導航:首頁 > 數據分析 > 如何模擬千萬數據量

如何模擬千萬數據量

發布時間:2023-05-27 04:37:16

1. java如何實現一千萬條數據的計算而內存不會溢出

這跟大數據查詢優化的方法差不多,畢竟數據量在那裡,不可能單靠一種方式就能解決。
1)、硬體要求不用說了,表空間,內存等分配最大;
2)、如果大表已經做過分表最好,其次就是常用查詢用的欄位加索引(有時候效果很明顯);
3)、SQL語句方面,用exist代替in,查詢大表前小表後,過濾條件方最後,大條件方最後,
盡量用表關聯查詢減少子查詢,避免在索引上試用計算;
4)、程序方面;盡量減少在同一循環內做復雜計算,多條件計算等。
5)、採用緩存技術,避免大數據的重復查詢。

2. MySQL資料庫千萬級數據處理

資料庫主要抄就是兩個功能,襲一個是查詢,一個是儲存,而大數據必定會拖慢查詢,我們對於大數據,更多的是從業務邏輯進行拆分,比如:
當存儲一個人的歷史信息的時候,可以按照時間存儲,一定是最近的記錄最經常訪問,這就是我們常說的二八定律,最長訪問的數據僅僅佔有不到兩成的數據量。
上面說的就是分庫分表,這是一種解決數據量大的辦法。
內存資料庫,redis也是一種處理大數據的辦法,將常訪問的數據放到redis裡面,可以緩解資料庫的壓力,還是像上面說的,我們只要可以找到用戶經常訪問的數據,然後放到內存資料庫中,就可以大大減少mysql的壓力。
最後,技術一定是為解決問題而產生的,我們一定需要對業務進行分析,才能考慮使用什麼技術,拋開業務單存講技術,這是不正確的。

3. 海量數據分析處理方法

海量數據分析處理方法
一、Bloom filter
適用范圍:可以用來實現數據字典,進行數據的判重,或者集合求交集
基本原理及要點:
對於原理來說很簡單,位數組+k個獨立hash函數。將hash函數對應的值的位數組置1,查找時如果發現所有hash函數對應位都是1說明存在,很明顯這個過程並不保證查找的結果是100%正確的。同時也不支持刪除一個已經插入的關鍵字,因為該關鍵字對應的位會牽動到其他的關鍵字。所以一個簡單的改進就是 counting Bloom filter,用一個counter數組代替位數組,就可以支持刪除了。
還有一個比較重要的問題,如何根據輸入元素個數n,確定位數組m的大小及hash函數個數。當hash函數個數k=(ln2)*(m/n)時錯誤率最小。在錯誤率不大於E的情況下,m至少要等於n*lg(1/E)才能表示任意n個元素的集合。但m還應該更大些,因為還要保證bit數組里至少一半為0,則m應該>=nlg(1/E)*lge 大概就是nlg(1/E)1.44倍(lg表示以2為底的對數)。
舉個例子我們假設錯誤率為0.01,則此時m應大概是n的13倍。這樣k大概是8個。
注意這里m與n的單位不同,m是bit為單位,而n則是以元素個數為單位(准確的說是不同元素的個數)。通常單個元素的長度都是有很多bit的。所以使用bloom filter內存上通常都是節省的。
擴展:
Bloom filter將集合中的元素映射到位數組中,用k(k為哈希函數個數)個映射位是否全1表示元素在不在這個集合中。Counting bloom filter(CBF)將位數組中的每一位擴展為一個counter,從而支持了元素的刪除操作。Spectral Bloom Filter(SBF)將其與集合元素的出現次數關聯。SBF採用counter中的最小值來近似表示元素的出現頻率。
問題實例:給你A,B兩個文件,各存放50億條URL,每條URL佔用64位元組,內存限制是4G,讓你找出A,B文件共同的URL。如果是三個乃至n個文件呢?
根據這個問題我們來計算下內存的佔用,4G=2^32大概是40億*8大概是340億,n=50億,如果按出錯率0.01算需要的大概是650億個bit。現在可用的是340億,相差並不多,這樣可能會使出錯率上升些。另外如果這些urlip是一一對應的,就可以轉換成ip,則大大簡單了。
二、Hashing
適用范圍:快速查找,刪除的基本數據結構,通常需要總數據量可以放入內存
基本原理及要點:
hash函數選擇,針對字元串,整數,排列,具體相應的hash方法。
碰撞處理,一種是open hashing,也稱為拉鏈法;另一種就是closed hashing,也稱開地址法,opened addressing。
擴展:
d-left hashing中的d是多個的意思,我們先簡化這個問題,看一看2-left hashing。2-left hashing指的是將一個哈希表分成長度相等的兩半,分別叫做T1和T2,給T1和T2分別配備一個哈希函數,h1和h2。在存儲一個新的key時,同時用兩個哈希函數進行計算,得出兩個地址h1[key]和h2[key]。這時需要檢查T1中的h1[key]位置和T2中的h2[key]位置,哪一個位置已經存儲的(有碰撞的)key比較多,然後將新key存儲在負載少的位置。如果兩邊一樣多,比如兩個位置都為空或者都存儲了一個key,就把新key存儲在左邊的T1子表中,2-left也由此而來。在查找一個key時,必須進行兩次hash,同時查找兩個位置。
問題實例:
1).海量日誌數據,提取出某日訪問網路次數最多的那個IP。
IP的數目還是有限的,最多2^32個,所以可以考慮使用hash將ip直接存入內存,然後進行統計。
三、bit-map
適用范圍:可進行數據的快速查找,判重,刪除,一般來說數據范圍是int的10倍以下
基本原理及要點:使用bit數組來表示某些元素是否存在,比如8位電話號碼
擴展:bloom filter可以看做是對bit-map的擴展
問題實例:
1)已知某個文件內包含一些電話號碼,每個號碼為8位數字,統計不同號碼的個數。
8位最多99 999 999,大概需要99m個bit,大概10幾m位元組的內存即可。
2)2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
將bit-map擴展一下,用2bit表示一個數即可,0表示未出現,1表示出現一次,2表示出現2次及以上。或者我們不用2bit來進行表示,我們用兩個bit-map即可模擬實現這個2bit-map。
四、堆
適用范圍:海量數據前n大,並且n比較小,堆可以放入內存
基本原理及要點:最大堆求前n小,最小堆求前n大。方法,比如求前n小,我們比較當前元素與最大堆里的最大元素,如果它小於最大元素,則應該替換那個最大元素。這樣最後得到的n個元素就是最小的n個。適合大數據量,求前n小,n的大小比較小的情況,這樣可以掃描一遍即可得到所有的前n元素,效率很高。
擴展:雙堆,一個最大堆與一個最小堆結合,可以用來維護中位數。
問題實例:
1)100w個數中找最大的前100個數。
用一個100個元素大小的最小堆即可。
五、雙層桶劃分-—其實本質上就是【分而治之】的思想,重在分的技巧上!
適用范圍:第k大,中位數,不重復或重復的數字
基本原理及要點:因為元素范圍很大,不能利用直接定址表,所以通過多次劃分,逐步確定范圍,然後最後在一個可以接受的范圍內進行。可以通過多次縮小,雙層只是一個例子。
擴展:
問題實例:
1).2.5億個整數中找出不重復的整數的個數,內存空間不足以容納這2.5億個整數。
有點像鴿巢原理,整數個數為2^32,也就是,我們可以將這2^32個數,劃分為2^8個區域(比如用單個文件代表一個區域),然後將數據分離到不同的區域,然後不同的區域在利用bitmap就可以直接解決了。也就是說只要有足夠的磁碟空間,就可以很方便的解決。
2).5億個int找它們的中位數。
這個例子比上面那個更明顯。首先我們將int劃分為2^16個區域,然後讀取數據統計落到各個區域里的數的個數,之後我們根據統計結果就可以判斷中位數落到那個區域,同時知道這個區域中的第幾大數剛好是中位數。然後第二次掃描我們只統計落在這個區域中的那些數就可以了。
實際上,如果不是int是int64,我們可以經過3次這樣的劃分即可降低到可以接受的程度。即可以先將int64分成2^24個區域,然後確定區域的第幾大數,在將該區域分成2^20個子區域,然後確定是子區域的第幾大數,然後子區域里的數的個數只有2^20,就可以直接利用direct addr table進行統計了。
六、資料庫索引
適用范圍:大數據量的增刪改查
基本原理及要點:利用數據的設計實現方法,對海量數據的增刪改查進行處理。
七、倒排索引(Inverted index)
適用范圍:搜索引擎,關鍵字查詢
基本原理及要點:為何叫倒排索引?一種索引方法,被用來存儲在全文搜索下某個單詞在一個文檔或者一組文檔中的存儲位置的映射。
以英文為例,下面是要被索引的文本: T0 = 「it is what it is」 T1 = 「what is it」 T2 = 「it is a banana」
我們就能得到下面的反向文件索引:
「a」: {2} 「banana」: {2} 「is」: {0, 1, 2} 「it」: {0, 1, 2} 「what」: {0, 1}
檢索的條件」what」,」is」和」it」將對應集合的交集。
正向索引開發出來用來存儲每個文檔的單詞的列表。正向索引的查詢往往滿足每個文檔有序頻繁的全文查詢和每個單詞在校驗文檔中的驗證這樣的查詢。在正向索引中,文檔占據了中心的位置,每個文檔指向了一個它所包含的索引項的序列。也就是說文檔指向了它包含的那些單詞,而反向索引則是單詞指向了包含它的文檔,很容易看到這個反向的關系。
擴展:
問題實例:文檔檢索系統,查詢那些文件包含了某單詞,比如常見的學術論文的關鍵字搜索。
八、外排序
適用范圍:大數據的排序,去重
基本原理及要點:外排序的歸並方法,置換選擇敗者樹原理,最優歸並樹
擴展:
問題實例:
1).有一個1G大小的一個文件,裡面每一行是一個詞,詞的大小不超過16個位元組,內存限制大小是1M。返回頻數最高的100個詞。
這個數據具有很明顯的特點,詞的大小為16個位元組,但是內存只有1m做hash有些不夠,所以可以用來排序。內存可以當輸入緩沖區使用。
九、trie樹
適用范圍:數據量大,重復多,但是數據種類小可以放入內存
基本原理及要點:實現方式,節點孩子的表示方式
擴展:壓縮實現。
問題實例:
1).有10個文件,每個文件1G,每個文件的每一行都存放的是用戶的query,每個文件的query都可能重復。要你按照query的頻度排序。
2).1000萬字元串,其中有些是相同的(重復),需要把重復的全部去掉,保留沒有重復的字元串。請問怎麼設計和實現?
3).尋找熱門查詢:查詢串的重復度比較高,雖然總數是1千萬,但如果除去重復後,不超過3百萬個,每個不超過255位元組。
十、分布式處理 maprece
適用范圍:數據量大,但是數據種類小可以放入內存
基本原理及要點:將數據交給不同的機器去處理,數據劃分,結果歸約。
擴展:
問題實例:
1).The canonical example application of MapRece is a process to count the appearances ofeach different word in a set of documents:
2).海量數據分布在100台電腦中,想個辦法高效統計出這批數據的TOP10。
3).一共有N個機器,每個機器上有N個數。每個機器最多存O(N)個數並對它們操作。如何找到N^2個數的中數(median)?

4. 超過千萬條數據分析用那個軟體比較好

數據可視化分析軟體(OurwayBI)

OurwayBI採用Node.js

Node.js是一個Javascript運行環境(runtime),它實際上是對Google V8引擎進行了封裝。V8引擎執行Javascript的速度非常快,性能非常好。

強大的計算能力

獨創的內存OLAP僅需要創建一個動態視圖即可以完成分析模型的創建,而所有OLAP強大的計算能力,則通過內存計算來完成。

效果圖

閱讀全文

與如何模擬千萬數據量相關的資料

熱點內容
ps做網站教程 瀏覽:959
什麼app軟體買機票便宜 瀏覽:874
盛京醫院開葯在APP掛什麼科 瀏覽:842
初三一模後如何教學視頻教程 瀏覽:902
車床編程如何通過度數來編程 瀏覽:93
安卓2k17怎麼設置首發 瀏覽:945
b站微信 瀏覽:567
手機2個微信 瀏覽:914
常用手機下載的文件在哪裡 瀏覽:669
phpmemcache所有版本 瀏覽:738
ps自動排版文件名去 瀏覽:4
java網路爬蟲入門到精通 瀏覽:481
最火直播app 瀏覽:44
蘋果6ssim卡應用程序 瀏覽:889
qq浮動窗口代碼 瀏覽:232
備件管理有哪些好用的手機app 瀏覽:847
小米網路音箱如何關機 瀏覽:916
usb數據線哪個是火線 瀏覽:164
win10提示重新激活windows10 瀏覽:13
手機自裝app如何卸載 瀏覽:689

友情鏈接