A. 數據分析時有哪些注意事項
1.不能粗略計算
現在階段看來,大數據分析是基於相應的大數據分析工具,可以進行專業的數據分析,如果是進行粗略計算,也就不會得到預期的結果。
2.不注意數據的准確性
根據一些相關的大數據文章,說明我們不需要太在意數據的准確性,或者說數據不準確,最後形成報告可以改的心理。大數據分析的基本要求是精確性和准確性。
3.數據越多越好
如果沒有足夠的數據,就越好。如果數據不是分析維度所需要的數據,則會增加分析的難度和准確性。
4.合理的安排時間
數據分析也要合理安排時間,一般我們有幾個步驟,收集數據→整理數據→分析數據→美化表格,在做這些之前,我們要預估一下每一個步驟需要花多少時間,哪一步比較重要,需要花更多的時間等,這些都要在開始收集數據前就計劃好,然後在操作的過程中在規定的時間里完成每一個步驟。
5.明確分析數據的目的
當我們要分析一份數據時,首先要確定好自己的目的,為什麼要收集和分析這樣一份數據,而只有明確了目的之後,這樣才能夠了解自己接下來要收集哪些數據,應該怎麼收集數據,應該分析哪些數據等。
數據分析是什麼
數據分析是指用適當的統計分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析是為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。數據分析的數學基礎在20世紀早期就已確立,但直到計算機的出現才使得實際操作成為可能,並使得數據分析得以推廣。數據分析是數學與計算機科學相結合的產物。
B. POS數據收集及分析要注意哪些
數據分析是現在市場上比較熱門的職業,在全球化大數據趨勢帶動下,數據分析也在各個行業中有所應用。企業利用數據分析,對企業的發展進行大數據分析,這樣有利於企業下一步做出更好的決策,數據分析人員在數據分析的過程中需要注重細節,這樣才能進行准確分析。那麼,數據分析需要注意哪些細節呢?今天就跟隨小編一起來了解下吧!
1、對收集的數據渠道不在意
如果從一開端收集的原始信息不懂得挑選,那麼接下來做的剖析也算是白做了,信息眾多構成巨大的資料庫,但卻沒有任何特定的優點或有用的含義。
2、忽略數據的質量
應該保證數據應該有的質量,需要整合很多數據,要確保一致性和統一性。
3、隱私和法則問題
企業應該建立正確的數據管理制度,讓客戶放心他們的信息不會被走漏。而且他們的信息還會被有價值的利用。
4、短少專門的商業智能團隊
在有效地收集數據之後,以為很難從數據中取得價值和洞察力,主要是因為他們沒有投入滿足的資源來建立專門的BI組來協助他們收集、剖析和同享數據。
以上就是數據分析需要注意哪些細節的全部內容,今天暫時先和您分享到這里了。數據分析是現在企業工作的重要組成部分,企業的數據分析人員根據實際情況做出分析結果。
C. 數據分析有哪些注意事項
1. 不注意數據的准確性
也有一些相關的大數據文章,說明我們不需要太在意數據的准確性,或者說數據不準確,最後形成報告可以改的心理。大數據分析的基本要求是精確性和准確性。
2. 不能粗略計算
現階段,大數據分析是基於相應的大數據分析工具,可以進行專業的數據分析,不能粗略計算,也不會得到預期的結果。
3. 數據越多越好
如果沒有足夠的數據,就越好。如果數據不是分析維度所需要的數據,則會增加分析的難度和准確性。
關於數據分析有哪些注意事項,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
D. 有哪些常見的數據分析錯誤
1、常見的數據分析錯誤——混淆相關性和因果關系
為每個數據科學家、相關性和因果錯誤事件,將導致成本,最好的例子是《魔鬼經濟學》的分析相關因果關系錯誤導致伊利諾斯州學生的書,因為根據分析的書籍在學校學生可以直接接受更高的測試。進一步的分析表明,家裡有幾本書的學生在學業上表現更好,即使他們從來沒有讀過這些書。
這改變了父母經常買書的家庭可以創造一個愉快的學習環境的假設和看法。
大多數數據科學家在處理大數據時都假設相關性直接影響因果關系。使用大數據來理解兩個變數之間的相關性通常是個好主意,但一直使用“因果”類比可能導致錯誤的預測和無效的決策。為了更好地利用大數據,數據科學家必須理解關系和根源之間的區別。相關性通常是指同時觀察X和Y的變化,而cause ation則是指X引起Y。在數據科學中,這是兩件非常不同的事情,但是很多數據科學家往往忽略了這一差異。基於相關性的決策可能足以採取行動,我們不需要知道為什麼,但這完全取決於數據的類型和要解決的問題。
每個數據科學家都必須明白,在數據科學中,相關性不是因果關系。如果兩種關系相互關聯,並不意味著一種關系會導致另一種關系。
2、常見的數據分析錯誤——沒有選擇正確的視覺工具
大多數數據科學家專注於分析的技術層面。他們無法通過使用允許他們更快地理解數據的不同可視化技術來理解數據。如果數據科學家不能選擇正確的視覺發展模型來監控探索性數據分析和性能結果,即使是最好的機器學習模型的價值也會被稀釋。事實上,許多數據科學家選擇圖表類型是基於他們的審美偏好,而不是數據集的特徵。這可以通過定義視覺目標來避免。
即使數據科學家開發出了最好、最好的機器學習模型,它也不會喊出“Eureka”——它所需要的只是有效地將結果可視化,理解數據模式的差異,並意識到它的存在可以應用於商業結果。俗話說:“一圖勝千言。”數據科學家不僅需要熟悉他們常用的數據可視化工具,還需要了解數據可視化是如何工作的,並以引人注目的方式獲得結果。
解決任何數據科學問題的一個關鍵步驟是深入理解數據是關於什麼的,並通過豐富的可視化表示,從而形成相應的分析和建模的基礎。
3、常見的數據分析錯誤——未能選擇適當的模型驗證周期
科學家們認為,建立一個成功的機器學習模型是最成功的。但這只是成功的一半。它必須確保模型的預測有效。許多數據科學家往往忘記或忽略了他們的數據必須在特定的時間間隔反復驗證這一事實。數據科學家經常犯的一個常見錯誤是假設預測模型是理想的,如果它們符合觀測數據。當模型之間的關系發生變化時,所建立模型的預測效果會瞬間消失。為了避免這種情況,數據科學家的最佳解決方案是用新數據每小時評估數據模型,或者評估基於模型的關系逐日逐月變化的速度。
由於各種因素的影響,模型的預測能力往往會減弱,因此數據科學家需要確定一個常數,以確保模型的預測能力不會低於可接受的水平。在某些情況下,數據科學家可以重構數據模型。最好是建立多個模型和解釋變數的分布,而不是考慮單一的模型。
為了保持所建立模型的預測效果和有效性,選擇一個迭代周期很重要,否則可能會導致不正確的結果。
常見的數據分析錯誤有哪些?作為數據分析師別說你沒犯過,數據分析師有一個寶庫。作為滴滴出行數據分析團隊的負責人,劉發現了數據分析師制勝的秘訣:遠見。數據分析提供了一種可能性,你能處理好嗎?如果您還擔心自己入門不順利,可以點擊本文其他文章進行學習。
E. 大數據分析要注意哪些問題
1、從過時的事務戰略開端
世界瞬息萬變,沒有發展到適用於第四次工業革命的商業戰略就不會具有吸引力。您的數據戰略應支撐適用於當今世界的事務體系。在過時的事務戰略方面,投入精力和資產來搜集和分析數據似乎很糟糕。您不只不能抵達應該抵達的當地,而且會浪費時刻和資源來實現方針。
2、隨意搜集數據
從一開端,可能很誘人直接反彈並搜集整個點上的數據,而沒有恰當的思路來了解這將如何協助您的事務。原始信息一般對大多數事務用戶而言什麼也沒說,而很多信息泛濫而樹立巨大的資料庫則沒有任何特定的優點或有用的意圖,除非佔用您的時刻和資產。
3、投資回報率有限
為了有效地處理客戶數據的重要事務資源,安排需求技術來簡化數據搜集,隨著信息量的動搖而主動擴展並為包含人工智慧在內的中心事務提供支撐,一起還要考慮到自界說。安排犯下的一個典型過錯是,從這些進步中尋求短期的投資回報,而不是專心於其為企業帶來的長期價值和優勢。
4、忽略數據質量
下一個最重要的視點是確保您擁有出色的數據。您可能有很多來自正確來歷並契合您方針的數據;在任何情況下,這都不會破壞對數據的准確性和可猜測性的要求。巨大的安排實際上僅僅招聘人員來整理很多數據,以確保一致性和統一性。
5、隱私和法令問題
在任何數據項意圖開端,都應樹立恰當的數據管理。應界說對道德運用數據以及數據運用的法令和隱私問題的考慮。客戶的信任至關重要。客戶應該堅信您將安全地使用他們的信息,而且他們會從答應您使用他們的信息中取得實在的價值。
6、缺少專門的商業智能團隊
在有效地搜集數據之後,許多安排以為很難從數據中取得價值和洞察力,主要是因為他們沒有投入滿足的資源來樹立專門的BI組來協助他們搜集、分析和共享數據,以及推動進步的方法。
關於大數據分析要注意哪些問題,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
F. 大數據失敗案例提醒 8個不能犯的錯誤
大數據失敗案例提醒:8個不能犯的錯誤
近年來,大數據旋風以「迅雷不及掩耳之勢」席捲全球,不僅是信息領域,經濟、政治、社會等諸多領域都「磨刀霍霍」向大數據,准備在其中逐得一席之地。然而,很多公司在邁入大數據領域後遭遇「滑鐵盧」。在此,本文盤點了一系列大數據失敗項目,深究其原因,具有警示意義。
對數據過於相信2008年,Google第一次開始預測流感就取得了很好的效果,比美國疾病預防控制中心提前兩禮拜預測到了流感的爆發。但是,幾年之後,Google的預測比實際情況(由防控中心根據全美就診數據推算得出)高出了50%。媒體過於渲染了Google的成功,出於好奇目的而搜索相關關鍵詞的人越來越多,從而導致了數據的扭曲。低估大數據復雜程度在美國有幾個互聯網金融公司專做中小企業貸款。但是中小企業貸款涉及的數據更復雜,而且中小企業涉及到整個行業非常特殊的一些數據,比如非標準的財務報表和不同行業、不同範式的合同,他們沒有很專業的知識,是很難理解或者很難有時間把它准確挖掘出來。當時大數據團隊想用一個很完美的模型把所有的問題都解決掉,比如把市場和信貸的解決方案全部用一個模型來解決,但因為數據的復雜程度,最後證明這種方法是失敗的,而且90%的時間都在做數據清理。這就說明,想通過大數據技術一下子解決所有的問題是很難成功的,而是要用抽絲剝繭、循序漸進的方式。管理層的惰性某家旅遊公司系統通過web日誌數據的挖掘來提升客戶洞察。結果證明,用戶在瀏覽網站之後,隨後的消費行為模式與管理層所認為的不一致。當團隊匯報此事時,管理層認為不值一提。但是,該團隊並沒有放棄,並通過嚴密的A/B測試,回擊了管理層的輕視。這個案例的最終結果,不是每個CIO都能期盼的。但是,有一點是可以確定的:做好和管理層打交道的准備,讓他們充分理解大數據是什麼以及相應的價值。應用場景選擇錯誤一家保險公司想了解日常習慣和購買生命保險意願之間的關聯性。由於隨後覺得習慣太過於寬泛,該公司將調查范疇限定到是否吸煙上。但是,工作仍然沒有實質進展。不到半年,他們就終止了整個項目,因為一直未能發現任何有價值的信息。這個項目的失敗是由於問題的復雜性。在抽煙與否之間,該公司沒有注意到還有大片灰色地帶:很多人是先抽煙而後又戒煙了。在將問題簡單化動機的驅動下,這個部分被忽略了。問題梳理不夠全面一家全球性公司的大數據團隊發現了很多深刻的洞察,並且計劃通過雲讓全公司共享。結果這個團隊低估了效率方面的損耗,由於網路擁塞的問題,無法滿足全球各個分支順暢提交數據運行分析的需求。該公司應該仔細思考下如何支撐大數據項目,梳理所需的技能並協調各IT分支的力量進行支持。由於網路、安全或基礎設施的問題,已經有太多的大數據項目栽了跟頭。缺乏大數據分析技能一家零售公司的首席執行官不認同亞馬遜規模化、扁平化的服務模式,因此讓CIO構建一個客戶推薦引擎。項目最初的規劃是半年為期,但是團隊很快認識到諸如協同過濾(collaborativefiltering)之類的概念無法實現。為此,一個團隊成員提出做一個「假的推薦引擎」,把床單作為唯一的推薦產品。這個假引擎的工作邏輯是:買攪拌機的人會買床單,買野營書籍的人會買床單,買書的人會買床單。就是如此,床單是唯一的、默認的推薦品。盡管可笑,這個主意其實並不壞,默認的推薦也能給企業帶來銷售上的提升。但是,由於大數據相關技能的缺失,真正意義上的引擎未能實現。提出了錯誤的問題一家全球領先的汽車製造商決定開展一個情感分析項目,為期6個月,耗資1千萬美元。項目結束之後,該廠商將結果分享給經銷商並試圖改變銷售模式。然後,所得出的結果最終被證明是錯誤的。項目團隊沒有花足夠的時間去了解經銷商所面臨的問題或業務建議,從而導致相關的分析毫無價值。應用了錯誤的模型。某銀行為判斷電信行業的客戶流失情況,從電信業聘請了一位專家,後者也很快構建了評估用戶是否即將流失的模型。當時已進入評測驗證的最後階段,模型很快就將上線,而銀行也開始准備給那些被認為即將流失的客戶發出信件加以挽留。但是,為了保險起見,一位內部專家被要求對模型進行評估。這位銀行業專家很快發現了令人驚奇的事情:不錯,那些客戶的確即將流失,但並不是因為對銀行的服務不滿意。他們之所以轉移財產(有時是悄無聲息的),是因為感情問題——正在為離婚做准備。可見,了解模型的適用性、數據抽象的級別以及模型中隱含的細微差別,這些都是非常具有挑戰性的。管理層阻力盡管數據當中包含大量重要信息,但Fortune Knowledge公司發現有62%的企業領導者仍然傾向於相信自己的直覺,更有61%的受訪者認為領導者的實際洞察力在決策過程中擁有高於數據分析結論的優先參考價值。選擇錯誤的使用方法企業往往會犯下兩種錯誤,要麼構建起一套過分激進、自己根本無法駕馭的大數據項目,要麼嘗試利用傳統數據技術處理大數據問題。無論是哪種情況,都很有可能導致項目陷入困境。提出錯誤的問題數據科學非常復雜,其中包含專業知識門類(需要深入了解銀行、零售或者其它行業的實際業務狀況);數學與統計學經驗以及編程技能等等。很多企業所僱用的數據科學家只了解數學與編程方面的知識,卻欠缺最重要的技能組成部分——對相關行業的了解,因此最好能從企業內部出發尋找數據科學家。缺乏必要的技能組合這項理由與「提出錯誤的問題」緊密相關。很多大數據項目之所以陷入困境甚至最終失敗,正是因為不具備必要的相關技能。通常負責此類項目的都是IT技術人員——而他們往往無法向數據提出足以指導決策的正確問題。與企業戰略存在沖突要讓大數據項目獲得成功,大家必須擺脫將其作為單一「項目」的思路、真正把它當成企業使用數據的核心方式。問題在於,其它部門的價值或者戰略目標有可能在優先順序方面高於大數據,這種沖突往往會令我們有力無處使。大數據孤島大數據供應商總愛談論「數據湖」或者「數據中樞」,但事實上很多企業建立起來的只能算是「數據水坑兒」,各個水坑兒之間存在著明顯的邊界——例如市場營銷數據水坑兒與製造數據水坑兒等等。需要強調的是,只有盡量緩和不同部門之間的隔閡並將各方的數據流匯總起來,大數據才能真正發揮自身價值。在大數據技術之外遇到了其它意外狀況。數據分析僅僅是大數據項目當中的組成部分之一,訪問並處理數據的能力同樣重要。除此之外,常常被忽略的因素還有網路傳輸能力限制與人員培訓等等。迴避問題有時候我們可以肯定或者懷疑數據會迫使自身做出一些原本希望盡量避免的運營舉措,例如制葯行業之所以如此排斥情感分析機制、是因為他們不希望將不良副作用報告給美國食品葯品管理局並承擔隨之而來的法律責任。在這份理由清單中,大家可能已經發現了一個共同的主題:無論我們如何高度關注數據本身,都會有人為因素介入進來。即使我們努力希望獲取對數據的全面控制權,大數據處理流程最終還是由人來打理的,其中包括眾多初始決策——例如選擇哪些數據進行收集與分析、向分析結論提出哪些問題等等。為防止大數據項目遭遇失敗,引入迭代機制是非常必要的。使用靈活而開放的數據基礎設施,保證其允許企業員工不斷調整實際方案、直到他們的努力獲得理想的回饋,最終以迭代為武器順利邁向大數據有效使用的勝利彼岸。
G. 數據分析常見的犯錯問題有哪些
1、分析目標不明確
“海量的數據其實並不能產生海量的財富”,許多數據分析人員由於沒有制定清晰的分析目標,常常在海量數據中混亂,要麼是收集了錯誤的數據,要麼收集的數據不夠完整,這會導致數據分析的結果不夠准確。
2、收集數據時產生誤差
當我們捕獲數據的軟體或硬體出錯時,就會出現一定的誤差。例如,使用日誌與伺服器不同步,則可能丟失移動應用程序上的用戶行為信息。同樣,如果我們使用像麥克風這樣的硬體感測器,我們的錄音可能會捕捉到背景噪音或其他電信號的干擾。
3、樣本缺乏代表性
在進行數據分析時,一定要有可信的數據樣本,這是確保數據分析結果靠不靠譜的關鍵,如果數據樣本不具代表性,終分析的結果也就沒有價值。因此,對於數據樣本,也要求完整和全面,用單一的、不具代表性的數據來代替全部數據進行分析,這種片面的數據得到的分析結果有可能完全是錯誤的。
4、相關關系和因果關系混亂
大部分的數據分析人員在處理大數據時假設相關關系直接影響因果關系。使用大數據來理解兩個變數之間的相關性通常是一個很好的實踐方法,但是,總是使用“因果”類比可能導致虛假的預測和無效的決定。要想實現數據分析的好效果,必須理解相關關系和因果關系兩者的根本區別。相關關系往往是指同時觀察X和Y的變化,而因果關系意味著X導致Y。在數據分析中,這是兩個完全不同的事情,但是許多數據分析人員往往忽視了它們的區別。
5、脫離業務實際
一個專業的數據分析人員,必須非常熟悉所分析項目的行業情況、業務流程以及相關知識,因為數據分析的終結果是解決項目中存在的問題,或者給行業的決策者提供參考意見。如果不能很好地將業務知識和數據分析工作結合起來,脫離業務實際而只關心數據,在這種情況下得到的分析結果將不具有參考價值。
關於數據分析常見的犯錯問題有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。