① 有關數據分析的7個方法論
距離2018Tableau峰會--上海站已經過去10天了,好記性不如爛筆頭,干貨太多很想把所有內容都記錄下來,下面分享一篇《有關數據分析的7個方法》並結合我工作當中的一些心得~
當我們拿到海量的數據時,可能會因為數據體量過大而無從下手,於是我們就變成了數據的搬運工,老闆實際上要的是一瓢數據,而我們給老闆的是一池數據讓老闆在數據的池水中翱遊。好的數據分析是讓數據說話,那麼我們怎樣來讓數據說話呢,上干貨~~~7個分析方法
1. 數據隨時間變化 :某一個指標在日期維度上的變化,找尋異常、趨勢
tips:結合已知的事件來看待它的影響,最大值和最小值、異常值,等拐點都可以成為挖掘故事的金礦,可以將跨度時間切割為年度、季度、月度等,比較正常和不正常值的差異來探究異常。
結合工作當中的實例:上海一門店進行促銷,老闆一般會看截止某一時間節點的銷量,當時我們在分析銷量的時候我們分析了按小時的銷量,發現門店的銷量會在早晚高峰出現銷量上升,但在晚高峰時突然出現了銷量的短時下跌,後來結合CCTV發現門店因為進貨短時間人手不足等原因造成銷量下降。
2. 數據的放大與縮小
tips:集中關注某一特定區域或者范圍的數據,將其與其餘的數據做對比,可以先從整體入手並選擇感興趣的的數據區間,或者從某些有特徵的數據點入手,查看數據是否存在異常
結合工作當中的實例:每月在做月度分析的時候,比如涉及銷量完成率等這一個指標,我們一般會先看當月的情況,根據預算分配,我們會再考察YTD的情況。
3. 數據的對比
tips:展示不同區域或者不同類別為什麼會呈現不同的現象,通常是將一個群組/維度/項目與另外一個做對比
確認對比的目的,比如證實或偽證自己的猜想,對比不一定需要產生於在同一層級之間,可以個體VS個體,VS整體/平均/中位數
結合工作當中的實例:我們在年初的時候,公司對虧損的門店進行指標分析和量化,我們選取了銷量-服務-效率等幾個維度進行對比。對於具體門店到具體指標時,我們採用門店指標與公司中位數進行對比。
4. 數據的上鑽/下鑽
tips:在具有層級結構的數據中探索某一維度是如何影響全局的,可以有自下而上或者自上而下
當選擇到底是自下而上還是自上而下時,考慮你的聽眾更熟悉的背景,如果他們是只處理工作流程的某一具體環節的同事,那麼選擇自下而上;如果他們是對全局有宏觀把控但是你需要他們關注某些具體細節的領導,那麼選擇自上而下。
結合工作當中的實例:每月在做月度分析的時候,我們一般都會先關注公司整體銷售數據,具體銷量數字和完成預算情況,此外還會關注重點銷售區域的銷售數據,對於預算完成較差的區域,我們進一步再關注具體門店的情況。
5.突出值/異常值
tips:發現表現異常的時間段/個體,通過散點圖或者盒須圖進行呈現。異常值越突出,故事效果越好,越容易給觀眾以深刻的印象,用不同的顏色或者注釋標記出異常值以達到突出的效果。結合其他的敘述類型來挖掘出異常值背後的故事。
結合工作當中的實例:筆者所在的行業為零售行業,每天的零售銷售數據很多,記得一次月度匯報,銷量Top5的門店竟然出現在利潤後十名的表單中,當時細究原因是財務在賬務處理時將利潤進行了分割。此外,對於異常數據筆者發現很多情況是由於底層數據未經處理而導致數據不幹凈。
6. 數據的交叉點 :多條趨勢線的相互交叉,或者某一個體超越了另外一個個體的時間節點
tips:通常代表著某種轉折或某個標志性的時間,展示時將交叉點之前時段的數據帶入到故事當中可以讓聽眾對交叉點產生時的背景有大致了解,同樣可以結合其他的故事類型一同講述。
結合工作當中的實例:我們在做數據分析時,我們會對比同期銷量趨勢,對於本年度銷量大於上一年度銷量的月份,我們會具體去看上漲的原因,具體是因為某一營銷政策、競爭對手等原因。
7.剖析原因:
tips:在關注某一指標時,分析哪些因素會影響該指標的表現,分析兩個角度之間的關系。
一個普遍應用的結構叫做「Goldilocks", 先展示一個並非特別相關的因素,然後再講述特別恰當的影響因子。如果有一個大家普遍認為很重要的因素但事實上並沒有想像中那麼重要,說明後面還有一個更恰當的因素。
結合工作當中的實例:我們在分析門店虧損情況的時候,通常會先找到幾個可能影響利潤的幾個指標,然後進行參考環比數據進行解釋,當我們用現有的幾個指標不能解釋利潤變化的時候,說明我們查看的影響因素還不夠全面或者門店周圍環境發生了重大改變。
② 數據分析方法論是什麼
業務分析的目標是使用大數據為所有專業人員提供可伸縮的解決方案,以快速、高質量和高效的決策。
所有業務決策中最重要的是業務決策,這決定了如何處理數據。這是業務分析的最終目標。
③ 杭州順其軟體科技有限公司在企業信息化行業內的口碑怎麼樣
2020年的安防圈,彷彿被按下了暫停鍵,項目停滯、融資緩慢、研發縮減,沒有人能預料到,中國安防的新十年,是以這樣的狀態開始,不少企業也以這樣的方式結束。
過去十年裡,近千家安防產業鏈廠商,經過無數次物競與天擇,僅留下數十家企業,擁有充沛的資金和技術儲備,迎接新十年。
站在安防新十年的這個節點之上,9月5日,由雷鋒網 & AI 掘金志主辦的第三屆中國人工智慧安防峰會,在杭州正式召開。
本屆峰會以「洗牌結束,格局重塑」為主題,會上代表未來新十年的15家企業,為現場1000餘位聽眾和線上幾十萬觀眾,分享迎接安防新十年的經營理念與技術應用方法論。
以下是本次大會的精彩回顧:
國際人工智慧聯合會首位華人理事會主席楊強:「聯邦學習下的數據價值與模型安全」
楊強在大會中指出,目前很多行業並沒有真正意義上的大數據,產學兩界都缺乏高質量、有標注、不斷更新的數據。
如何保證各方數據私密不外傳,又能保證數據更新?這就是分布性數據隱私保護、聯合建模的挑戰和需求——把小數據聚合起來成為大數據。
加上現在人們愈發重視隱私,政府紛紛立法,對技術的監管趨嚴,聯邦學習正為保護隱私帶來了技術上的新思路。
如何理解聯邦學習?「邦」是指每個實體參與者地位相同,無論大小,提供的價值才是他們存在的意義;「聯」是用一種方式把它們聯合起來,保護隱私,一起做有意義的事情。
聯邦學習的宗旨是「數據不動模型動」,目標是「數據可用不可見」。數據可以用,但是這些原始數據是合作方彼此之間見不到的,所以一些散亂的小數據就可以成為虛擬的大數據。
楊強教授介紹稱,目前聯邦學習主要有橫向聯邦(樣本不同、特徵重疊)和縱向聯邦(樣本重疊、特徵不同)兩種做法,前者更適用於to C場景,後者適合to B場景。
他強調,聯邦學習和分布式AI、聯邦資料庫的區別在於:過去這二者的數據形態、分布、表徵皆為同類,但在聯邦學習里它們可以是異構的;且過去聯邦資料庫目的是並行計算、增加效率,但現在數據本身屬於不同的屬主,所以需要做加密情況下保護隱私的計算。
隨後,楊強也談到了聯邦學習在安防等領域的應用。此外,楊強團隊還推動制定世界上第一個聯邦學習國際標准,同時也發布了開源平台FATE,並且積極籌措聯邦學習聯盟,共建聯邦學習生態。
海康威視EBG解決方案部總裁李亞亞:「賦能數字轉型,服務千行百業」
李亞亞介紹,海康目前的業務主要分為三塊:綜合安防、大數據服務和智慧業務。
數字經濟和數字化轉型成為必然趨勢下,人工智慧交付問題依然面臨挑戰,難點有三:一是泛在需求,這是場景碎片化、需求差異化必然帶來落地難問題;二是復雜交付,涉及產品、施工、演算法優化、信息系統打通、業務流程轉型等諸多問題。三是成本可控,關注投入產出比非常必要。
李亞亞認為,解決落地難,仍然是要回歸商業本質。要從產品的品質抓起,目的是讓各行業都享受到技術革新的紅利,通過場景化、差異化的問題解決,提升用戶的業務價值回報。
數字化轉型是一個逐步進階的過程,場景化是路徑,因此要通過系統的產品體系去支撐場景化應用。面向企業領域的數字化業務的開展和落地,海康威視從拉近管理距離,提升業務效率,規范作業行為,防範安全隱患四個維度出發為行業賦能。
海康威視秉持開放融合的合作理念,攜手合作夥伴,共同實踐數字化轉型之路;秉善篤行,不斷創新技術和產品賦能千行百業,為社會的安全和發展開拓新視界。
大華股份先進技術研究院院長殷俊:「AI 行業應用,產業升級」
殷俊認為,AI經歷了理論研究的1.0、智能落地的2.0,目前處於行業智能的3.0階段。
AI 1.0時期是「兩耳不聞窗外事,一心只讀聖賢書」,計算力不夠,數據有限,演算法不成熟;2.0階段是「紙上得來終覺淺,絕知此事要躬行」,演算法、算力有了突破,成熟的演算法尋找落地場景;3.0階段是「忽如一夜春風來,千樹萬樹梨花開」,行業最需要的不僅是一套演算法、一套系統,而是企業解決客戶痛點和需求的能力。
在行業智能背景下,人工智慧需要具備的基礎能力包括:一是AI技術泛化、快速遷移新應用的能力;二是應用牽引,快速適配新需求的能力。
殷俊認為在3.0階段是應用主導個性化和AI解決方案的敏捷交付。在這個過程中,首先要構建人工智慧解決方案的端到端體系化能力,大華已經在四個方向做了重點布局:系統架構、數據智能、智能工程化、智能技術。
除了構建以上核心能力,大華還開放全棧能力,賦能行業生態,並在實戰中持續積累人工智慧核心技術,針對全場景理解、小規模數據、泛化能力、多任務學習和AutoML等人工智慧的五大技術挑戰,開展實踐探索,並已取得實戰應用成果。
最後,殷俊強調,AI目前還是依賴人工為主,大華希望未來在行業共同努力下,能夠真正轉向AI的自我智能,推動行業智慧化落地。
西部數據智慧視頻產品首席技術官孫煜:「AI安防與存儲的變革」
孫煜提到人工智慧在監控行業的應用四個主要要素:晶元、軟體、存儲和廠商。
晶元不斷提升算力,並降低成本,軟體提供高效實用的演算法,海量數據需要被存儲才能被利用,廠商集成以上要素並落地。這個生態中,各方要素一起合作才能使得AI真正落地。
AI應用,使得視頻監控的存儲架構從以前的端和邊,變為現在的端、邊、雲,連接方式雲化,其中,存儲器需要更高順序讀寫性能、更大的存儲容量、更高地隨機讀寫性能、更快地響應時間。
西部數據通過提供視頻監控行業從終端到核心的存儲產品組合,協助視頻監控行業的AI落地。
孫煜演示了西部數據專門為整個視頻監控行業打造的從端、邊、雲的各個產品組合,以及專門隨時檢測硬碟監控狀態的軟體WDDA,Western Digital 設備分析 (WDDA) 是 Western Digital 的監控優化存儲產品系列支持的全新設備分析功能。WDDA使管理員能前瞻式地管理存儲設備並保持性能優化,防止意外故障。
孫煜強調AI進入後傳統監控盤力不從心,系統廠商通過合並通道單碼流,順序地寫入,大大減少了硬碟的飛行時間和次數,把飛行機會轉移到資料庫訪問,提升存儲系統的性能。
西部數據認為提高數據利用率的關鍵,是告別簡單粗放模式,進行精細化的分層存儲策略,他們還建立起一套四層存儲架構體系:熱存儲、溫存儲、冷存儲、極冷存儲,分而治之,極大地提高數據利用效率。
商湯科技智慧城市事業群產品副總裁朱鑫:「AI 驅動城市智能化變革」
數字化轉型的核心技術是雲計算、移動互聯網、物聯網以及大數據,更多是在於更高效的信息組織,更順暢的一些信息流動,以及更便捷的信息訪問,從而去改善企業以及行業的效率,生產力是百分比提升。
智能化變革,機器將取代人工,如此會形成一個自主的組織生產,最關鍵的是,隨著數字技術、晶元、摩爾定律以及雲計算能力相關規律影響,機器成本會持續下降,規模化後機器成本會趨向極低的成本。彼時對生產力的提升不是百分比,可能是倍數,甚至是指數級。
大量的城市物聯設備、規劃的城市群,以及城市裡形成的大量人流、物流、車流、金融流、數據流,組成了城市互聯網。
朱鑫總結了城市互聯網市場下,真正推動一個城市智能化變革的三大支柱系統。
一是新一代的聯網匯聚平台。視覺數據是城市最豐富的數據資源,前端設備收集的數據通過聯網匯聚,形成城市動態的數據資源池,動態數據經過AI系統處理後,成為城市數據資產。二是超級計算底座。每個城市需要一個新型的超算中心。三是城市級演算法系統。系統有三大板塊:城市的主演算法系統、城市級場景演算法系統和通過融合、關聯、決策,形成一個完整的城市的演算法系統。
商湯在這幾個支柱下面形成了一整套體系與方案,從最底層的基礎建設開始,從數據中心基礎設施到城市智能的計算中心,再到城市智能雲賦能中心,把整體演算法系統能力都放在雲賦能中心。
宇視副總裁、首席架構師姚華:「AI 如何得到人民的好口碑」
姚華回顧了2018年提出的AI與安防的七座大山,並指出如今視圖數據全鏈路計算邏輯已經形成,AI在安防已經從0跨越過1。宇視的AI部署已經在從城市到郊區、鄉村,解決群眾的小事和瑣事。
業務狀態出現新挑戰,比如動態人口服務和管理難、案件有效線索率低。姚華列舉「宇視追影系統」應用的三個案例:疫情期間24小時找回出走口罩少女,男子沿街威脅案件,合夥扒竊案,以上成功案例中,最關鍵的技術是ReID(跨鏡追蹤)。
姚華指出,ReID應用有七大技術難點:第一,不同姿態、角度、解析度下的人體之間的匹配;第二,復雜場景、有遮擋,密集人群等場景下的匹配;第三,不同交通工具上的人體的匹配;第四,不同時間段以及著裝變化後的行人匹配;第五,跨攝像頭模態行人匹配;第六,目標行人著裝發生變化後的匹配問題;第七,在較小訓練集上匹配演算法訓練較為受限問題。
宇視聯合博觀(擁有國際三大主流ReID數據集、Vehicle ReID等世界紀錄的演算法公司),設計了基於現有樣本的GAN對抗網路,較好地模擬了人體的多角度、多姿態特徵。同時,輔以多種預處理演算法,極大地擴充了原始樣本基數,使得在較小訓練集上匹配演算法訓練受限的問題迎刃而解。
其次,宇視在演算法中採取結合全局特徵和多尺度局部特徵的混合向量提取解決方案,並在訓練中採用遷移學習,再者,對每個人體的局部特徵進行重定位的匹配訓練,通過實現對人體局部位置的精準定位,可將人臉識別與ReID聯動結合,解決跨鏡追蹤應用的諸多難點。
宇視追影系統發布一周年,實戰應用落地中國百餘個城市和地區,實戰案例超1000個,找回走失人口100餘人,小微案件偵破率提升50%。最後,姚華用「好AI,為人民服務」結束:小案件是群眾的「天」,無論鄉村還是城市,AI幫助解決小案件難題,能讓我們尊重每一個微小的個體。
360城市安全集團副總裁、360視覺科技總經理邱召強:「360 以安全為基礎的 AI 技術與應用 」
邱召強表示,當行業在享受技術帶來當先進性時,360通常用逆向思維思考:一個新的技術產生的同時會帶來哪些安全隱患。
邱召強指出了數字時代的四個特徵:第一,一切皆可編程,也造成漏洞無處不在;第二萬物均需互聯,虛擬世界的操作帶來了物理真實世界巨大的災難;第三大數據驅動業務,數據一旦匯總,安全性難以保證;第四軟體定義世界,世界架構在軟體之上,脆弱性前所未有。
360在過去15年,總結和打造出了一套雲端的安全平台。360安全架構是以安全大腦為核心,六大板塊,一個安全大腦,十個安全基礎設施,和一個運營的所發,一個專家的團隊,一個實戰演練機制和一個安全互通的標准。
背靠360城市安全集團,360視覺科技專注於人臉識別產品的開發和應用,打造出以大數據為基礎的視覺安全產品,包括了人臉識別門禁、人臉識別通道閘機、人證核驗設備等智能終端及針對辦公樓宇、酒店、商超、社區、學校,交通樞紐等場景解決方案,構建以安全為核心的智能生態。
360安全賦予了360視覺科技獨特的競爭力。針對人臉識別終端設備的安全,對核心庫和可執行性文件進行核心加固、對代碼加固、對應用程序加固,三重安全加固防護;此外,360視覺科技還獨創密鑰白盒技術,為人臉識別終端、雲平台環境中的數據加密及公私鑰身份認證,全程密鑰無明文。
最後,邱召強展示了360視覺科技人臉識別硬體家族,以及智慧園區、智慧樓宇、社區安全、智慧校園、機場安防、智慧辦事大廳等幾大行業解決方案。
華為機器視覺領域總裁段愛國:「華為 HoloSens ,點亮智能世界」
段愛國提出,一個真正的智能世界有三個非常典型的特徵或者基礎框架技術:一是萬物感知,二是萬物互聯,三是萬物智能。
在華為來看,萬物互聯、5G、光網路是華為的強項,華為機器視覺將成為華為在萬物感知的核心。
段愛國還認為,智能世界向前邁進有三大核心技術:以全息感知為核心的機器視覺,以萬物互聯為基礎的移動無線通信,以及萬物智能的AI技術,2020年這三個技術開始合攏。
所以華為在2020年率先提出,所有的視頻技術應該從人看向給機器看轉移,並正式把產品線更名為「機器視覺」,聚焦打造兩個核心的能力:一是前端的全息感知能力,二是在後端用數據驅動,反作用於物理世界,驅動於智能世界。
4G的時代,以智能手機為核心,出現了各種行業移動互聯網的應用。在華為來看,機器視覺就是5G時代的行業數字化的智能手機。段愛國還提到,過去5年,AI的成本在下降,AI已經進入到普惠的時代,他預測未來兩年智能攝像機一定會超過網路攝像機。
另外,華為將聚焦打造4個核心戰略產品和平台:前端的軟體定義攝像機,後端的智能視頻存儲,類似於智能手機應用市場的智能演算法應用商城,以及華為機器視覺雲服務。
在此基礎上提出四大戰略策略:戰略一,積極投入全棧全場景的AI研究;戰略二,重構產業架構,加速智能化升級;戰略三,平台+生態,賦能千行百業;戰略四:端邊雲協同,深度數據挖掘。
最後他強調, 會將開放進行到底,未來的智能世界很復雜,華為不可能一個人包攬全部的工作,希望大家一同成長。
曠視副總裁那正平:「城市大腦的條與塊」
那正平表示,城市治理數字化、智能化浪潮中,無論是智慧城市、城市大腦還是數字孿生概念,核心思想都是通過物聯網、人工智慧等技術,准確發現城市運行的內在規律,從而進行動態優化調節,解決城市面臨的安全、出行、環境、產業升級等諸多問題,最終提升城市治理水平。
那正平歸納出做好城市大腦和城市大腦的操作系統的幾大要點:深入研究城市發展規律;探尋業務本質;先具象再抽象;腳踏實地,長期主義。
曠視通過分析城市空間和管理對象,指出城市的日常運作管理需要秉持以人為本核心,城市大腦應圍繞條塊結合的方式實現綜合管理,實現條、塊、腦、OS的協同。
城市大腦中的條應用總量少,單體規模大、高並發、數據壁壘強;而塊總量大、IoT種類多,低並發、數據壁壘低,集成聯動潛力大。
基於此,曠視提出:構築城市大腦需要先圍繞「條」和「塊」打造城市級的超級應用,驗證產品、實現單一場景閉環,從而形成具有曠視特色的軟體和硬體產品矩陣,最終逐漸沉澱出城市級和建築級AIoT操作系統,實現城市物聯網的閉環。
曠視認為,人工智慧產業現在處於並將長期處於初級階段,我們必須正視並不能超越這個初級階段。第二,人工智慧產業的主要矛盾是市場日益增長的多樣化需求同落後的演算法生產力之間的矛盾。
雲從科技安防行業部總經理李夏風:「人機協同平台,助推社會治理現代化升級」
雲從認為人機協同有三部分:人機交互、人機融合、人機共創。
人機協同中,各個行業的專家、以機器代表的AI知識服務和用戶,三者形成一個閉環,首先專家把知識賦能給機器,機器轉換成智能化產品並提升客戶的體驗,用戶從中反饋出個性化的需求,後續提升專家的效率並反哺到產品或服務中。
雲從人機協的落地通過三部分實現:智能化終端設備收集數據,同時也是人機交互的入口,雲端大腦是整個數據的匯集、分析、提煉的中樞,當數據大腦經過分析,形成相關的服務後,通過嵌入式的模塊,即AI平台,實現人機協同在各個場景落地。
而AI訓練平台融合數據智能標注、OCR訓練、圖像訓練、NLP訓練、視頻結構化訓練於一體,根據場景數據,生成符合行業需求的AI模型演算法。雲從的智能解析引擎具備軟硬解耦特性,可以適配國有自主晶元,還能實現效率和使用維度的極大地性能提升。
基於雲從的數據分析引擎,提供面向數據全生命周期的分析、挖掘及應用服務,完成數據到知識的價值轉換,賦能各業務場景應用。
具體來說,匯聚感知數據,打造數據挖掘基礎,融合業務數據,靈活定製生成各類標簽,拓展業務對象,並依託認知信息,形成各類專家的決策,為決策提供有力的支撐,最後,依託可視化專家建模,固化專家經驗模型,積累與傳承業務知識。
從數據到知識是數據價值挖掘的必經之路,目前大部分數據資源沒有得到充分利用,雲從的知識生產與服務平台KaaS,通過將標簽、機器學習等知識模型化、在線化,加上AI 引擎, 變數據/經驗為在線知識。
通過數據智能模型為核心的知識體系構建實現從多維數據中挖掘隱形事件背後的關聯關系及規律現象,服務於風險防控、態勢預測、行為畫像、虛擬軌跡等各類實際業務決策。
比特大陸AI業務線CEO王俊:「安防新基建,AI 芯智能」
王俊認為,當市場容量足夠大時,總是會催生出更專注的產品,因為越是專注的產品,越容易獲得更高的效率,隨著AI市場的爆發,AI的計算硬體亦是如此。過去大家用GPU來取代CPU提供AI算力,現在正是從GPU切換至TPU或其他AI專用晶元以獲得更高效率的時代。
比特大陸算豐自研的TPU,覆蓋了雲、邊、端,專注於深度學習計算,相對於CPU和GPU,在獲得更高性能的同時,還具備更高的性價比和更低的功耗。安防行業已經完成了從看得見到看得清,看得清到看得懂的階段,而未來在更多專用AI晶元加持下,可繼續實現看得快、看得起。
王俊還提到,比特大陸算豐業務堅持專注、開放、合作共贏的理念,專注AI晶元及其相關硬體的研發,同時開放各個層次的軟體介面方便各種演算法的接入和優化,力求和各個演算法、應用等合作夥伴緊密合作,共同打造完整的AI解決方案。
同時,他們會打造基於比特大陸算豐晶元的算力平台,提供數據、演算法、應用的統一管理,這樣不同的應用需求,基於不同深度學習框架的不同演算法方案,都可簡單、高效的運行在該算力平台上。用戶可自由選擇最合適的方案,接入數據,並獲得智能分析的結果。如此,在真實的場景中,無論是人臉識別、視頻結構化這樣單一的應用,還是城市大腦這樣的綜合方案,比特大陸都可基於該平台,聯合合作夥伴,提供統一、高效、易用的AI算力服務。
澎思科技副總裁曲瀚:「AIoT 新基建,加速人工智慧進入普惠時代」
澎思科技認為人工智慧新基建的一個核心就是AI的基礎設施化,分為技術基礎設施和融合基礎設施。
在此趨勢下,智慧城市和AI安防將成為新基建的最佳試驗場。另外,AI安防也逐漸發展到了第二階段,AI在To B領域的發展開始從單一的場景向全社會各個領域延伸,每個細分的場景都展現出不同的AI服務需求,未來就是服務為王的時代,誰能夠快速精準地把握住客戶的需求,誰就能夠在未來的競爭中快速勝出。
曲瀚指出,AI普惠的產品有兩個核心要點:一是極致產品體驗,二是場景化的解決方案能力。實現AI普惠的終局在於四個方面:第一,萬物智聯,所有的AI終端實現在線化。第二,推動AI演算法向通用智能演算法演進,降低機器學習的成本,提高泛化能力。第三,構建一個豐富的產品生態。第四,場景的聯動和重塑。AI不是一個孤立的系統,需要和客戶的其他系統做連接和聯動,才能使得場景服務變成一個主動智能的服務。
澎思基於對普惠AI的理解,構建了澎思AIoT生態平台,包括四個關鍵的能力:第一,智能視圖大腦。演算法會從雲、邊、端三個維度全鏈條嵌入。第二,全系列自研的智能邊緣設備。第三,打造雲端智能服務的開放平台。第四,後端建立數據管理平台,使得數據在AI、硬體以及雲服務能夠充分地流動,實現業務和訓練數據的並軌。
曲瀚還表示,普惠AI最核心的是演算法能力,這是整個AIoT業務的底座,澎思的演算法在雲端和邊緣端都走在世界的前列。
最後,曲瀚還重點介紹了在智能城市「新基建」中,澎思在城市公共安全與治理、人居場景智能化兩大場景中的落地情況,以及深度參與新加坡等海外市場智慧城市的建設經驗。
的盧深視CEO戶磊:「大庫時代,落地千萬級刷臉系統的技術剖析與建庫經驗」
戶磊提到,大庫時代,金融支付、交通等眾多場景亟需千萬級精準人臉識別技術方案。目前行業內現有方案為多引擎,多層級,分庫管理模式,系統復雜、軟硬體開銷大、成本高、效率低。
因此理想的大庫識別方案應該具備以下幾點:精準,萬億分之一誤識別率,千萬級別底庫,魯棒性好,高度兼容性,以及價格適宜。而的盧深視是全國首個建立省級規模三維人像資料庫的AI公司。
的盧深視的千萬級精準識別的刷臉系統具有幾大關鍵技術點。
系統架構,分為三個層次,由前端多維智能感知系統、千萬大庫雲端中台和多模態關聯分析與預測組成。
其中高性能三維人臉識別演算法與前端相機深度集成,降低後端計算開銷,中台支撐千萬級大庫人臉的建庫、清洗、檢索,適配度高、效率高,多模態架構的兼容性好,分析預測環節基於大數據的邏輯推理,時空軌跡關聯分析,將2D/3D人臉、人體、物品、時間、地點等多維大數據融合,深度挖掘數據之間的關聯性,實現預測與預警。
其次是技術架構。核心演算法層,其中最重要的是3D演算法層;平台技術層,包括後端的技術,包括通信計算、協同優化等等技術;業務中台,對數據接入、數據管理、數據清洗、優選,而後融到庫裡面進行數據同步,最終支撐各種各樣應用。
再者,的盧深視建立三維數據標准及評價打分體系,這是後續進行三維應用的基礎,的盧深視對於各種數據類別,均提供數據質量要求及評價標准。
戶磊還總結了的盧深視3D識別的優勢:
准確率高,保證精度不損失的情況下,突破了三維人臉識別的量化技術,最終可以實現在千萬級庫上面秒級的反饋結果,可以保證萬億大庫下的高准確率 。
魯棒性好,實現了深度圖和紅外圖的識別,不受光線影響,包括大角度、濃妝識別的准確率,能夠融入15到20度大的角度的差異。
安全性高,尤其對於活體檢測,能夠實現2D平面偽裝攻擊方式100%防禦。
平安科技副總工程師王健宗:「聯邦智能——智慧城市的突圍之道」
目前,人工智慧在移動互聯網、雲計算、大數據、IOT、5G等新技術的驅動下得以迅猛發展, 不過在AI技術落地時總是有所欠缺,即人工智慧通用演算法在本地化部署過程中所面臨的數據困境,而這一塊恰恰是相關行業或企業所缺乏的。
王健宗認為,其數據困境主要是三點:數據孤島、法律法規監管日趨嚴格,以及傳統AI技術模式下的限制。
聯邦智能是以聯邦學習為龍頭,同時涵蓋聯邦數據部落、聯邦推理、聯邦激勵機制,共由四部分組成。面對目前日益苛刻的數據安全隱私的問題,通過構建聯邦學習的技術內核,建立聯邦數據部落,實現具備隱私保護的聯邦推理,並以聯邦激勵機制為紐帶形成一個完整的AI生態格局,從而打破數據壁壘,使人工智慧發展邁向新階段。
其中,聯邦學習是隱私保護下的分布式機器學習技術,以及「數據孤島問題」的解決方案。聯邦數據部落,在確保數據安全及用戶隱私的前提下,建立基於聯邦智能的大數據部落生態,充分發揮各行業參與方的數據價值,推動垂直領域案例落地。聯邦推理,在一個隱私與安全的鏈路過程中,發揮著引擎模型的聯邦推理作用。聯邦激勵機制,它的核心是一個遵循基本准則的閉環學習機制,通過聯合建模協議達成、貢獻度評估、激勵及資金劃定等環節,吸引外部企業參與,加入聯邦智能生態。
平安的蜂巢聯邦智能平台。在整個平台中,蜂巢依託平安集團這一綜合性集團背景,能夠提供智慧金融、智慧城市、智慧醫療商用級的一站式解決方案,希望能夠以此激活數據價值,這也是整個平台的使命。蜂巢平台的目標是跨企業、跨數據、跨領域,實現整個大數據AI生態。此外,它在營銷、獲客、定價、風控、智慧城市等等方面推出了相關的解決方案。
最後,王健宗總結道,聯邦智能作為樞紐,將會為智慧城市的未來提供更多新的機會。同時,隨著公民隱私安全意識的不斷加深,它將更好地為公眾帶來高品質的個性化服務,並在當前新基建的背景下,立足於數據,依託聯邦智能生態,加速精細化服務時代的到來,這也是聯邦智能的機會。
靈伴科技公共安全事業部總經理劉葉飛:「安防新十年,AR 來主宰」
劉葉飛認為AR在智能安防領域有獨特優勢,比如第一視角顯示,融合現實世界,人機交互自然,信息傳遞准確。AR技術如果運用到智能安防領域,在未來的十年,AR+AI必定推動整個安防市場。
杭州靈伴科技成立於2014年,從做語音識別、語音交互起家,隨後過度到視覺交互,主要體現在AR層面,在2020年,靈伴推出了全球首款光波導形態的AR智能眼鏡。
他還現場展示了靈伴科技在全球首款可量產的光波導智能眼鏡,可折疊,小巧輕便。基於光波導優質的顯示效果,可以不影響正常視線的情況下與外界進行交互。
劉葉飛還介紹,這款智能AR眼鏡具有人臉識別、紅外測溫、車牌識別、執法記錄、信息推送、遠程指揮等等功能,相當於取代三個信息化執法終端所有的功能。除了安防行業,還可在智慧園區、大型安保活動、監獄、海關/邊檢、軌道交通、機場等多種場景使用。此外,靈伴科技在博物館、兩會、疫情防控等場景下的均有落地案例。
安防「新十年」頒獎典禮
大會演講環節結束後,峰會進入到安防「新十年」頒獎環節。
AI與安防的融合,經由2018年的靜水深流、2019年的混沌廝殺,2020年的技術研究與方案落地將會更為清晰、成熟。
身處產業臨界節點,雷鋒網AI掘金志啟動安防「新十年」評選活動。
雷鋒網AI掘金志從商業維度出發,基於對AI安防產業四年的調研和資源積累,並聯合政、企、學、投資四界的評選委員,致力於尋找廣受市場認可的企業、產品,尋找人工智慧在各個行業的最佳應用。
五大城市代表企業榜
五大最佳行業解決方案榜
引領未來十年的五大新基建企業
④ 數據分析屬於什麼行業
問題一:數據分析員屬於什麼專業 沒有屬於什麼專業,一般從事的人都是統計學或者數學專業的。
問題二:大數據分析這個職位屬於哪個行業 這個問題,可能是絕大部分人的疑問。
數據分析行業是屬於邊緣學科,交叉學科,
可以說不屬於哪個行業,不屬於IT,也不屬於金融業
但同時也會用到IT的知識和工具唯明豎,也會用到金融的原理,
還有,財務、統計、管理、營銷……
問題三:數據分析師在智聯招聘里屬於什麼職業類別? 數據分析崗位涉及各個行業的各個類別,比如銷售管理、業務支持、市場推廣等等,沒有特定的職業類別
問題四:數據分析師屬於什麼職能分類 數據分析師指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。 互聯網本身具有數字化和互動性的特徵,這種屬性特徵給數據搜集、整理、研究帶來了革命性的突破。以往「原子世界」中數據分析師要花較高的成本(資金、資源和時間)獲取支撐研究、分析的數據,數據的豐富性、全面性、連續性和及時性都比互聯網時代差很多。在「原子世界」中,抽樣調查是最經常採用的數據獲取方式,主要原因就是大范圍普查的成本太高――最典型的應用就是電視收視率。而在互聯網時代,針對互聯網行業的研究,在局部(例如某個網站或同類網站的集群)做到槐培低成本、高效率的全樣本數據採集是有可能實現的。同樣,「原子世界」中的很多數據不具備連續性,而互聯網世界中的數據卻有可能做到連續更新,甚至實時――最典型的應用就是網站全樣本、全天候數據統計和分析研究。 與傳統的數據分析師相比,互聯網時代的數據分析師面臨的不是數據匱乏,而是數據過剩。因此,互聯網時代的數據分析師必須學會藉助技術手段進行高效的數據處理。更為重要的是,互聯網時代的數據分析師要不斷在數據研究的方法論方面進行創新和突破。例如,結合傳統的消費心理學理論,構建豐富的互聯網指大信息消費行為模型。 就行業而言,數據分析師的價值與此類似。就新聞出版行業而言,無論在任何時代,媒體運營者能否准確、詳細和及時地了解受眾狀況和變化趨勢,都是媒體成敗的關鍵。數據分析師在這方面大有可為。 此外,對於新聞出版等內容產業來說,更為關鍵的是,數據分析師可以發揮內容消費者數據分析的職能,這是支撐新聞出版機構改善客戶服務的關鍵職能。例如,收集內容消費者信息、形成內容消費者信息資料庫、根據資料庫的信息與內容消費者保持即時聯系、傳遞產品和服務的信息、資料庫的更新和維護。由此,數據分析師提供的數據還將成為定製產品、個性化服務的重要依據:藉助先進的資料庫技術,對內容資源進行深入挖掘和多次利用,提供個人偏好的內容服務,或藉助數字印刷和出版技術,實現按需生產產品並交付出版印刷。
問題五:零售業數據分析屬於什麼部門? 規模較大的、正規的公司,會有專門的數據骸,銷售數據的分析就由他們來做,一些小的公司可能直接由銷售部做了。
問題六:請問什麼是數據分析專員? 你好,數據分析員是根據數據分析方案進行數據分析的人員,能進行較高級的數據統計分析,負責公司錄入人員的管理和業績考核,以及對編碼人員的行業知識和問卷結構的培訓,和錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對等職責。
數據分析員的工作要求比較高,需要工作者具有數理統計,經濟學,資料庫原理以及相關知識;能熟練使用EXCLE、SPSS、QUANVERT、SAS等統計軟體。還要有嚴謹的邏輯思維能力、學習能力、言語表達能力、管理能力。
現在熟練的數據分析員比較少,發展空間比較好。如果你有這方面的能力和興趣可以去學習學習。如若滿意,希望採納!
問題七:數據分析 軟體測試 屬於什麼行業 電子產業
問題八:想進數據分析行業從哪裡開始 1.資料庫開發是底層基礎,屬於軟體開發行業。如oracle、db2、sybase等大型資料庫,當然也有一些小資料庫,如vfp、sql、acess、php等等。
2.智能數據分析軟體是數據分析的專業工具,如spss、sas、brio、congnos、ob等等。
3.日常使用的數據處理工具,如excel、wps-et。
4.數據倉庫技術(WAREHOUSE),這是真正的大數據基礎平台。
企業應用布局通常是這樣的:
使用數據倉庫技術整合來自大型 資料庫系統各種數據,構建多維數據模型,進行數據挖掘,通過智能商業工具進行分析展現。
問題九:什麼是 互聯網數據分析師? 數據分析師指的是不同行業中,專門從事行業數據搜集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。
作用
越來越多的 *** 機關、企事業單位將選擇擁有數據分析師資質的專業人士為他們的項目做出科學、合理的分析、以便正確決策;越來越多的風險投資機構把數據分析師所出具的數據分析報告作為其判斷項目是否可行及是否值得投資的重要依據;越來越多的高等院校和教育機構把數據分析師課程作為其中高管理層及決策層培訓計劃的重要內容;越來越多的有志之士把數據分析師培訓內容作為其職業生涯發展中必備的知識體系。
2工作職責
互聯網本身具有數字化和互動性的特徵,這種屬性特徵給數據搜集、整理、研究帶來了革命性的突破。以往「原子世界」中數據分析師要花較高的成本(資金、資源和時間)獲取支撐研究、分析的數據,數據的豐富性、全面性、連續性和及時性都比互聯網時代差很多。
與傳統的數據分析師相比,互聯網時代的數據分析師面臨的不是數據匱乏,而是數據過剩。因此,互聯網時代的數據分析師必須學會藉助技術手段進行高效的數據處理。更為重要的是,互聯網時代的數據分析師要不斷在數據研究的方法論方面進行創新和突破。
就行業而言,數據分析師的價值與此類似。就新聞出版行業而言,無論在任何時代,媒體運營者能否准確、詳細和及時地了解受眾狀況和變化趨勢,都是媒體成敗的關鍵。
此外,對於新聞出版等內容產業來說,更為關鍵的是,數據分析師可以發揮內容消費者數據分析的職能,這是支撐新聞出版機構改善客戶服務的關鍵職能。
3要求
技能要求
1、懂業務。從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。
2、懂管理。一方面是搭建數據分析框架的要求,比如確定分析思路就需要用到營銷、管理等理論知識來指導,如果不熟悉管理理論,就很難搭建數據分析的框架,後續的數據分析也很難進行。另一方面的作用是針對數據分析結論提出有指導意義的分析建議。
3、懂分析。指掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實踐工作中,以便有效的開展數據分析。基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。
4、懂工具。指掌握數據分析相關的常用工具。數據分析方法是理論,而數據分析工具就是實現數據分析方法理論的工具,面對越來越龐大的數據,我們不能依靠計算器進行分析,必須依靠強大的數據分析工具幫我們完成數據分析工作。
5、懂設計。懂設計是指運用圖表有效表達數據分析師的分析觀點,使分析結果一目瞭然。圖表的設計是門大學問,如圖形的選擇、版式的設計、顏色的搭配等等,都需要掌握一定的設計原則。[1]
其他要求
良好的溝通交流能力,文字語言表達能力,較好的邏輯分析能力;
具有獨立的產品策劃開發能力,項目管理,商務溝通能力;
強烈責任心,開放的性格,良好的溝通能力; 擅於協作,具備良好的團隊合作精神;
能夠在壓力下開展工作;善於學習。
4考試等級
當前我國數據分析師由中國商業聯合會數據分析專業委員會以及工信部教育考試中心共同考核認證,通過培訓考核,工信部教育考試中心頒發《項目數據分析師職業技術證書》,數據分析行業協會頒發《項目數據分析師證書》,此證書是申請成立項目數據分析事務所的必備條件之一。
5培養
國內正式的數據分析行業的認證只......>>
問題十:數據分析師是一個什麼樣的職業? 隨著各行業計算機應用以及信息化水平提高,各行業企事業單位已裝備了非常完備的計算機系統,搭建了暢通無阻的互聯網平台,信息化「硬體」設施已初具規模,但與此同時,隨著業務發展以及市場信息不斷積累,商業領域和行業部門產生了大量的業務數據,很多企業信息中心或統計部門數據量非常之大已成為名副其實的信息海洋,大量的、雜亂無章的
數據以及錯誤的數據分析方法非但沒有給企業創造競爭力,相反給企業帶來人力、物力、時間巨大浪費和難以擺脫的長期壓力,甚至由於誤用錯誤的數據分析方法或使用不完整的數據,給企業發展帶來負面影響或相反作用。因此,面對用於決策的有效信息隱藏在大量數據中的現實問題,如何採用正確的數據分析統計和數據挖掘方法,從大量的數據中提取對人們有價值、有意義的數據,獲得有利於商業運作、提高競爭力的信息,已成為企業面臨的共同問題。
為推動知識管理,挖掘數據價值,適應商業企業的市場競爭需要,同時更好的配合國家對專業技術人員進行培訓的要求, 信息產業部通信行業職業技能鑒定指導中心根據國家對專業技術人員加強培訓且須持證上崗等文件精神,於2005年9月正式面向全國推出了國家數據分析師認證(NTC-CCDA)培訓項目。
國家數據分析認證(NTC-CCDA)課程包括數據分析思維訓練、數據分析理念和誤區陷阱提示、數據分析方法內容精解、數據分析工具軟體應用(SPSS、Clementine、Decision Time & What If、AMOS4.0-5.0、AnswerTree3.0等)、市場預測分析等方面內容,它是對數據進行調查統計、分析預測、數據挖掘等一系列活動的總和,其基本目的是採用科學的正確的數據統計、分析預測、數據挖掘等方法,從大量的、雜亂無章的數據中提取對人們有價值、有意義的數據,從而提升數據價值,提高企業核心競爭力。
國家數據分析認證(NTC-CCDA)作為2005年最新的國家級認證培訓項目,必將在今後相當長的一段時間內,成為非常熱門的職業之一,專家預測,在今後的五年內,我國將至少需要50萬名持有國家數據分析認證(NTC-CCDA)證書的數據分析專業人才。
目前, *** 經濟部門、金融機構、投資公司以及企業統計和分析人員對國家數據分析師的需求正在與日俱增。項目數據分析行業在歐美發展得十分成熟,數據分析這一幫助企業決策的方式已經深入到各行各業。而在中國,數據分析剛剛走過了7個年頭,巨大的市場潛力和人才缺口使得數據分析行業進入了發展的黃金時期,而數據分析師則成為了一個朝陽職業。數據分析如何切實地幫助企業決策?數據分析師這一新興職業的工作性質是什麼?整個行業的未來發展前景如何?近日筆者帶著這些問題采訪了相關人士。
●數據分析在我國屬於朝陽行業
數據分析在國外廣泛應用於各個領域,但在中國仍屬於朝陽行業,至今剛剛走過了7個年頭。「中國數據分析行業的發展大致可以分成四個階段」, 中國商業聯合會數據分析專業委員會培訓處主任任彥博表示,「第一階段可稱為覺醒與前瞻。90年代,大量海外機構將西方投資決策技術引進中國,並受到中國企業和金融投資機構的廣泛學習借鑒。數據分析行業到了21世紀進入到第二個階段,迎來了數據分析師的誕生。從2004年到2010年,我國項目數據分析師人數從零起步,猛增至近萬人。到了第三階段,我國首家數據分析事務所創立。在第四個階段中,中國商業聯合會數據分析專業委員會正式成立,首屆中國數據分析業峰會在京成功的舉行都標志著中國數據分析行業已經進入快速發展的成長期。」...>>
⑤ 數據分析和數據挖掘的區別是什麼如何做好數據挖掘哪家做的比較好
數據分析更多採用統計學的知識,對原數據進行描述性和探索性分析,從結果中發現價值信息來評估和修正現狀。數據挖掘不僅僅用到統計學的知識,還要用到機器學習的知識,這里會涉及到模型的概念。數據挖掘具有更深的層次,來發現未知的規律和價值。
做好數據挖掘需要以下幾個步驟:第一、是商業理解;第二、數據理解;第三、數據准備;
第四、建模;第五、評價。關於數據挖掘的業務很多公司都有,不過並沒有專業的數據挖掘公司。
更多數據挖掘的信息,推薦咨詢CDA數據分析師的課程。「CDA 數據分析師」具體指在互聯網、金融、零售、咨詢、電信、醫療、旅遊等行業專門從事數據的採集、清洗、處理、分析並能製作業務報告、提供決策的新型數據分析人才。課程以項目調動學員數據挖掘實用能力的場景式教學為主,在講師設計的業務場景下由講師不斷提出業務問題,再由學員循序漸進思考並操作解決問題的過程中,幫助學員掌握真正過硬的解決業務問題的數據挖掘能力。點擊預約免費試聽課。