導航:首頁 > 數據分析 > 面試數據分析崗位要哪些問題

面試數據分析崗位要哪些問題

發布時間:2023-06-04 20:49:29

⑴ 常見大數據公司面試問題有哪些

1、您對“大數據”一詞有什麼了解?


答: 大數據是與復雜和大型數據集相關的術語。關系資料庫無法處理大數據,這就是為什麼使用特殊的工具和方法對大量數據執行操作的原因。大數據使公司能夠更好地了解其業務,並幫助他們從定期收集的非結構化和原始數據中獲取有意義的信息。大數據還使公司能夠根據數據做出更好的業務決策。


2、告訴我們大數據和Hadoop之間的關系。


答: 大數據和Hadoop幾乎是同義詞。隨著大數據的興起,專門用於大數據操作的Hadoop框架也開始流行。專業人士可以使用該框架來分析大數據並幫助企業做出決策。


注意: 在大數據采訪中通常會問這個問題。 可以進一步去回答這個問題,並試圖解釋的Hadoop的主要組成部分。


3、大數據分析如何有助於增加業務收入?


答:大數據分析對於企業來說已經變得非常重要。它可以幫助企業與眾不同,並增加收入。通過預測分析,大數據分析為企業提供了定製的建議。此外,大數據分析使企業能夠根據客戶的需求和偏好推出新產品。這些因素使企業獲得更多收入,因此公司正在使用大數據分析。通過實施大數據分析,公司的收入可能會大幅增長5-20%。一些使用大數據分析來增加收入的受歡迎的公司是-沃爾瑪,LinkedIn,Facebook,Twitter,美國銀行等。

⑵ 在面試數據分析師這個職位的時候,一般會被問到哪些

首先,得看你是從事什麼數據分析。
比如你是一名淘寶電商數據分析師,一般會問到,同行競爭如何,同行是怎麼達到那樣的銷售額的,為什麼人家店鋪排在前幾。商品能達到TOP前十,為什麼沒有點擊率,沒有轉換,沒有下單量,是主圖設計不夠吸引,還是詳情頁不夠詳細,又或者說是客服服務不夠好等。
不夠全面的解釋,希望對你有幫助

⑶ 大數據分析面試問什麼

  1. 基本工具

包括規定動作和自選動作兩類。

1.1 規定動作

SQL查詢: ON、DISTINCT、GROUP BY、ORDER BY等等。從資料庫中提取數據是數據分析的第一步。

1.2 自選動作

根據簡歷來問,簡歷上寫什麼就問什麼,會問得比較深入。簡歷作為敲門磚,撰寫也是非常重要的,切不可寫的過於誇張和造假,奉勸各位不要作死,畢竟不作死都有可能會死。Python、Stata、R、SPSS、SAS、EViews都算比較常見的數據分析工具。

2.邏輯思維

主要分為兩方面,對業務邏輯的理解能力和行文的邏輯水平。

2.1業務邏輯

雖然一個業務看似流程簡單清晰,但產生數據的復雜程度往往超過大多數人的想像。對業務邏輯的考察主要通過相關項目經歷。

2.2行文邏輯

畢竟最終產出是一份份報告,可能是HTML郵件也能是PDF。

3.理論儲備

也分為規定動作和可選動作。

3.1 規定動作

主要是基礎的統計學理論,如方差、協方差、算數平均數、幾何平均數、中位數、眾數、分位值、雙峰數據、長尾數據、假設檢驗、期望迭代法則、貝葉斯原理等。

3.2 自選動作

根據簡歷來問,簡歷上寫什麼hr一定會問什麼。

4.對細節的敏感度

作為數據分析師,每天要關注大量數據指標。對細節的敏感度是非常必要的。這主要分為兩方面,對統計口徑的敏感度和對數據的敏感度。

4.1 統計口徑

統計口徑一致是確保數據可比性的基礎,這非常考驗數據分析師的敏感度和行業經驗。

4.2 數據

面試者對數據異常波動、離群值、平均數沒有代表意義等情況的迅速識別能力。比如已知然壽司套餐單價1,500,酒水單價300,平均客單價2,500,能不能馬上想到這可能是雙峰數據或者長尾數據,抑或既雙峰又長尾的數據?

5.學習能力

互聯網行業瞬息萬變,光數據的存儲就有Oracle、MySQL、Hadoop、Spark、Hive、Impala、谷哥哥三駕馬車等一大堆奇奇怪怪的東西。互聯網行業的從業者經常要面對新需求、新工具、新方法。能否迅速掌握新知識,解決新問題面試者必須證明給hr看。主要考察的方式是了解過往項目經歷,或者出作業題(比如Sci-Hub)。

6.排版和簡單UI設計

數據分析報告必須簡潔、清晰、重點突出。主要考察方式是出作業題讓面試者限時交一份slides(就是PPT啦)出來。

7.價值觀

主要看工作熱情、態度、道德水平等等,這方面的問題比較隨機。

⑷ 數據分析師面試經驗

數據分析師面試經驗

經常被問到一個問題,數據分析師或者數據挖掘工程師面試都問什麼問題啊?特別是以下幾類人群:

1、想轉行做數據分析工作的朋友。

2、之前在比較小的公司做數據分析師,去大公司面試。

3、在校大學生。

在回答這些問題之前,先談我的一個面試經歷,記得之前我在一家小公司做數據分析師的時候,有朋友推薦我去一家大公司去面試數據分析師。當時我也在想,在面試大公司的數據分析師一定會問:

1、你做過哪些模型?

2、用什麼工具做的啊?

3、你會或者知道哪些演算法啊?

4、數據量有多大?

.......

但是當我去溝通下來的時候,問關於數據挖掘模型演算法原理、使用什麼工具的東西不多。更多是問一些關於項目背景、怎麼思考這些項目、如何使用這些模型結果、怎麼推動業務方去使用數據結果。【坦白說當時覺得不可思議,怎麼問這些問題呢?】

所以大家在面試數據分析崗位的時候,基礎知識是必須的。但是更多要關注數據實現數據價值,特別是從事一段時間數據分析同學,但如果僅僅是剛准備從事數據分析同學,基礎的專業知識與技能肯定是面試必問的話題。如果這家公司希望未來培養或者招的真的做數據分析的,那就會像我面試碰到的,一定也會很關注面試之外的問題。

回到具體面試的問題,PS:這里我僅僅談談我的幾點看法和我面試中會問到的幾個問題,以及我為什麼會為這些問題。

一、了解你面試崗位的工作性質

1、你對於你面試崗位價值的理解。

2、你覺得這個崗位大概的工作內容。

3、對於公司的理解。

二、溝通表達/邏輯思維

1、說一下你過往做的一些項目/說說你以前的工作經歷。

2、你之前做過的一些專業分析。

3、你之前做過的模型。

4、之前是如何與業務方打交道的。

三、對於數據與商業的理解

1、如何理解數據敏感性?

2、你覺得數據怎麼體現其商業價值?能否舉個例子。

四、專業技能

1、基礎的統計學知識。

2、數據挖掘基本的演算法。

3、怎麼評估模型好壞。

4、使用的工具。

5、數據挖掘流程。

6、怎麼清洗變數【例如:指標定義、缺失值處理】。

7、怎麼解決建模中會碰到一些技術問題【例如:共線性、不同模型針對的.數據類型】。

五、學習能力

1、是怎麼學習專業知識。

2、怎麼學習業務知識。

六、職業發展

1、未來3年的職業規劃。

2、要實現這些規劃計劃是怎麼樣。

我把面試過程可以會問幾類問題,不同的面試官可以側重點不一樣。我想和所有面試數據分析師的朋友說的:

1、面試過程中大家是平等的。不要太弱勢也不要太強勢。

2、把你之前的工作有條理的表達出來。

3、面試一些問題的時候,可以想一想。我個人覺得,並不是所有的問題必須別人一問完,立即回答。

4、把面試當作一種學習與經歷。關鍵是從一些面試中你能發現自己不足。

另外一些小tips:

1、面試之前了解這個崗位。了解一下這個公司。花點時間在面試公司和崗位,了解了解人家公司是干什麼,如果你對這家公司特別感興趣,去網站上看看,去體驗體驗人家公司的產品和服務。會讓面試的人感覺到尊重。當然太貴就算了。

2、如果有認識的人或者通過一些渠道先了解一下你面試的公司,部門情況到底是怎麼樣的。到底要招什麼樣的人。

3、很多企業的招聘與實際需要的人之間有很大的出入。

4、投遞簡歷前:花點時間在簡歷上:要看到一份沒有錯別字且能把之前工作寫清楚在一張紙上真的很少。

5、機會是留給有準備的人。你准備好了嗎?每次面試結束看,看看自己的不足,然後一定立即去學起來。


;

⑸ 數據分析師面試常見問題有哪些

1、如何理解過擬合?


過擬合和欠擬合一樣,都是數據挖掘的基本概念。過擬合指的就是數據訓練得太好,在實際的測試環境中可能會產生錯誤,所以適當的剪枝對數據挖掘演算法來說也是很重要的。


欠擬合則是指機器學習得不充分,數據樣本太少,不足以讓機器形成自我認知。


2、為什麼說樸素貝葉斯是“樸素”的?


樸素貝葉斯是一種簡單但極為強大的預測建模演算法。之所以稱為樸素貝葉斯,是因為它假設每個輸入變數是獨立的。這是一個強硬的假設,實際情況並不一定,但是這項技術對於絕大部分的復雜問題仍然非常有效。


3、SVM 最重要的思想是什麼?


SVM 計算的過程就是幫我們找到超平面的過程,它有個核心的概念叫:分類間隔。SVM 的目標就是找出所有分類間隔中最大的那個值對應的超平面。在數學上,這是一個凸優化問題。同樣我們根據數據是否線性可分,把 SVM 分成硬間隔 SVM、軟間隔 SVM 和非線性 SVM。


4、K-Means 和 KNN 演算法的區別是什麼?


首先,這兩個演算法解決的是數據挖掘中的兩類問題。K-Means 是聚類演算法,KNN 是分類演算法。其次,這兩個演算法分別是兩種不同的學習方式。K-Means 是非監督學習,也就是不需要事先給出分類標簽,而 KNN 是有監督學習,需要我們給出訓練數據的分類標識。最後,K 值的含義不同。K-Means 中的 K 值代表 K 類。KNN 中的 K 值代表 K 個最接近的鄰居。

⑹ 小公司cto面試數據分析師會問什麼

1、個人情況、對崗位的認知、項目經歷陳述在內的一些常規問題。
2、小公司cto還會考察你的分析工具水平、學習能力等,比如詢問你在平時工作中是否什麼學習或提升,以及你對面試數據分析師的認知等。

⑺ 如何准備數據分析師面試

1. 理論知識(概率統計、概率分析等)


掌握與數據分析相關的演算法是演算法工程師必備的能力,如果你面試的是和演算法相關的工作,那麼面試官一定會問你和演算法相關的問題。比如常用的數據挖掘演算法都有哪些,EM 演算法和 K-Means 演算法的區別和相同之處有哪些等。


有些分析師的工作還需要有一定的數學基礎,比如概率論與數理統計,最優化原理等。這些知識在演算法優化中會用到。


除此以外,一些數據工程師的工作更偏向於前期的數據預處理,比如 ETL 工程師。這個職位考察你對數據清洗、數據集成的能力。雖然它們不是數據分析的“煉金”環節,卻在數據分析過程中佔了 80% 的時間。


2. 具體工具(sklearn、Python、Numpy、Pandas 等)


工程師一定需要掌握工具,你通常可以從 JD 中了解一家公司採用的工具有哪些。如果你做的是和演算法相關的工作,最好還是掌握一門語言,Python 語言最適合不過,還需要對 Python 的工具,比如 Numpy、Pandas、sklearn 有一定的了解。


數據 ETL 工程師還需要掌握 ETL 工具,比如 Kettle。


如果是數據可視化工作,需要掌握數據可視化工具,比如 Python 可視化,Tableau 等。


如果工作和數據採集相關,你也需要掌握數據採集工具,比如 Python 爬蟲、八爪魚。


3. 業務能力(數據思維)


數據分析的本質是要對業務有幫助。因此數據分析有一個很重要的知識點就是用戶畫像。


用戶畫像是企業業務中用到比較多的場景,對於數據分析來說,就是對數據進行標簽化,實際上這是一種抽象能力。


關於如何准備數據分析師面試,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

⑻ 怎麼面試大數據分析師

1、考察對數據的敏感度。
面試的時候,數據部門經理問一些生活中的數據的問題,一個優秀的數據分析師對數據有很強的敏感度,生活中常見的數據,你直觀的感受往往能反應出你的資質。
2、數學基本概念和統計學方法。
遇到的有排列組合的問題的,還有指數衰減的定義等等。或者直接給一個問題或者數據,問問你打算用什麼樣的方法怎樣去分析。在給你數據的時候,一定要記得說數據預處理!這一點非常重要,這樣會讓人覺得你的回答邏輯清楚,有條有理。如果想從事與數據科學相關的崗位,需要學習的數據知識可以參考成都加米穀大數據培訓機構的:想從事數據科學相關崗位,這些數學基礎「必備」。
3、編程能力。
你一定要有自己熟練的軟體,常問的問題是,你一般用excel干什麼,常用的函數有哪些?你是否用過數據透視表?是夠用過宏?你平時多久用一次R?你是否用過或了解過並行?等等關於軟體的問題。在面試小公司時,HR會可能直接給你一個數據進行數據分析,題目一般給的都不太難。

閱讀全文

與面試數據分析崗位要哪些問題相關的資料

熱點內容
列表文件存儲路徑 瀏覽:540
qq游戲大廳自動出語音 瀏覽:598
編程只是興趣怎麼辦 瀏覽:223
榮耀6plus電信版本 瀏覽:584
能打開word文件但桌面上找不到 瀏覽:366
2020十大網路紅歌有哪些 瀏覽:843
手機系統空間文件夾在哪裡設置快捷鍵 瀏覽:309
通信網路中的b8什麼意思 瀏覽:715
桌面文件標題 瀏覽:228
優淘集市有什麼app 瀏覽:747
找不到收藏文件 瀏覽:711
戰狼2在什麼網站 瀏覽:785
vb修改word 瀏覽:650
c盤分頁文件 瀏覽:277
ipad如何互相傳輸數據 瀏覽:567
我的世界如何用積木編程大師復制方塊 瀏覽:638
進網站請求路徑未找到是怎麼回事 瀏覽:807
spss21教程 瀏覽:655
css商業網站布局之道pdf 瀏覽:892
c盤不能新建文件夾win10 瀏覽:384

友情鏈接