㈠ 影響資料庫性能的主要因素有哪些
以MySQL為例:
1、sql查詢速度
2、網卡流量
3、伺服器硬體
4、磁碟IO
以上因素並不是時時刻刻都會影響資料庫性能,而就像木桶效應一樣。如果其中一個因素嚴重影響性能,那麼整個資料庫性能就會嚴重受阻。另外,這些影響因素都是相對的。
例如:當數據量並沒有達到百萬千萬這樣的級別,那麼sql查詢速度也許就不是個重要因素,換句話說,你的sql語句效率適當低下可能並不影響整個效率多少,反之,這種情況,無論如何怎麼優化sql語句,可能都沒有太明顯的效果。
1、SQL查詢速度
風險:效率低下的SQL
2、網卡流量
風險:網卡IO被占滿(100Mb/8=100MB)
方案:
①減少從伺服器的數量。從伺服器都要從主伺服器上復制日誌,所以,從伺服器越多,網路流量越大。
②進行分級緩存。前方大量緩存突然失效會對資料庫造成嚴重的沖擊。
③避免使用「select * 」進行查詢
④分離業務網路和伺服器網路
3、磁碟IO
風險:磁碟IO性能突然下降。
方案:使用更好的磁碟設備解決。
㈡ mysql 中數據量大時超30萬,加上order by 速度就變慢很多,一般需要0.8秒左右,不加只需要0.01幾秒
那肯定的
ORDERY BY是要對某個欄位進行排序的,有人喜歡加索引解決,但是若是對於一個頻繁有寫操作的表來說,一個索引還好說,要是有多個索引,數據表的大小增加會相當驚人
另上,建議使用InnoDB引摯,有人說這樣速度會快很多
對於大數據級的資料庫來說,最關鍵的一步還是要優化好你的SQL,還有就是使用非常規的作法,供參考
1,以犧牲空間換取速度,就是說看能不能進行一些適當的緩存
2,以犧牲速度換取空間,這對於小空間容量的主機可以採用
㈢ mysql數據量上十萬條後,查詢慢導致伺服器卡有什麼解決辦法
幾方面:
硬體,軟體,以及語言
硬體,是不是抗不住,
軟體,mysql是不是沒有設置好,資料庫設計方面等,
語言,語句寫法。
下面是一些優化技巧。
1.對查詢進行優化,應盡量避免全表掃描,首先應考慮在 where 及 order by 涉及的列上建立索引。
2.應盡量避免在 where 子句中對欄位進行 null 值判斷,否則將導致引擎放棄使用索引而進行全表掃描,如:select id from t where num is null可以在num上設置默認值0,確保表中num列沒有null值,然後這樣查詢:select id from t where num=0
3.應盡量避免在 where 子句中使用!=或<>操作符,否則引擎將放棄使用索引而進行全表掃描。
4.應盡量避免在 where 子句中使用or 來連接條件,否則將導致引擎放棄使用索引而進行全表掃描,如:select id from t where num=10 or num=20可以這樣查詢:select id from t where num=10 union all select id from t where num=20
5.in 和 not in 也要慎用,否則會導致全表掃描,如:select id from t where num in(1,2,3) 對於連續的數值,能用 between 就不要用 in 了:select id from t where num between 1 and 3
6.下面的查詢也將導致全表掃描:select id from t where name like '李%'若要提高效率,可以考慮全文檢索。
7.
如果在 where
子句中使用參數,也會導致全表掃描。因為SQL只有在運行時才會解析局部變數,但優化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然
而,如果在編譯時建立訪問計劃,變數的值還是未知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:select id from t where num=@num可以改為強制查詢使用索引:select id from t with(index(索引名)) where num=@num
8.應盡量避免在 where 子句中對欄位進行表達式操作,這將導致引擎放棄使用索引而進行全表掃描。如:select id from t where num/2=100應改為:select id from t where num=100*2
9.應盡量避免在where子句中對欄位進行函數操作,這將導致引擎放棄使用索引而進行全表掃描。如:select id from t where substring(name,1,3)='abc' ,name以abc開頭的id
應改為:
select id from t where name like 'abc%'
10.不要在 where 子句中的「=」左邊進行函數、算術運算或其他表達式運算,否則系統將可能無法正確使用索引。
11.在使用索引欄位作為條件時,如果該索引是復合索引,那麼必須使用到該索引中的第一個欄位作為條件時才能保證系統使用該索引,否則該索引將不會被使用,並且應盡可能的讓欄位順序與索引順序相一致。
12.不要寫一些沒有意義的查詢,如需要生成一個空表結構:select col1,col2 into #t from t where 1=0
這類代碼不會返回任何結果集,但是會消耗系統資源的,應改成這樣:
create table #t(...)
13.很多時候用 exists 代替 in 是一個好的選擇:select num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
14.並不是所有索引對查詢都有效,SQL是根據表中數據來進行查詢優化的,當索引列有大量數據重復時,SQL查詢可能不會去利用索引,如一表中有欄位sex,male、female幾乎各一半,那麼即使在sex上建了索引也對查詢效率起不了作用。
15.
索引並不是越多越好,索引固然可 以提高相應的 select 的效率,但同時也降低了 insert 及 update 的效率,因為 insert
或 update
時有可能會重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個表的索引數最好不要超過6個,若太多則應考慮一些不常使用到的列上建的索引是否有
必要。
16.
應盡可能的避免更新 clustered 索引數據列,因為 clustered
索引數據列的順序就是表記錄的物理存儲順序,一旦該列值改變將導致整個表記錄的順序的調整,會耗費相當大的資源。若應用系統需要頻繁更新
clustered 索引數據列,那麼需要考慮是否應將該索引建為 clustered 索引。
17.盡量使用數字型欄位,若只含數值信息的欄位盡量不要設計為字元型,這會降低查詢和連接的性能,並會增加存儲開銷。這是因為引擎在處理查詢和連接時會逐個比較字元串中每一個字元,而對於數字型而言只需要比較一次就夠了。
18.盡可能的使用 varchar/nvarchar 代替 char/nchar ,因為首先變長欄位存儲空間小,可以節省存儲空間,其次對於查詢來說,在一個相對較小的欄位內搜索效率顯然要高些。
19.任何地方都不要使用 select * from t ,用具體的欄位列表代替「*」,不要返回用不到的任何欄位。
20.盡量使用表變數來代替臨時表。如果表變數包含大量數據,請注意索引非常有限(只有主鍵索引)。
21.避免頻繁創建和刪除臨時表,以減少系統表資源的消耗。
22.臨時表並不是不可使用,適當地使用它們可以使某些常式更有效,例如,當需要重復引用大型表或常用表中的某個數據集時。但是,對於一次性事件,最好使用導出表。
23.在新建臨時表時,如果一次性插入數據量很大,那麼可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數據量不大,為了緩和系統表的資源,應先create table,然後insert。
24.如果使用到了臨時表,在存儲過程的最後務必將所有的臨時表顯式刪除,先 truncate table ,然後 drop table ,這樣可以避免系統表的較長時間鎖定。
25.盡量避免使用游標,因為游標的效率較差,如果游標操作的數據超過1萬行,那麼就應該考慮改寫。
26.使用基於游標的方法或臨時表方法之前,應先尋找基於集的解決方案來解決問題,基於集的方法通常更有效。
27.
與臨時表一樣,游標並不是不可使 用。對小型數據集使用 FAST_FORWARD
游標通常要優於其他逐行處理方法,尤其是在必須引用幾個表才能獲得所需的數據時。在結果集中包括「合計」的常式通常要比使用游標執行的速度快。如果開發時
間允許,基於游標的方法和基於集的方法都可以嘗試一下,看哪一種方法的效果更好。
28.在所有的存儲過程和觸發器的開始處設置 SET NOCOUNT ON ,在結束時設置 SET NOCOUNT OFF 。無需在執行存儲過程和觸發器的每個語句後向客戶端發送DONE_IN_PROC 消息。
29.盡量避免大事務操作,提高系統並發能力。
30.盡量避免向客戶端返回大數據量,若數據量過大,應該考慮相應需求是否合理。
㈣ mysql大數據量,行數多少與數據容量,哪個直接影響查詢速度
首先mysql作為傳統關系型資料庫,並不適合大數據量的查詢,一般來說,如果數據行數達到千萬價格,查詢的速度會有明顯的下降。
影響查詢速度的原因可以有很多,比如是否在常用欄位上建立了索引,還有是否支持並發等等。