的英文主題的大數據的商業價值實現關系在於連結,但是在這個之前,我想跟大家分享一下前面阿里幾位演講嘉賓的評論我很受啟發。

第一個大數據是相通的,數據本身並不本身任何的意義,只有在當他和一個他所表示的一個事情連結上以後,才能知道這個意義在哪裡,或者價值在哪裡。比如說有一種大數據對你來說就是一個大市場的表現,有一種大數據就是一個很大的人群,他們在你的平台上的行為,只有這么想了以後這個大數據才他對您真正的價值和意義有鏈接。

第二個我很受啟發的,大數據在很多年前已經提出,那麼他對你的意義如何?其實每個工業的形成,都有這樣一條發展的路程,第一是由少數的人他們比較有遠見,看到了一個很小的一個數據的能夠被儲存,能夠被用來表達一個很復雜的現象,或者一個事物,從這個裡面發揮了以後就逐漸進入一個新的商業應用的領域,這是當年的資料庫計算機的發明和應用都是走了這樣的路子,所以第一個是少數人的遠見促進了這樣一個形成。第二個進入科學階段,有了科學之後這個事情就能不斷的重復,而且可以有方法來證明,如果你是照著某一種進程來開展活動的話,你的結果是可以被預測。第三個部分就是進入工程的應用。我也很欣賞品覺一句話,真正的價值在於更多的人使用,只有一兩個人能懂能使用這個價值不會很大。第四個部分跟我今天的主題有關,大數據的來源,為什麼在今天不在一百年之前,或者在於電腦剛剛發展的時候,或者在於資料庫,在幾十年形成的時候,為什麼這些數據不大呢,為什麼今天的大就變得這么重要呢?主要的原因是一個網路。這個網路的形成,不是有了電腦就形成網路了,而且網路廣泛的使用也是有很多的階段。第一初級的網路是在企業內部的,電腦的使用的這個網路。第二部是英特網,把很多的公司很多子網路聯在一起。

第三個是在網路上軟體的開發,使得很多本來根本沒有在網路硬體的基礎上獲取信息、交流信息以及傳播信息今天都成為可能。所以,這一些網路的這個建設和網路的普遍應用成熟,使得大數據的產生有了今天的這樣一個可能。

回到演講。我今天要講的主題是什麼呢?再回到這個網路,大數據形成的本身,並不能保證他的大量的價值的實現,那麼要實現這個價值,又得回到這個網路。舉個比喻,中國現在汽車的發展這么迅速,很大的一個原因是在道路的開拓,有了很多的道路,這個汽車有地方可以車。但是如果道路的形成,道路的管理跟不上汽車的銷售以及使用的話,就出現了大量的道路擁擠,汽車的價值無法實現。那麼數據同樣的道理,在網路當中形成的數據,如果被很多種原因變成一個一個單獨的平台,單獨的一個應用的這樣一個環境的話,他的價值也遠遠無法實現。所以必須通過網路的想法來想這個大數據的價值以及他的運用。

大數據是一種洪水的現象,數據實際上已經遠遠超過我們從裡面得到的洞察,以後根據洞察我們所採取的行動這種能力。就像以前感覺到吃飯吃不夠,還想吃,但是今天這個是吃不了。這種現象是很多的程度上都存在於我們生活的體驗中,那麼現在到了數據,這是一種更極端的體驗。大家可以看到,文明的開始我們創造了這么多位元組,我們以前在國內在圖書館的時候我基本上都能看過,現在圖書館的書基本沒有辦法看全,所以這個現象已經到了極端。大數據還在不斷的增長,這裡面其中還牽涉到數據和數字不是完全等同的,數據可以在電腦裡面用數字來表達,但是他表達的這些數據的形式往往現在更多的是跟人的交換信息是比較一致的,比如說用文字、圖象、音樂。昨天我跟玫瑰爵士,玫瑰講到一個美,很多人看到玫瑰都認為是美的,但是用數據怎麼表達?如果對美能夠用數據表達出來,對音樂的欣賞能夠用數據表達出來,讓美不斷達到一種極限也是成為一種可能。所以這裡面就形成了很多數據已經成為半結構或者無結構的,但是這些結構遠遠不足以表達我們的大自然、市場、想像力的豐富。

第三個大數據成倍的增長,這種增長我們感到必須提高到我們每一個大企業管理層必須得到高度的重視,這個裡面很可能有一種企業有一種管理的方式,有一種工程的軟體的實現,會使得這個數據的資源的利用,遠遠超過我們現在產生大數據的這些大平台已經大公司。所以阿里我感到確實有遠見,把這個提高到這樣一個高度。

大數據形成了很多悖論,所謂的大,我們看到的數據之大,但是價值之小。這就像你有一隻船在大海里開,你看到很多水,但是一滴水都不能喝。現在大數據的情形就很類似,所以我們要能很快的能夠解決這個瓶頸口的問題。

這個大數據的提出呢,已經使得很多方面的專業人士、管理人士感到應用的可能,大家都在探索。其中一個探索很大的領域就是營銷。營銷以前都是我們說的廣播的方式,媒體的傳播是很廣的,當然媒體的使用只有少數人能夠使用,大家都在想怎麼能夠把我媒體的宣傳,以及營銷的個性化。但是這個個性化了以後你就做不到大,你覆蓋的范圍就小了,成本就提高了。但是現在有了數據有了媒體的技術的提高,使得在大規模的前提下,覆蓋面可以達到整個市場,但是還能保證你的個性化的發揮。所以呢,我們今天有很多媒體的朋友在,我引進了一個新詞,這是用一個大數據的形式用技術的手段來實現一個窄播,而不是廣播。那麼窄播現在用技術的力量可以比廣播更有效,而且達到的覆蓋面以及有效的回報更廣。

我做了一些想像,以前我們的數據不大,我們是怎麼生活的呢?我們是怎麼會有這樣一個阿里這么一個強勁的公司呢,我們為什麼會國家經濟發展了,現在在數據這么大了以後,這個情況是不是會更好呢?我就想這樣一些問題。

以前數據是小,所以由於數據小信號是不全,但是信號的使用信號的被發現,信號的價值還是比較充分的,這是相對來說。有了大數據以後,信號是成倍成倍的增大了,但是毫無疑問,信號的增大並不代表信號本身的發現是容易的,因為這個雜訊的增加,沒用信息的增加,遠遠超過信息的增加。這里也給大家看一下,在營銷的這個領域裡面,跟消費者互動的這個方面,大數據的一些起到的作用,以及他們對數據管理、數據的速度的反應這方面的一些要求。

在很多年以前,安客誠公司已經開始,先在美國然後在全球,開拓了很多的數據。這些數據就是單從數據方面來說,已經是達到相當大的規模,在美國我們管理一個消費者的資料庫,有2.4億個成人在這個資料庫裡面,總共人口是差不多4億,2.4億成人就是18歲以上都在我們資料庫裡面。這2.4億相當於是1.4億個家庭,這1.4億個家庭每個家庭的單位上我們有1700條信息,再加上4000個購買傾向性模型打分。那麼這些東西呢,在儲存、使用方面,當然是有很大的挑戰,但這已經有很多的技術被有效的使用來管理這么大的信息。這是我講到的位元組的數量,以及他們時間上的要求,今天的數據傳播和使用的一些時間上的反應速度。

第二個階段呢,就是到了把他數據再專門化,用到每個應用上去,這時候反應速度的要求是在幾分鍾以內,位元組相對來說比較小一些,因為他更窄了,針對某一個專業的應用,使得它能夠適合他的要求,比如說對某一個客戶的要求,某一個在媒體方面的使用,數據量不大,但是對時間反應速度的要求就提高了。再往上繼續保持這個趨勢,數據量減少,應用專門性提高,那麼對他反應的要求也進一步提高,在秒鍾這個級別。在往上消費者就是要跟大批的消費者,在媒體上互動,他在網頁上點擊一下,你下一個網頁不是同一個網頁,而是根據消費者行為的了解和個人的了解,下一個網頁是最有效最具有個性化的,那麼他的反應速度達到微秒級,那麼這個網頁往往不是在PC上,而是在手機上的,包括現在更進一步的是孩子們,他們對數據反應的要求是更高,所以達到微秒級。

那麼這些大數據的數量和他的速度呢,還不是一個真正大的問題,因為這一方面有了技術,有了企業這方面應用的思維,這已經不是一個最大的問題。

我今天想是超前一點,並不是說我們非得馬上今天就要連結,但是這個連結已經成為很大的問題,哪一個公司,哪一個企業能夠在這個方面跨第一步,得到的商業上的回報是會最大的,整個工業我們認為也在朝這個方向努力。用個比喻,我們大家都知道這個故事,盲人摸象,每個盲人摸到的反映都是不一樣的,有人認為是一個矛,有人認為是一條蛇,或者一棵樹等等。那麼大數據的使用已經不是盲人摸象了,很多人亮著眼睛看這個象了,但是這個象已經長大幾千倍了,但是即使用眼睛看,但是還是看不清楚,只能看到一個局部。所以這些問題主要的原因,我們還沒有充分的運用我們的技術,我們尤其是企業操作的一種游戲規則—來使得不同的數據能夠交流。因為人有這樣的能力,我們懂得的東西或者我們要懂得一個原理,遠遠超過我們的感官能夠達到,我們很多東西是看不到,聽到,聞不到,嘗不到的,但是我照樣因為我們的理解能力,通過數據的連結我們知道是怎麼回事,這個數據可以是一本書,可以是一部電影等等之類。通過這個數據的表達,使得我們知道遠遠超過我們的感官能夠達到這樣的境地。

但是要達到同樣的能力,在企業上來說就必須有大量的連結,首先是數據的連結,包括哪些方面呢?

第一個數據是很多位數,尤其是很多復雜的現象,我們現在講的復雜的現象就是消費者,消費者是怎麼做決定的,為什麼買這個東西,為什麼出這么多錢。在美國我們感到很新奇的,為什麼有很多人要在蘋果出來的第一天排隊八個小時,花400美元買一部,在半年以後只要100美元,不需要排隊。那麼在這種時候呢,如果你要掌握市場的脈搏,始終走在消費者前面,給他們提供最有效的信息以及產品的話,就需要連結,這個連結保證人文、行為、態度以及場景這方面數據的連結。然後我們看到了很多公司以及他們有技術平台,因為他們跟消費者每天都在接觸,所以他們的行為接觸往往超過了人文以及購買以外消費的信息。還有他們的商品很窄,我們美國安客誠所服務的有幾千家公司,我經常去一些大公司跟他們談,比如說花旗銀行,大的人壽保險公司,大的零售商等等。我看到一個現象很有意思,他們看每個消費者是很窄的,他們看到的是用自己的產品品牌去看一個消費者。等八小時之後他們自己是消費者的時候,他們把視野擴大了很多。所以這就是一個問題,如果我們回到消費者本身,而不是局限於消費者這一部分數據的了解,我們的商業行為也會更有效。

第二個這些客戶的生活方式和他們的興趣。每一個東西,每一個客戶的行為都有一定的道理,他有一定的背景,這種背景使得驅動他們對某一個產品感興趣。這一方面我等一會兒再舉一個例子。第三個是客戶競爭和合作的關聯。我們阿里巴巴有很多品牌,消費者去購買東西,或者跟他們媒體發生互動。那麼這些方面呢,如果了解的話,我們更能知道我們在消費者心目當中的地位,他們是怎麼使用我們的平台以及我們提供的服務,相對於其他一系列的他們的興趣和其他的品牌的影響。第四個就是媒體。媒體現在是越來越多,那麼這對消費者絕對有利的。出現什麼現象呢?由於這些媒體的使用,首先是實現了營銷者,公司對消費者能夠接觸、能夠宣傳他們的品牌以及產品,但第二部分是消費者可以使用媒體來更多的了解不同的公司不同的產品,他們價格、性能、體驗方面的區別。

第三個方面更多的消費者是跟消費者自己直接聯系,他們大家互相能夠談體驗、談對商品的反映,而且遠遠超過他們認識的人的這些團體的限制。所以使得很多媒體在消費這個階段上已經完全連結在一起,但是公司與公司的數據連結並沒有實現。最後一個就是社交的群體。社交的群體使得每一個個人不再是一個個人,但是我們的資料庫裡面,包括我們的分析的手段,分析的一些模型的這種結構,還是往往停留在這樣一個假設,這個假設就是每一個個人,他就是一個個人,他今天的購買和另外一個個人的購買,可以分開對待,可以不同的用數據來表達,現在我們還沒有發現一個公司把個人與個人的關系,以及個人與消費行為進行有效的聯系,所以就形成了盲人摸象的問題。

以上是小編為大家分享的關於大數據的商業價值實現關鍵在於連結的相關內容,更多信息可以關注環球青藤分享更多干貨

Ⅵ 怎麼才能用數據實現商業價值

何為數據,數據,簡單來說就是消息的記錄。而數據的價值又來自哪裡褲櫻呢?數據本身具有什麼意義呢?數據和信息是不可分離的,簡單來說,數據是信息的表達,信息是數據的內涵。也就是說,數據本身是沒有意義的,數據只有對實體行為產生影響時才成為信息。那麼到底是數據產生價值還是信息產生價值呢?我認為是信息。只有找到數據之中的信息,才能夠實現數據的價值。

而在當今互聯網時代,信息化高速發展的今天,有胡族叢一個詞漸漸進入了人們的視野,那就是——大數據,那麼數據的意義已經有了,大數據又是何物呢?通俗的來說,大數據又成為巨量資料,大數據越來越重要,對人們的生活影響越來越大。大數據雲計算已經深入到人們的生活當中。著名的天河二號超級計算機,還有後來的神威太湖之光雲計算系統都是我國頂尖的大數據分析系統。大數據具有以下五個特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值密度)、Veracity(真實性)。


網路最初最主要的功能就是個搜索,而他為什麼就能夠占據中國百分之八十的互聯網份額,搜索,在用戶眼裡看似簡單,只要輸入目標搜索詞再點個搜索鍵就可以,可是這裡面所涉及到的數據處理,是一件極為龐大的工程,包括數據的收集,篩選,處理,顯示等等的一切,而且數量如此之大的數據,他的處理過程更是難上加難。

數據實現商業價值,通俗來說就是用數據來轉錢,當然這是很容易的,因為一本書的價值不在於材料而在於內容,而一本書中的內容就是數據,或者是數據產生的信息。想要真正從大數據中實現商業價值,就必須加大對數據的分析力度,提穗雀高對數據的處理能力。從數據中得到有價值的東西。

Ⅶ 如何用大數據分析創造商業價值

大數據分析是研究大量且多樣的數據集(即大數據)的過程,從而揭示隱藏的模式,未知的相關性,市場趨勢,客戶偏好和其他有用信息,這些信息可幫助公司做出更明智的商業決策。通過專業的分析系統和軟體,大數據分析可以指明商業收益的方向,比如新的機遇,有效的營銷,更好的客戶服務,提高運營效率以及競爭優勢等等。
以下是通過大數據分析將大大受益的十大行業:
1. 銀行和證券
通過網路活動監控和自然語言處理程序,監控金融市場,從而減少欺詐性交易。交易委員會正在使用大數據分析監控股票市場,避免非法交易的發生。
2. 通訊和媒體
同時在多個平台(移動,網路和電視)上實時報道世界各地的事件。媒體的一部分,音樂行業使用大數據關注最新的趨勢,並通過自動調諧軟體創作出流行的曲調。
3. 體育
了解特定地區針對不同活動的收視率模式,並通過分析來監測個人球員和球隊的表現。像板球世界盃,FIFA世界盃和溫布爾頓國際網球錦標賽的體育賽事均有使用大數據分析。
4. 醫療保健
收集公共衛生數據,從而更快地應對個人健康問題,並掌握新病毒株(如埃博拉病毒)在全球傳播的狀態。不同國家衛生部門合並使用大數據分析工具,以便在人口普查後進行數據收集。
5. 教育
針對目前快速發展的各種領域,更新和升級相關文獻。世界各地的大學均使用大數據來檢測和追蹤學生和教師的情況,並通過不同科目的出席率分析學生的興趣喜好。
6. 製造業
通過大數據提高供應鏈管理,提高生產率。製造企業使用這些分析工具,確保以最佳方式分配生產資源,從而獲得最大效益。
7. 保險
通過預測分析處理各種業務,從開發新產品到應對索賠。保險公司使用大數據了解需求最大的政策計劃,並產生更多收益。
8. 消費者貿易
預測和管理人員編制以及庫存需求。消費者貿易公司通過會員制度,記錄會員情況從而發展貿易。
9. 交通運輸
制定更好的路線規劃,交通監控和物流管理。主要是政府為了避免交通堵塞而設立的。
10. 能源
通過智能電表減少電氣泄漏,並幫助用戶管理能源使用情況。負荷調度中心使用大數據分析來監測負荷模式,並根據不同的參數分析能源消耗趨勢之間的差異,並節約能源。

Ⅷ 大數據可以通過以下哪些方式為企業創造價值

knowlesys輿情認為:

大數據能夠幫助企業預測經濟形勢、把握市場態勢、了解消費需求、提高研發效率,不僅具有巨大的潛在商業價值,而且為企業提升競爭力提供了新思路。企業怎樣利用大數據提升競爭力?這里從企業決策、成本控制、服務體系、產品研發四個方面加以簡要討論。

企業決策大數據化。現代企業大都具備決策支持系統,以輔助決策。但現行的決策支持系統僅搜集部分重點數據,數據量小、數據面窄。企業決策大數據化的基礎是企業信息數字化,重點是數據的整理分析。首先,企業需要進行信息數字化採集系統的更新升級。按各決策層級的功能建立數據採集系統,以橫向、縱向、實時三維模式廣泛採集數據。其次,企業需要推進決策權力分散化、前端化、自動化。對多維度的數據進行提煉整合,在人為影響起主要作用的頂層,提高決策指標信息含量和科學性;在人為影響起次要作用的底層,推進決策指標量化,完善決策支持系統和決策機制。大數據決策機制讓數據說話,可以減少人為干擾因素,提高決策精準度。

成本控制大數據化。目前,很多企業在采購、物流、儲存、生產、銷售等環節引入了成本控制系統,但系統間融合度較低。企業可對現有成本控制系統進行改造升級,打造大數據綜合成本控制系統。其一,在成本控制的全過程採集數據,以求最大限度地描述事物,實現信息數字化、數據大量化。其二,推進成本控制標准、控制機理系統化。量化指標,實現成本控制自動化,減少人為因素干擾;細化指標,以獲取更精確的數據。其三,構建綜合成本控制系統,將成本控制所涉及的從原材料采購到產品生產、運輸、儲存、銷售等環節有機結合起來,形成一個綜合評價體系,為成本控制提供可靠依據。成本控制大數據化以預先控制為主、過程式控制制為中、產後控制為輔的方式,可以最大限度降低企業運營成本。

服務體系大數據化。品牌和服務是企業的核心競爭力,服務體系直接影響企業的生存發展。優化服務體系的重點是健全溝通機制、聯絡機制和反饋機制,利用大數據優化服務體系的關鍵是找到服務體系中存在的問題。首先,加強數據收集,對消費者反饋的信息進行分類分析,找到服務體系的問題,然後對症下葯,建立高效服務機制,提高服務效率。其次,將服務方案移到線上,打造自動化服務系統。快速分析、比對消費者服務需求信息,比對成功則自動進入服務程序,實現快速處理;比對失敗則轉入人工服務系統,對新服務需求進行研究處理,並快速將新服務機制添加至系統,優化服務系統。服務體系大數據化,可以實現服務體系的高度自動化,最大程度提高服務質量和效率。

產品研發大數據化。產品研發存在較高風險。大數據能精確分析客戶需求,降低風險,提高研發成功率。產品研發的主要環節是消費需求分析,產品研發大數據化的關鍵環節是數據收集、分類整理和分析利用。企業官網的消費者反饋系統、貼吧、論壇、新聞評價體系等是消費者需求信息的主要來源,應注重從中收集數據。同時,可與論壇、貼吧、新聞評價體系合作構建消費者綜合服務系統,完善消費者信息反饋機制,實現信息收集大量化、全面化、自動化,為產品研發提供信息源。然後,對收集的非結構化數據進行分類整理,以達到精確分析消費需求、縮短產品研發周期、提高研發效率的目的。產品研發大數據化,可以精準分析消費者需求,提高產品研發質量和效率,使企業在競爭中占據優勢。

閱讀全文

與數據時代企業如何實現商業價值相關的資料

熱點內容
c盤不能新建文件夾win10 瀏覽:384
angularjs左側菜單 瀏覽:180
tp引用js 瀏覽:463
怎麼用公式比對兩列數據 瀏覽:283
交保險的app有哪些 瀏覽:559
2017年蘋果5s可以買嘛 瀏覽:153
加密文件在什麼地方找不到了 瀏覽:676
網卡驅動文件夾 瀏覽:444
iphone6qq關聯賬號顯示台機 瀏覽:709
java文件名亂碼 瀏覽:553
什麼是網橋編程固件 瀏覽:732
jquery實現網站向導提示操作插件 瀏覽:257
java小游戲實例 瀏覽:775
電腦系統能升級64 瀏覽:591
數據如何導入進sql 瀏覽:324
iosqq怎麼發文件夾 瀏覽:285
編程出社會後能做什麼工作 瀏覽:73
為什麼說數據層是里子呢 瀏覽:171
eset官方卸載工具 瀏覽:803
手機百度我在哪個文件夾 瀏覽:646

友情鏈接