① 如何提高數據分析
1、重視分析。重視分析是做好數據分析的前提,數據分析能力的提高就是需要數據分析人員去重視數據分析。
2、進行頌隱橡數據分析。這個階段是整個流程中最為關鍵的,既要進行深入的數據探索和建模,還要考慮關於模型的修正、部署以及監督應用。並且通過詳細回顧分析的整個流程,需要攜旅反思哪裡存在不足,哪些地方需要改進,進而形成數據分析相關的規章制度和相關流程。
3、組建分析團隊。組建一個好的野旁數據分析團隊,那麼就能夠集思廣益,進行數據分析的時候,可以做好數據分析。
② 提升企業數據分析能力的技術有哪些
1.回歸分析當您需要進行預測和預測未來趨勢時, 回歸分析是很好的工具。回歸測量因變數 (要測量的變數) 和自變數 (用於預測因變數的數據) 之間的關系。雖然你只能有一個因變數, 但你可以有幾乎無限數量的獨立變數。回歸還可以幫助您發現運營中可以通過突出趨勢和因素之間的關系來優化的業務點。
2.假設檢驗
這種分析方法也稱為“T 測試”, 可將所擁有的數據與假設進行比較攜爛。它還可以預測可能做出的決策將如何影響您的業務。T 測試可以比較兩個變數, 以找到相關性, 並根據結果做出決策。例如, 實際業務中可能會假設更多的工作時間相當於更高的生產率。在實施延長工作時間之前, 重要的是要確保有真正的效果, 以避免造成不好的反作用。
3.蒙特卡洛模擬
作為計算不可預知變數對特定因子影響的最常用方法之一, 蒙特卡羅模擬使用概率建模來幫助預測風險和不確定性。為了測試假設或場景, 蒙特卡洛模擬將使用隨機數和數據, 根據任何結果對任何情況進行各種可能的結果進行分析。這是一個非常有用的數據分析方法,可以跨越多個領域應用,包括項目管理、財務、工程、物流等等。通過測試各種可能性,可以了解隨機變數如何影響您的計劃和項目。
4.內容分析
這種方法有助於了解定性數據中出現的總體主題。使用詞雲圖顏色編碼特定主題和想法等技術有助於分析文本數據,以找到最常見的線程。在處理用戶反饋、訪談數據、開放式調查等數據時,內容分析可以很好地工作。這有助於確定需要改進的最重要領域謹坦。
5.敘事分析
敘事分析主要包含五個要素,即行動(act)、場景(scene)、行動者(agent)、能動性(agency)和目的(purpose)。這種分析側重於故事和想法在整個公司的溝通方式,可以幫助你更好地了解組祥隱桐織文化。這可能包括解釋員工對其工作的感受、客戶對組織的看法以及如何查看運營流程。它在考慮改變企業文化或規劃新的營銷策略時非常有用。
沒有統計分析的黃金標准,也沒有絕對正確的方法。選擇的方法應始終反映收集的數據以及要提取的解決方案類型。匹配正確的數據和分析有助於發現更好的方案,以優化企業的業務,對企業業務進行數字化變革。
③ 數據提升具體應該怎麼做
業務上
1.業務為核心,數據為王
了解整個產業鏈的結構
制定好業務的發展規劃
了解衡量的核心指標
有了數據必須和業務結合才有效果
需要懂業務的整體概況,摸清楚所在產業鏈的整個結構,對行業的上游和下游的經營情況有大致的了解。然後根據業務當前的需要,指定發展計劃,從而歸類出需要整理的數據。最後一步詳細的列出數據核心指標(KPI),並且對幾個核心指標進行更細致的拆解,當然具體結合你的業務屬性來處理,找出那些對指標影響幅度較大的影響因子。前期資料的收集以及業務現況的全面掌握非常關鍵。
2.思考指標現狀,發現多維規律
熟悉產品框架,全面定義每個指標的運營現狀對
比同行業指標,挖掘隱藏的提升空間
拆解關鍵指標,合理設置運營方法來觀察效果
爭對核心用戶,單獨進行產品用研與需求挖掘
業務的分析大多是定性的,需要培養一種客觀的感覺意識。定性的分析則需要藉助技術、工具、機器。而感覺的培養,由於每個人的思維、感知都不同,只能把控大體的方向,很多數據元素之間的關系還是需要通過數據可視化技術來實現。
3.規律驗證,經驗總結
發現了規律之後不能立刻上線,需要在測試機上對模型進行驗證。
技能上
1.Excel是否精鑽?
除了常用的Excel函數(sum、average、if、countifs、sumifs、offset、match、index等)之外,Excel圖表(餅圖、線圖、柱形圖、雷達圖等)和簡單分析技能也是經常用的,可以幫助你快速分析業務走勢和異常情況;另外,Excel裡面的函數結合透視表以及VBA功能是完善報表開發的利器,讓你一鍵輕松搞定報表。
2.你需要更懂資料庫
常用的資料庫如MySQL,Sql Server、Oracle、DB2、MongoDB等;除去SQL語句的熟練使用,對於資料庫的存儲讀取過程也要熟練掌握。在對於大數據量處理時,如何想辦法加快程序的運行速度、減少網路流量、提高資料庫的安全性是非常有必要的。
3.掌握數據整理、可視化和報表製作
數據整理,是將原始數據轉換成方便實用的格式,Excel在協同工作上並不是一個好工具,報表FineReport比較推薦。項目部署的Tableau、FineBI、Qlikview一類BI工具,有沒有好好培訓學習,這些便捷的工具都能淡化數據分析時一些重復性操作,把精力更多留於分析。
④ 為何要進行數據分析如何提高數據分析的效率
【導讀】數據剖析是指用恰當的統計剖析方法對收集來的很多數據進行剖析,提取有用信息和構成結論而對數據加以具體研究和歸納總結的過程。在實際應用中,數據剖析可協助人們作出判別,以便採取恰當行動。面臨海量數據時,進步數據剖析的功率成為困擾剖析師的難題。那麼,為何要進行數據分析?如何提高數據分析的效率呢?
為何要進行數據分析?
1、評價產品時機
產品構思初期,必要的需求調研及市場調研顯得尤為關鍵。產品時機評價對後期產品設計及迭代都至關重要,甚至說決議了一個產品的未來和核心理念。
2、剖析解決問題
產品出現欠好狀況,肯定是存在緣由的。不可能憑空想像臆造問題,必須尊重客觀現實。那麼只要通過必要的數據實驗才幹追溯到問題源頭,進而制定合理的解決計劃,徹底解決問題。
3、支撐運營活動
你這個產品功能上線後作用怎麼樣?A計劃和B計劃哪個更好些呢?諸如此類的問題,都牽涉到一個「標准」的問題。評判一個問題的好壞,最牢靠的恐怕就是數據了。曾經我就說過「人是不牢靠的,人們總是樂意相信自己想看見的東西。」只要給出實在、牢靠、客觀的事實——數據,才幹對具體的活動作出最實在的評判。
4、猜測優化產品
數據剖析的成果不只能夠反應出以往產品的狀況,即所謂的後見性數據;也能夠給出產品未來時間段內可能會遇到的問題,即所謂的先見性數據。一個真正的數據指標必須是可付諸行動的。後見性和先見性的數據都能夠付諸行動,差異只是先見性數據能猜測未來發生什麼,縮短迭代周期,精雕細鏤。
如何提高數據分析的效率?
一、明晰剖析的意圖
數據剖析的數據源往往龐大且無規矩,這個時分就需要明晰數據剖析的意圖。需要經過數據剖析展現什麼樣的成果。數據需求直接源於最終的剖析結果,如果你現已全面地規劃了要做哪些剖析、產生什麼結果,那麼你將知道數據需求是什麼。
二、剖析思路系統化,邏輯話
在進行數據剖析時,能夠借鑒管理學營銷學等理論知識,打開剖析思路,將數據剖析形成系統化,邏輯化的剖析模式。
三、掌握有效的剖析辦法
熟練掌握數據剖析的一般流程,掌握剖析辦法。理論與實踐相結合,培育數據剖析辦法與數據之前邏輯能力的把控,全面深刻的認識數據的價值,科學進行數據剖析工作。
四、選擇適宜的剖析東西
一個適宜的數據剖析東西是協助數據剖析的利器,但是面臨市場上很多的剖析東西,怎麼才能找到簡略易用的剖析東西似乎成為困擾業務人員的問題。大數據魔鏡作為一款調集數據剖析挖掘一體的可視化軟體,易用性極強,只需簡略拖拽即可完成數據剖析工作。
五、用圖表說話
簡略明晰的圖表能夠協助更好的展現數據結果,發現問題所在。在數據剖析的過程中,圖表能夠協助理清剖析思路,跳出剖析瓶頸。
六、多種可視化展現
跟著信息化的發展,數據井噴時代帶來海量數據,以往一般單調的展現方式現已無法滿足需求。一起,關於企業來說,明晰多元的數據能更好的開掘問題所在,為企業決議計劃帶來科學依據和參閱。大數據魔鏡有500多種可視化效果且烘托速度到達秒級。
七、會集精神有規則的歇息
關於相關業務人員或許大數據剖析師來說,高效專注的剖析時刻是有限的,或許會集在幾個小時內,因此在進行數據剖析工作時應該合理分配時刻,有規則的歇息,放鬆大腦。
以上就是小編今天給大家整理分享關於「為何要進行數據分析?如何提高數據分析的效率?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
⑤ 數據分析能力不強,應該通過什麼方法加強
數據分析一般不需要編程能力,但是要有編程的邏輯思維能力:
1、要開發數據分析軟體以及程序,讓崗位人直觀看明白的話可以採用編程方式開發出來,這個就要編程能力。
2、懂業務。從事數據分析工作的前提就會需要懂業務,即熟悉行業知識、公司業務及流程,最好有自己獨到的見解,若脫離行業認知和公司業務背景,分析的結果只會是脫了線的風箏,沒有太大的使用價值。
3、懂管理。一方面是搭建數據分析框架的要求,比如確定分析思路就需要用到營銷、管理等理論知識來指導,如果不熟悉管理理論,就很難搭建數據分析的框架,後續的數據分析也很難進行。另一方面的作用是針對數據分析結論提出有指導意義的分析建議。
4、懂分析。指掌握數據分析基本原理與一些有效的數據分析方法,並能靈活運用到實踐工作中,以便有效的開展數據分析。基本的分析方法有:對比分析法、分組分析法、交叉分析法、結構分析法、漏斗圖分析法、綜合評價分析法、因素分析法、矩陣關聯分析法等。高級的分析方法有:相關分析法、回歸分析法、聚類分析法、判別分析法、主成分分析法、因子分析法、對應分析法、時間序列等。
5、懂工具。指掌握數據分析相關的常用工具。數據分析方法是理論,而數據分析工具就是實現數據分析方法理論的工具,面對越來越龐大的數據,我們不能依靠計算器進行分析,必須依靠強大的數據分析工具幫我們完成數據分析工作。
6、懂設計。懂設計是指運用圖表有效表達數據分析師的分析觀點,使分析結果一目瞭然。圖表的設計是門大學問,如圖形的選擇、版式的設計、顏色的搭配等等,都需要掌握一定的設計原則。
參考鏈接:http://ke..com/link?url=b8z_U8-QuI49JAGq#3
⑥ 數據分析師要學什麼來提升自己
想了解數據分析師的職業規劃或學習計劃,由此來提升自己的技能和專業知識,我覺得最准確最有針對性一個方法就是查閱招聘崗位的工作要求,這樣我們就可以有的放矢地好好專研自己的學習。我們看一下以下這條招聘要求:
1.負責大數據平台的規劃、分析、設計工作,把握整體架構,進行相關技術方案文檔的撰寫;
2.負責大數據平台的部署、開發、維護工作;
3.與BI分析人員協作,完成面向業務目標的數據分析模型定義和演算法實施工作;
4.承擔相關技術領域的探索與儲備。
任職要求:
1.大學本科以上學歷,熟練掌握C/C++或者JAVA;
2.熟悉各種常用數據結構及演算法,對linux下的網路資料庫開發有足夠經驗;
3.有2年以上C++實戰經驗者優先;
4.有大數據挖據方面經驗和技能者優先;如hadoop、hbase、hive等;
5.善於與其他部門的成員溝通、協作。
還有一個招聘要求是:
崗位職責:
1、理解並挖掘用戶需求,進行數據建模;
2、利用專業統計、分析工具從海量數據中總結規律、挖掘潛在價值,提供決策依據。
任職要求:
1、數學類、統計類、計算機類、人工智慧類相關專業本科及以上學歷,2年左右專職數據分析、挖掘經驗,優秀的應屆碩士也可;
2、良好的數據敏感性,善於從海量數據中提取有效信息進行分析挖掘和建模;
3、熟練掌握任一種分析工具,例SPSS、SAS、R語言、MatLab;
4、熟悉資料庫技術,如oracle、SQL、MongoDB;
5、對於數學建模、數據挖掘、Hadoop大數據有經驗者優先。
我想,你看到這,應該是對數據分析工程師有了非常明晰的看法,好好加油ba !
⑦ 如何提高收集數據和分析數據的能力
談一些個人的工作經驗,希望對後來人有幫助。首先總結下平時數據分析的一般步驟。
---------------------------濃縮精華版--------------------------------
第一步:數據准備:(70%時間)
獲取數據(爬蟲,數據倉庫)
驗證數據
數據清理(缺失值、孤立點、垃圾信息、規范化、重復記錄、特殊值、合並數據集)
使用python進行文件讀取csv或者txt便於操作數據文件(I/O和文件串的處理,逗號分隔)
抽樣(大數據時。關鍵是隨機)
存儲和歸檔
第二步:數據觀察(發現規律和隱藏的關聯)
單一變數:點圖、抖動圖;直方圖、核密度估計;累計分布函數
兩個變數:散點圖、LOESS平滑、殘差分析、對數圖、傾斜
多個變數:假色圖、馬賽克圖、平行左邊圖
第三步:數據建模
推算和估算(均衡可行性和成本消耗)
縮放參數模型(縮放維度優化問題)
建立概率模型(二項、高斯、冪律、幾何、泊松分布與已知模型對比)
第四步:數據挖掘
選擇合適的機器學習演算法(蒙特卡洛模擬,相似度計算,主成分分析)
大數據考慮用Map/Rece
得出結論,繪制最後圖表
循環到第二步到第四步,進行數據分析,根據圖表得出結論完成文章。
------------------------------業務分析版--------------------------------
「無尺度網路模型」的作者艾伯特-拉斯洛·巴拉巴西認為——人類93%的行為是可以預測的。數據作為人類活動的痕跡,就像金礦等待發掘。但是首先你得明確自己的業務需求,數據才可能為你所用。
1. 數據為王,業務是核心
了解整個產業鏈的結構
制定好業務的發展規劃
衡量的核心指標有哪些
有了數據必須和業務結合才有效果。首先你需要摸清楚所在產業鏈的整個結構,對行業的上游和下游的經營情況有大致的了解。然後根據業務當前的需要,指定發展計劃,從而歸類出需要整理的數據。最後一步詳細的列出數據核心指標(KPI),並且對幾個核心指標進行更細致的拆解,當然具體結合你的業務屬性來處理,找出那些對指標影響幅度較大的影響因子。前期資料的收集以及業務現況的全面掌握非常關鍵。
2. 思考指標現狀,發現多維規律
熟悉產品框架,全面定義每個指標的運營現狀
對比同行業指標,挖掘隱藏的提升空間
拆解關鍵指標,合理設置運營方法來觀察效果
爭對核心用戶,單獨進行產品用研與需求挖掘
發現規律不一定需要很高深的編程方法,或者復雜的統計公式,更重要的是培養一種感覺和意識。不能用你的感覺去揣測用戶的感覺,因為每個人的教育背景、生活環境都不一樣。很多數據元素之間的關系沒有明顯的顯示,需要使用直覺與觀察(數據可視化技術來呈現)。
3. 規律驗證,經驗總結
發現了規律之後不能立刻上線,需要在測試機上對模型進行驗證。
P.S.數學建模能力對培養數感有一定的幫助
推薦兩個論壇:
數學建模與數學應用論壇(Mathematical Modeling and Mathematical Applications Forum)
數學中國 (數學建模)-最專業的數學理論研究、建模實踐平台
⑧ 怎麼培養數據分析的能力
數據分析需要哪些思維/能力/知識呢?
比如,數據分析思維、結構化思維、公式化思維、學法體系的思維.......這些思維幫助你,即使碰到自己不熟悉的問題,也能從一定的角度切入分析並保持清晰的邏輯;
一定的業務理解能力,能理解業務背後的商業思路。只有理解問題,才能轉換成數據分析的問題,才知道如何設定分析目標並進行分析;
基礎理論知識:數理統計、模型原理、近期市場的調研等;
常規分析工具的使用:常用辦公軟體(Excel、PPT、思維導圖)、資料庫、統計分析工具、數據挖掘等;
數據報告和數據可視化的能力。數據分析得再好,如果不能以簡潔易懂的方式「表達」,成效也會大打折扣。
等等等,諸如此類的基本知識能力貯備......
那麼想要提升這些能力該做點什麼呢?下面具體來說說怎麼做能把這些基礎實力打好。
從分析理論和工具實踐著手
1、分析理論
分析理論包括:明確業務場景、確定分析目標、構建分析體系和梳理核心指標。
我們要做的就是,首先明確是什麼樣的業務場景,不同的業務,分析體系也隨之不同;然後,結合業務問題確定分析的目標,列出核心指標,再搜集整理所需要的數據。
推薦書籍:《數據化管理》、《決戰大數據 》
數據分析的幾個步驟:
(1)數據獲取
數據獲取往往看似簡單,但是它需要分析者對問題進行商業理解,即轉化成數據問題來解決,如,需要哪些數據,從哪些角度來分析等,在界定了這些問題後,再進行數據採集。
此環節,需要數據分析師具備結構化的邏輯思維。
推薦書籍:《金字塔原理》、麥肯錫三部曲:麥肯錫意識、工具、方法
推薦工具:思維導圖工具(Xmind網路腦圖等)
(2)數據處理
數據的處理需要掌握有效率的工具:
Excel及高端技能:
基本操作、函數公式、數據透視表、VBA程序開發。
我一般會先過一遍基礎,知道什麼是什麼,然後找幾個case練習。多逛逛excelhome論壇,平常多思考如何用excel來解決問題,善用插件,還有記得保存。
專業的報表工具:
(成規模的企業會用)日常做報表可以設計一個通用模板,只要會寫SQL就可上手。
相比excel做報表,這種工具開發的技術要求較低,能很快地開發常規報表、動態報表。
資料庫的使用:
熟練掌握SQL語言(很重要!!!),常見的有Oracle、SQL sever、My SQL等。
學習流行的hadoop之類的分布式資料庫來提升個人能力,對求職等都會有所幫助。
(3)分析數據
分析數據往往需要各類統計分析模型,如關聯規則、聚類、分類、預測模型等等。
因此,熟練掌握一些統計分析工具不可免:
lPSS系列:老牌的統計分析軟體,SPSS Statistics(偏統計功能、市場研究)、SPSS Modeler(偏數據挖掘),不用編程,易學。
SAS:經典挖掘軟體,需要編程。
R:開源軟體,新流行,對非結構化數據處理效率上更高,需編程。
各類BI工具:Tableau、PowerBI、FineBI,對於處理好的數據可作自由的可視化分析,圖表效果驚人。
推薦書籍:
《說菜鳥不會數據分析》系列,入門級書,初學者最適。
《數據挖掘與數據化運營實戰,思路、方法、技巧與應用》,內容很系統很全面。
《市場研究定量分析方法與應用》,簡明等編著,中國人民大學出版社。
(4)數據可視化呈現
很多數據分析工具已經涵蓋了數據可視化部分,這時就只需要把數據結果進行有效的呈現和演講匯報即可,可用word\PPT\H5等方式展現。
2、工具實踐
(1)對於入門小白,建議從Excel工具入手,這里以Excel為例:
學習Excel是一個循序漸進的過程:
基礎的:簡單的表格數據處理、列印、查詢、篩選、排序
函數和公式:常用函數、高級數據計算、數組公式、多維引用、function
可視化圖表:圖形圖示展示、高級圖表、圖表插件
數據透視表、VBA程序開發......
多逛逛excelhome論壇,平常多思考如何用excel來解決問題,學慣用各種插件,對能夠熟練使用Excel都有幫助。
其中,函數和數據透視表是兩個重點。
函數
製作數據模板必須掌握的excel函數:
日期函數:day,month,year,date,today,weekday,weeknum 日期函數是做分析模板的必備,可以用日期函數來控制數據的展示,查詢指定時間段的數據。
數學函數:proct,rand,randbetween,round,sum,sumif,sumifs,sumproct
統計函數:large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs 統計函數在數據分析中具有舉足輕重的作用,求平均值,最大值,中位數,眾位數都用得到。
查找和引用函數:choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata 這幾個函數的作用不用多說,特別是vlookup,不會這個函數基本上復雜報表寸步難行。
文本函數:find,search,text,value,concatenate,left,right,mid,len 這幾個函數多半用在數據整理階段使用。
邏輯函數:and,or,false,true,if,iferror
(以上學會,基本能秒殺90%的辦公室白領!)
數據透視表
數據透視表的作用是把大量數據生成可交互的報表,它具有這樣一些重要功能:分類匯總、取平均、最大最小值、自動排序、自動篩選、自動分組;可分析佔比、同比、環比、定比、自定義公式等
現實中,取數或報表+EXCEL+PPT似乎還是主流形式。
工具上,無論是業務人員還是分析人員,都可以通過自動取數工具或者BI工具來製作報表,減少重復操作的時間。
其次,增加與業務人員的溝通,充分了解業務需求,當你的業務水平和他們差不多甚至更高時,自然而然知道他們一言兩語背後真實的需求是什麼了。
最後,站在更高角度上,報表的基本粒度就是指標,可梳理出企業的基本指標體系,從經營分析的角度去做報表,把報表的工作標准化,降低報表的冗餘,避免動不動就做一張報表。標准化包括指標分類,指標命名,業務口徑,技術口徑,實現方式等等。其實,最終目的是實現報表數據一致性,減少重復報表開發,降低系統開銷的戰略性舉措。
在業余時間,可以多補充數理統計知識,學習R、Python語言,學習常用的挖掘模型,往高級分析師路上發展!
一起加油鴨!
以上,就是今天的分享,數據分析能力聽起來很大很抽象,雖是軟實力但卻是行業的硬要求!量變引起質變,一步步來,才能做到觸類旁通,做起項目才會越來越順手。
⑨ 如何提升數據分析能力
1、數據支持。任何一個企業品牌要想進入大數據營銷,首先就要制定一個數據收集和整理的要點,明確大數據技術對於企業品牌的營銷發展意義。知道怎樣合法的收集到自己需要的數據,以及後續如何處理這些數據,如何通過這些數據來為企業盈利等等。這些基本的定義是企業開展大數據營銷的第一步。
2、數據使用工具。如果企業已經做好了大數據營銷的准備,並且已經有了自己所需的數據資源。那麼,這時候就需要一定的大數據分析工具了。市面上的大數據工具給企業商家帶來了全新的分析方式,基於成熟的分析結構、視覺化以及數據管理系統也迅速地改變著企業的分析方式,這些數據工具的出現極大的方便了企業的大數據營銷進程。
3、大數據人才。現在大數據的火爆,自然而然大數據的人才也就十分的稀缺。一個成功的團隊離不開人員的良好配置,大數據人才往往以數據分析人才為主,大致分為以下幾種:數據科學家,提供有關統計、相關性和質量等的專業技能;商業分析師,從商業的角度出發,甄別數據科學家從純粹數據分析角度發現的異常數據以及一般性規律,發掘出其中與公司業務發展緊密相關的數據和規律並根據重要性進行排序;技術專家,幫助提供收集、整理和處理數據所需的硬體和軟體解決方案。
關於如何提升數據分析能力,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。