⑴ 收集數據的方法有哪些
1、調查法調查方法一般分為普查和抽樣調查兩大類。
2、觀察法
觀察法是通過開會、深入現場、參加生產和經營、實地采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信息的可靠性。
3、實驗方法
實驗方法能通過實驗過程獲取其他手段難以獲得的信息或結論。實驗者通過主動控制實驗條件,包括對參與者類型的恰當限定、對信息產生條件的恰當限定和對信息產生過程的合理設計,可以獲得在真實狀況下用調查法或觀察法無法獲得的某些重要的、能客觀反映事物運動表徵的有效信息,還可以在一定程度上直接觀察研究某些參量之間的相互關系,有利於對事物本質的研究。
4、文獻檢索
文獻檢索就是從浩繁的文獻中檢索出所需的信息的過程。文獻檢索分為手工檢索和計算機檢索。
5、網路信息收集
網路信息是指通過計算機網路發布、傳遞和存儲的各種信息。收集網路信息的最終目標是給廣大用戶提供網路信息資源服務,整個過程經過網路信息搜索、整合、保存和服務四個步驟
⑵ 數據分析有什麼思路
常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。
01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。
02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。
03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。
04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。
05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。
06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。
07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。
⑶ 常見的收集數據的方法有哪些
收集數據的方法主要有普查和抽樣調查兩種方式,當對要求數據非常非常准確的時候可以採取普查的方式,抽樣調查是在被調查的數據中隨機地抽取一些數據組成一個樣本,通過對樣本中數據的分析去估計全體數據的情況。常見的方法還有問卷調查、查閱資料、實地考查、試驗等。
常見的收集數據的方法,主要看你做哪方面的數據分析報告了,根據你分析目的選擇數據收集方式,主要有普查和抽樣調查兩種方式,當對要求數據非常非常准確的時候可以採取普查的方式,抽樣調查是在被調查的數據中隨機地抽取一些數據組成一個樣本,通過對樣本中數據的分析去估計全體數據的情況。常見的方法還有問卷調查、查閱資料、實地考查、試驗等。
還有觀察法
觀察法是通過開會、深入現場、參加生產和經營、實地陸埋采樣、進行現場觀察並准確記錄(包括測繪、錄音、錄相、拍照、筆錄消碧等)調研情況。主要包括兩個方面:一是對人的行為的觀察,二是對客觀事物的觀察。觀察法應用很廣泛,常和詢問法、搜集實物結合使用,以提高所收集信早橋螞息的可靠性。
根據觀察的場景,可以將觀察區分為實驗室觀察和實地觀察;根據觀察者的參與程序,可分為參與觀察和非參與觀察;根據觀察的准備程度,可分為結構性觀察和非結構性觀察。不同類型的觀察,適用於不同情境,觀察者也扮演著不同角色。
⑷ 常用的數據分析方法有哪些
常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。
⑸ 數據分析的基本方法有哪些
數據分析的三個常用方法:
1. 數據趨勢分析
趨勢分析一般而言,適用於產品核心指標的長期跟蹤,比如,點擊率,GMV,活躍用戶數等。做出簡單的數據趨勢圖,並不算是趨勢分析,趨勢分析更多的是需要明確數據的變化,以及對變化原因進行分析。
趨勢分析,最好的產出是比值。在趨勢分析的時候需要明確幾個概念:環比,同比,定基比。環比是指,是本期統計數據與上期比較,例如2019年2月份與2019年1月份相比較,環比可以知道最近的變化趨勢,但是會有些季節性差異。為了消除季節差異,於是有了同比的概念,例如2019年2月份和2018年2月份進行比較。定基比更好理解,就是和某個基點進行比較,比如2018年1月作為基點,定基比則為2019年2月和2018年1月進行比較。
比如:2019年2月份某APP月活躍用戶數我2000萬,相比1月份,環比增加2%,相比去年2月份,同比增長20%。趨勢分析另一個核心目的則是對趨勢做出解釋,對於趨勢線中明顯的拐點,發生了什麼事情要給出合理的解釋,無論是外部原因還是內部原因。
2. 數據對比分析
數據的趨勢變化獨立的看,其實很多情況下並不能說明問題,比如如果一個企業盈利增長10%,我們並無法判斷這個企業的好壞,如果這個企業所處行業的其他企業普遍為負增長,則5%很多,如果行業其他企業增長平均為50%,則這是一個很差的數據。
對比分析,就是給孤立的數據一個合理的參考系,否則孤立的數據毫無意義。在此我向大家推薦一個大數據技術交流圈: 658558542 突破技術瓶頸,提升思維能力 。
一般而言,對比的數據是數據的基本面,比如行業的情況,全站的情況等。有的時候,在產品迭代測試的時候,為了增加說服力,會人為的設置對比的基準。也就是A/B test。
比較試驗最關鍵的是A/B兩組只保持單一變數,其他條件保持一致。比如測試首頁改版的效果,就需要保持A/B兩組用戶質量保持相同,上線時間保持相同,來源渠道相同等。只有這樣才能得到比較有說服力的數據。
3. 數據細分分析
在得到一些初步結論的時候,需要進一步地細拆,因為在一些綜合指標的使用過程中,會抹殺一些關鍵的數據細節,而指標本身的變化,也需要分析變化產生的原因。這里的細分一定要進行多維度的細拆。常見的拆分方法包括:
分時 :不同時間短數據是否有變化。
分渠道 :不同來源的流量或者產品是否有變化。
分用戶 :新注冊用戶和老用戶相比是否有差異,高等級用戶和低等級用戶相比是否有差異。
分地區 :不同地區的數據是否有變化。
組成拆分 :比如搜索由搜索片語成,可以拆分不同搜索詞;店鋪流量由不用店鋪產生,可以分拆不同的店鋪。
細分分析是一個非常重要的手段,多問一些為什麼,才是得到結論的關鍵,而一步一步拆分,就是在不斷問為什麼的過程。
⑹ 現在有一批數據要進行分析,可以從哪些方面進行
可以從如下三個方面:現狀分析、原因分析、預測分析。
1.明確分析目的與思路:一切以解決業務問題為中心,依據分析目標明確思路,打開分析視角,使數據分析框架體系化。
2.數據收集與預處理:數據來源有Excel/CSV/SQL資料庫/NoSQL資料庫/Hive數據倉庫/外部數據,從數據來源收集數據後需要做清洗工作,包括缺失值、錯誤值、重復值、異常值等都要處理好,當然還有轉換、拆分、合並等等工作也可能要做,這樣才能滿足後續數據分析的要求。
3.數據分析與挖掘:使用各種數據分析方法與分析工具(如Excel/SQL/SPSS/SAS/Tableau/PowerBI/Python)進行分析挖掘。
4.數據可視化並生成報告:使用專業化圖表,也可以結合表格,最後以報告方式輸出數據分析成果。
⑺ 銷售數據分析方法有哪些
1、對比分析:通過多種產品數據進行對比分析,這樣可以實現產品功能的好壞分析。
2、多維度拆解:用不同的視角去拆分、觀察同一個數據指標。分析流程為啟動事件分析、分析完成之後的結果、多維度拆分小結。
3、漏斗觀察:就是一連串想後影響的用戶行為。一個個行為構成,是前一步對後一步是有影響的。
4、評估渠道質量並確定投放優先順序:評估產品各渠道營銷情況,決定渠道投放的優先順序。
5、分布情況分析方法:是在一個事件不僅僅只有累計數量這么一個可以觀察的指標,還可以觀察這個事件在不同維度的分布來觀察。
6、用戶留存的分析方法:分析產品用戶數據,看看用戶是否可以發展為長期用戶。