導航:首頁 > 數據分析 > 數據挖掘在哪些行業或產業上應用

數據挖掘在哪些行業或產業上應用

發布時間:2023-05-24 00:34:39

『壹』 大數據應用與哪些行業

大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。

1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。

2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。

3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。

4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。

5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。

6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。

7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。

8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。

9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。

10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。

11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。

12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。

大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。

(1)數據挖掘在哪些行業或產業上應用擴展閱讀

七個典型的大數據應用案例

1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。

3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技悉指培術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。

4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。

5、Morton牛排店的品牌認知睜唯。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連逗改鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。

6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。

7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。

『貳』 數據挖掘的應用場景都有哪些

1.教育領域


數據挖掘技術的應用已經滲入到教育教學的各個方面,如支持教育科學決回策、實答施個性化教育、對學生的學業成績進行評估等。數據挖掘的實際應用逐漸突破了傳統的教學模式,改善了教學效果,促進了教學質量的提升。


2.風控領域


數據挖掘作為深層次的數據信息分析方法,能夠對各種因素之間隱藏的內在聯系進行全面分析。目前在風控領域可應用於信貸風險評估、交易欺詐識別、黑產防範及消費信貸四個方面,通過風險預警,可以讓風險管理者提前做好准備,從而為決策提供參考信息。


3.醫療領域


目前,醫院已經積累了涵蓋患者、費用、葯物以及相關管理信息等數據資源,數量龐大且類型復雜。數據挖掘技術則能夠幫助醫院從中提取出有價值的信息,滿足醫療服務各個環節的需求。其在醫療成本的預測和控制、慢性疾病的預警、醫療信息質量管理等方面,都起到了明顯的正向作用。


關於數據挖掘的應用場景都有哪些,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

『叄』 學習數據挖掘以後就業方向是什麼

數據挖掘領域還是比較有前景的,主要有以下幾個方向:
1.做科研,可以在高校、科研單位以及各個企業從事數據挖掘科研人員;
2.做程序開發設計,可以在互聯網公司進行數據挖掘及其相關程序演算法;
3.數據分析師,在企事業單位做咨詢、分析等。

目前國內的數據挖掘人員工作領域大致可分為三類:
數據分析師:利用各項數據在電商、金融、電信、咨詢等行業里做業務咨詢。
數據挖掘工程師:在互聯網、多媒體、電商等大數據相關行業里做機器學習演算法實現和分析。
科學研究方向:在高校、科研單位、企業研究院等高大上科研機構研究新演算法效率改進及未來應用。

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,CDA數據分析師課程內容兼顧培養解決數據挖掘流程問題的橫向能力以及解決數據挖掘演算法問題的縱向能力。要求學生具備從數據治理根源出發的思維,通過數字化工作方法來探查業務問題,通過近因分析、宏觀根因分析等手段,再選擇業務流程優化工具還是演算法工具,而非「遇到問題調演算法包」。真正理解商業思維,項目思維,能夠遇到問題解決問題;要求學生在使用演算法解決微觀根因分析、預測分析的問題上,根據業務場景來綜合判斷,洞察數據規律,使用正確的數據清洗與特徵工程方法,綜合使用統計分析方法、統計模型、運籌學、機器學習、文本挖掘演算法,而非單一的機器學習演算法。真正給企業提出可行性的價值方案和價值業務結果。點擊預約免費試聽課。

『肆』 數據挖掘專業有哪些應用啊,這是個什麼樣的專業,發展前景怎樣

數據挖掘是一門交叉學科,隨著計算機技術和數據倉庫的發展,在電信、銀行、保險等許多商業行業得到廣泛的應用,下面我說幾個典型的應用,如
1、客戶細分:人以類聚,客戶細分或客戶分群是現代營銷的基礎,通過聚類分析的方法,對客戶進行劃分,獲得各個客戶群不同的特徵,從而對客戶群進行針對性的營銷,或者面向特定細分群開發特定產品,從而達到提高產品銷量,提升客戶忠誠度的目的。例如,銀行業將客戶分成不同的群體,向其提供不同的個性化投資產品。
2、客戶流失預測:研究表明,保留老客戶的成本遠低於獲取新客戶的成本。但是,對所有的客戶進行挽留營銷不切實際並且非常昂貴,通過對客戶行為模式的挖掘,客戶流失預測僅找出那些可能會流失的客戶,對這些客戶進行針對性的挽留,可降低營銷成本,提高產品收入,這對於有大量客戶的電信、銀行、保險等行業非常必要。
3、客戶價值分析:客戶對企業的貢獻不同,一般來說遵循「20-80」原則,少數客戶對企業的貢獻佔大都分比例,那麼,哪些客戶是企業最好的客戶?僅僅是最近奉獻收入最多的群體嗎?哪些是潛在的好客戶?通過客戶價值分析,發現企業的最好客戶,把有限的資源使用在能帶來最大的價值客戶的身上。
4、異常發現:通過對數據進行分析,找出其中的異常點,例如,信用卡是當今廣泛使用的金融產品,隨著競爭的加劇,各銀行競相大力推廣信用卡,有少數不法分子趁機使用假資料申請信用卡,騙取錢財。通過數據挖掘對申請資料進行學習評分,可以發現信用欺詐的申請者,避免損失;通過對稅務數據的分析,發現偷稅漏稅行為等。
5、交叉營銷:通過對商品和服務組合營銷模式的分析,能夠發現商品之間的搭配銷售模式。利用這些模式,能夠設計交叉銷售策略。例如,在零售業進行客戶購物搖籃分析,根據結果對貨架重新擺放,從而提高銷售量;電台通過對館長觀看習慣的分析,重新編排節目,提高收視率;零售業巨頭沃爾瑪使用數據倉庫和數據挖掘技術分析客戶的購買模式,用於對庫存的管理和銷售機會的把握。
6、個性化服務:對每個人的消費進行分析,發現其餘眾不同的消費習慣,可有針對性地提供服務或進行促銷。例如,在電子商務中,網站會根據過往購買記錄項向客戶推薦新到商品;根據大多數人購買商品的行為,向客戶推薦當前所買商品的關聯關系。
7、資料庫直銷:一般來說,向客戶隨機發出大量直銷郵件,可能僅有不到5%的客戶會做出響應。根據小規模郵件直銷的結果反饋,數據挖掘建立一個模型,找出潛在最有可能做出響應的客戶,將響應率提高到15%,從而削減了成本,提高了銷量。
8、 改進工作效率:通過對日常工作或業務數據分析,找到優化的模式,從而改進工作效率或業務流程,例如,NBA使用一套數據挖掘工具,分析球員的運動,以幫助教練找到最優組織進攻和防守的方法;通過對製造廠商供應鏈日常活動的分析,找出供應鏈的最優運作方式;通過對生產計劃及生產效率等數據的分析,找到最有效的排班方式;通過對生產工藝和質量數據的關系的分析,發現好的生產工藝流程等。
9、科學發現:通過對大量科學實驗數據進行分析,發現其中隱藏的模式,可導致新的科學發現的產生。例如,通過對天文數據的數據挖掘分析,發現新的星體;通過對生物信息數據的分析,發現新的基因和蛋白質折疊;識別具有良好葯物特性的分子,以用於製造新葯;通過對醫療數據的分析,發現葯物和疾病之間的關系等。
10、預警:通過對數據中趨勢的分析,對將要可能發生的事件提出預警。例如,在電信行業,通過對以往預警數據的分析,發現有哪些常規報警可能是重大問題的前兆,並提出預警,阻止事故的發生;對工廠生產數據的分析,識別重大質量問題的前兆,已採取必要措施,避免產品質量試過的發生。

等等很多,是一門很有發展的學科。

『伍』 數據挖掘的應用有哪些

數據挖掘目前在中國的尚未流行開,猶如屠龍之技;數據挖掘本身融合了統計學、資料庫、機器學習、模式識別、知識發現等學科,並不是新的技術。

數據挖掘之所以能夠應用不是因為演算法,演算法是以前就有的。數據挖掘應用的原因是大數據和雲計算。比如阿爾法狗的後台有上千台計算機同時運行神經網路演算法;

數據初期的准備工作,也稱Data Warehousing。通常占整個數據挖掘項目工作量的70%左右。在前期你需要做大量的數據清洗和欄位擴充的工作。數據挖掘和報告展現只佔30%左右;

數據挖掘技術更適合業務人員學習(相比技術人員學習業務來的更高效)。

目前國內的數據挖掘人員工作領域大致可分為三類

1)數據分析師:在擁有行業數據的電商、金融、電信、咨詢等行業里做業務咨詢,商務智能,出分析報告;

2)數據挖掘工程師:在多媒體、電商、搜索、社交等大數據相關行業里做機器學習演算法實現和分析;

3)科學研究方向:在高校、科研單位、企業研究院等高大上科研機構研究新演算法效率改進及未來應用。

你自己的定位與學習

基於以上的介紹,你大概可以明確你需要努力的方向。如果你不是致力於科研方向,那麼你需要掌握如下的技能:

1. 需要理解主流機器學習演算法的原理和應用。按照需要解決的問題,主要分為三大類,見下圖:

2. 需要熟悉至少一門編程語言。如R,Python,SPSS Modeler,SAS,WEKA等。

關於軟體,有三個原則:只要能達到目標的軟體就是好軟體;你研究的領域啥軟體好用就用啥軟體;不要妄想用一個軟體解決所有問題。

3. 需要理解資料庫基本原理,能夠熟練操作至少一種資料庫,如MySQL,OracelDB2等。

4. 熟悉數據挖掘常見的運用場景。如客戶生命周期管理、客戶畫像和客戶分群、客戶價值預測模型構建、推薦系統設計等,這些需要依託於不同行業。

5.經典圖書推薦:《數據挖掘:概念與技術》、《數據挖掘導論》、《機器學習實戰》、《資料庫系統概論》、《R語言實戰》。

『陸』 數據挖掘應用在哪些領域

數據挖掘可以應用在金融、醫療保健、市場業、零售業、製造業、司法、工程和科學、保險業等領域。

數據挖掘,又譯為資料探勘、數據采礦。它是資料庫知識發現中的一個步驟。數據挖掘一般是指從大量的數據中自動搜索隱藏於其中的有著特殊關系性的信息的過程。數據挖掘通常與計算機科學有關,並通過統計、在線分析處理、情報檢索、機器學習、專家系統和模式識別等諸多方法來實現上述目標。

近年來,數據挖掘引起了信息產業界的極大關注,其主要原因是存在大量數據,可以廣泛使用,並且迫切需要將這些數據轉換成有用的信息和知識。獲取的信息和知識可以廣泛用於各種應用,包括商務管理,生產控制,市場分析,工程設計和科學探索等。

『柒』 數據挖掘的前景怎麼樣,主要是就業方面的

數據挖掘就業的途徑主要有以下幾種:
1、做科研(在高校、科研單位以及大型企業,主要研究演算法、應用等);
2、做程序開發設計(在企業做數據挖掘及其相關程序演算法的實現等);
3、數據分析師(在存在海量數據的企事業單位做咨詢、分析等)。

現在各個公司對於數據挖掘崗位的技能要求偏應用多一些。目前市面上的崗位一般分為演算法模型、數據挖掘、數據分析三種。當前數據挖掘應用主要集中在電信(客戶分析),零售(銷售預測),農業(行業數據預測),網路日誌(網頁定製),銀行(客戶欺詐),電力(客戶呼叫),生物(基因),天體(星體分類),化工,醫葯等方面。薪酬方面就目前來看,和大多IT業的職位一樣,數據挖掘方面的人才在國內的需求工作也是低端飽和,高端緊缺。從BAT的招聘情況來看,數據挖掘領域相對來說門檻還是比較高的,但是薪酬福利也相對來說比較好,另外隨著金融越來越互聯網化,大量的演算法工程師會成為以後互聯網金融公司緊缺的人才。

關於數據挖掘的相關學習,推薦CDA數據師的相關課程,課程培養學員硬性的數據挖掘理論與Python數據挖掘演算法技能的同時,還兼顧培養學員軟性數據治理思維、商業策略優化思維、挖掘經營思維、演算法思維、預測分析思維,全方位提升學員的數據洞察力。點擊預約免費試聽課。

『捌』 數據挖掘在智能商業中的應用有哪些

數據挖掘應用程序提供的可計量的收益,包括降低企業經營成本,提高盈利能力,以及更出色的服務。這樣的好處在包括保險,直郵營銷,電信,零售,和醫療保健行業得以證實。

保險和直郵產業是依賴於數據挖掘,做出有利的商業決策的兩個產業。例如保險公司必須能夠准確地評估由投保人有無競爭力的保險費所帶來的風險。例如,對低風險的投保人叢運薯濫悄圓收費用的投訴會促使他們尋找其他較低保費的公司。少收高風險的投保人會由於較低的保費吸引更多的人。在任一情況下,必然成本增加、利潤降低。有效的數據分析使准確的預測模型的建立是解決這些問題的關鍵。

交易數據在被用於數據挖掘應用前的轉換是臭名昭著的要求。這些數據包括對個人和事件的記錄。一個例子是將一家集零售客戶購買的物品,組合成一個「市場籃子」。另一種是一組由一個特定的上網請求的Web頁面從網站上得到的分組會話。公司全球范圍內收集的大量有關交易數據的能力已經遠遠超過了他們進行分析的能力。從滲者數據挖掘的角度看,由於多種因素的影響,這是特別具有挑戰性的交易數據。

閱讀全文

與數據挖掘在哪些行業或產業上應用相關的資料

熱點內容
有關考研熱國家有哪些文件政策 瀏覽:666
pos機如何重新綁定app 瀏覽:68
十進制轉八進制java演算法 瀏覽:503
文件傳輸到手機上 瀏覽:20
硬碟數據還原軟體文件原名 瀏覽:61
手機百度雲盤下載的文件在哪裡 瀏覽:716
蘋果屏幕動態怎麼關閉 瀏覽:190
ri格式的文件怎麼打開 瀏覽:794
表格里如何將所有數據相加 瀏覽:805
買房網站的軟體有哪些 瀏覽:101
llftool工具 瀏覽:475
電腦找蘋果文件管理 瀏覽:980
怎麼重設微信支付密碼 瀏覽:115
plc編程實訓台如何 瀏覽:587
初中生自學哪個編程語言比較好 瀏覽:889
suselinux9ntp命令 瀏覽:604
php網路編程 瀏覽:265
國行5s最新系統版本 瀏覽:384
java輸出系統時間 瀏覽:227
大學心理普查要什麼app 瀏覽:216

友情鏈接