1. 大數據培訓價格一般多少錢
這個看周期的長短,一般的是1-2W,具體需咨詢
2. 淘寶數據挖掘是什麼
問題一:淘寶數據挖掘 完全不可以的 要是這樣的 話淘寶整天垃圾簡訊或者旺旺消息滿天飛 這樣淘寶也不能能透露客戶的私人信息給你的
問題二:電子商務中常用的數據挖掘數據源有哪些 一、 流量1、 搜索流量工具:搜索診斷助手
A―基礎條件:不違規,可在「賣家工作台」-「搜索診斷助手」-「寶貝診斷里」檢查。
B―相關性:類目屬性相關性、標題關鍵字相關性。C―人氣分:是否櫥窗推薦、是否加入消保、DSR評分、支付寶使用率、旺旺效應速度、拍貨與發貨的時差。
D―圖片:很多賣家在優化主搜流量時,經常會忽略圖片鋒桐的優化,然而圖片點擊率的差距,直接影響了最後的搜索流量。買家不是直接搜索進來的,而是被圖片吸引進來的,優化圖片就顯得非常重要。建議可以用直通車來測試圖片(方法下文會介紹到)。
E―價格與銷量:銷量相當的產品,價格高的有更多展示的機會;價格相同的產品,銷量高的有更多展示機會。而檢查該項指標主要檢查自己與直接競爭對手的差距,尤其是7天銷量的差距,以做調整。
F―標題優化:在銷量相對低的時候做銷多使用長尾詞,銷量高的時候多使用泛詞、中心詞,並反復測試,得出搜索流量 搜索轉化率的最大值。
2、 付費流量工具:各付費工具的數據報表、店查查。
―淘客:淘客診斷只要看自己與競爭對手的銷量和傭金有何差距即可。
二、 轉化1、 轉化率工具:店查查
A― 內頁:首先看銷量,其次看評價質量,再來看單品轉化率、頁面停留時間和詢單率。如果連基礎銷量都沒有,評價很差,轉化率是不可能好的。兩個先決條件解決了,再看單品轉化率、頁面停留時間和詢單率是否不低於行業均值(或店內賣的好的寶貝)。若低於,則一一優化USP賣點、邏輯順序(是否都做到圍繞USP)、展現內容多樣化、展現方式。
B―訪問深度:由於80%的顧客入店都是從內頁進來,所以主要優化內頁可導流的位置,分別為店招、寶貝頁關聯、寶貝頁側邊欄、店尾進行優化。再優化首頁。
C―支付率:是否做到了80%以上。
D―營銷活動:定期舉辦營銷活動可提升轉化率。
E―客服詢單轉化率:是否至少做到了行業均值。查看工具:如店查查等第三方工具。優化方法:顧客的每一個問題都建立標准答案。2、 DSR工具:淘寶DSR評分計算器。優化辦法:a、淘寶原有服務的升級(7天無理由升級為30天、3天發貨升級為24小時發貨等);b、淘寶未有服務的創新(圍繞客戶與商家接觸點的創新,如SNS、游戲)。3、 CRMCRM主要查看老客戶佔比、老客戶轉化率、二次購買率、客戶分組短彩郵的ROI。工具:賣家工作台-會員關系管理、數雲、客道等第三方軟體。優化的辦法:建立老客戶分組,根據分組創建老客戶的不同特權。越高級的客戶擁有越高級的特權。
問題三:數據挖掘為何工資高 現在是大數據時代,需要挖掘數據與數據之間的關系,從而得出一些規律。比如你網購的時候,淘寶通過挖掘技術,發現你的行為喜好,在你只要瀏覽淘寶相關網頁時,就會給你推出你喜歡的物品。
問題四:大數據 和 數據挖掘 的區別 數據挖掘需要人工智慧、資料庫、機器語言和統計分析知識等很多跨學科的知識。再者,數據挖掘的出現需要條件,第一個條件:海量的數據;第二個條件:計算機技術大數據量的處理能力;第三個條件:計算機的存儲與運算能力;第四個條件:交叉學科的發展。
大數據只是數據挖掘的出貳的一個條件。
問題五:數據挖掘工程師一般都做什麼? 職位職責:
1、根據自己對純基遊行業,以及公司業務的了解,獨自承擔復雜分析任務,並形成分析報告;
2、相關分析方向包括:用戶行為分析、廣告點擊分析,業務邏輯相關以及競爭環境相關;
3、根據業務邏輯變化,設計相應分析模型並支持業務分析工作開展。
崗位要求:
1、2年以上行業建模的經驗;
2、本科以上,數學,統計,計算機,物理等相關專業畢業;
3、精通統礎學,數據挖掘技術,尤其是回歸模型、決策樹模型。
4、精通SPSS Clementine/SAS EM等各類型數據分析工具,能製作專業分析報告;
5、有金融、通信或互聯網某一行業實際數據挖掘項目經驗,並對此行業業務有深刻認識;
6、對互聯網領域有熱情,較強的學習及人際技巧、影響說服能力,喜歡有挑戰的工作。
問題六:大數據和數據挖掘哪個更有發展前途 大數據是包含數據挖掘的,數據挖掘是大數據分支中的一項,也是基礎,學習BI方向的話,數據挖掘是基礎,兩者是息息相關的,數據挖掘的概念出來的比較早,啤酒和尿布的典故你應該知道,早期數據倉庫建模就已經用到了數據挖掘,而大數據是這幾年比較火的,趨勢很好,以後都是大數據時代了,目前很多大型企業都在做大數據(如解決方案供應商:IBM、ORACLE、SAP、EMC、華為等等;自研:淘寶、騰訊等等;甲方:移動、電信等等)擇業前景還是很好的,大數據內容很豐富,有hadoop、流處理、分布式、NAS/SAN等等,對你以後的發展幫助還是比較大的。我的建議是大數據。望採納。
問題七:如何利用挖掘大數據對應電子商務 數據挖掘能發現電子商務客戶的的共性和個性的知識、必然和偶然的知識、獨立和關聯的知識、現實和預測的知識等,所有這些知識經過分析,能對客戶的消費行為如心理、能力、動機、需求、潛能等做出統計和正確地分析,為管理者提供決策依據。具體應用如下:
1.分類與預測方法在電子商務中的應用
在電子商務活動中,分類是一項非常重要的任務,也是應用最多的技術。分類的目的是構造一個分類函數或分類模型,通常稱作分類器。分類器的構造方法通常由統計方法、機器學習方法、神經網路方法等。這些方法能把資料庫中的數據映射到給定類別中某一個,以便用於預測,也就是利用歷史數據記錄,自動推導出給定數據的推廣描述,從而對未來數據進行預測。
2.聚類方法在電子商務中的應用
聚類是把一組個體按照相似性原則歸成若干類別。對電子商務來說,客戶聚類可以對市場細分理論提供有力的支持。市場細分的目的是使得屬於同一類別的個體之間的距離盡可能小,而不同類別的個體之間的距離盡可能大,通過對聚類的客戶特徵的提取,電子商務網站可以為客戶提供個性化的服務。
3.數據抽取方法在電子商務中的應用
數據抽取的目的是對數據進行濃縮,給出它的緊湊描述,如求和值、平均值、方差值、等統計值、或者用直方圖、餅狀圖等圖形方式表示,更主要的是他從數據泛化的角度來討論數據總結。數據泛化是一種把最原始、最基本的信息數據從低層次抽象到高層次上的過程。可採用多維數據分析方法和面向屬性的歸納方法。在電子商務活動中,採用維數據分析方法進行數據抽取,他針對的是電子商務活動中的客戶數據倉庫。在數據分析中經常要用到諸如求和、總計、平均、最大、最小等匯集操作,這類操作的計算量特別大,可把匯集操作結果預先計算並存儲起來,以便用於決策支持系統使用。
4.關聯規則在電子商務中的應用
管理部門可以收集存儲大量的售貨數據和客戶資料,對這些歷史數據進行分析並發現關聯規則。如分析網上顧客的購買行為,幫助管理者規劃市場,確定商品的種類、價格、質量等。通常關聯規則有兩種:有意義的關聯規則和泛化關聯規則,有意義的關聯規則,即滿足最小支持度和最小可信度的規則。最小支持度,它表示一組對象在統計意義上的需滿足的最低程度,如電子商務活動中的客戶數量、客戶消費能力、消費方式等。後者即用戶規定的關聯規則的最低可靠度。第二是泛化規則,這種規則更實用,因為研究對象存在一種層次關系,如麵包、蛋糕屬西點類,而西點又屬於食品類,有了層次關系後,可以幫助發現更多的有意義的規則。
5、優化企業資源
節約成本是企業盈利的關鍵。基於數據挖掘技術,實時、全面、准確地掌握企業資源信息,通過分析歷史的財務數據、庫存數據和交易數據, 可以發現企業資源消耗的關鍵點和主要活動的投入產出比例, 從而為企業資源優化配置提供決策依據, 例如降低庫存、提高庫存周轉率、提高資金使用率等。通過對Web數據挖掘,快速提取商業信息,使企業准確地把握市場動態,極大地提高企業對市場變化的響應能力和創新能力,使企業最大限度地利用人力資源、物質資源和信息資源,合理協調企業內外部資源的關系,產生最佳的經濟效益。促進企業發展的科學化、信息化和智能化。
6、管理客戶數據
隨著「以客戶為中心」的經營理念的不斷深入人心, 分析客戶、了解客戶並引導客戶的需求已成為企業經營的重要課題。基於數據挖掘技術,企業將最大限度地利用客戶資源,開展客戶行為的分析與預測,......>>
問題八:R語言代編程數據挖掘服務大概需要多少錢,在淘寶上搜到「大數據部落」店鋪名價格20元,看評價蠻不錯的? 根據數據服務的難度和工作量來判斷的,你要把具體的要求發給什麼寶買家,他會跟你評判,一般什麼寶上的這類價格都是計量單位,實際都是20元的倍數,
問題九:淘寶網店運營的推廣體系是什麼? 淘寶網店運營的推廣體系:
一、電商戰略規劃
以數據挖掘為基礎,通過對市場、競爭對手、消費者研究、企業自身的360度洞察分析,規劃出公司整體電子商務模式、總體戰略目標、發展階段步驟、投入和預期收益等,理清思路、明確方向。
並將項目職能分解,形成項目進度控制甘特圖,落實細分為可執行、可監督、可管控的詳細戰略實施計劃。
二、店鋪規劃裝修
在總體分析規劃基礎上,組建一流淘寶店鋪規劃師和一流的UI設計師,通過對網店的整體結構、欄目劃分、流程體驗、視覺風格的整體融合策劃設計,凸顯店鋪的品牌氣質格調和客戶購物體驗。
三、產品策劃
採用USP(獨特銷售主張)規劃+FABE模式+品牌策劃的綜合體系,結合行業特性和淘寶購物網路文化特徵,通過感性和理性兩種思路的有機 *** ,策劃設計出最具銷售力的產品寶貝頁面,從而有效提升產品轉化率。
在數據挖掘基礎上,通過明星熱銷產品、金牛利潤產品、阻擊產品的矩陣規劃和定價體系規劃,形成完整的產品寬度和產品組合,實現熱銷和利潤平衡統一,以及解決線上線下渠道沖突難題。
四、商品促銷運營
利用淘寶各種促銷活動,策劃創意店鋪各種主題活動和關聯銷售、交叉銷售等手段方式,實現商品生動化,提升用戶粘性,提升客單價,打造爆款產品,最終實現銷售飛躍。
五、推廣運營
金磚淘寶推廣運營體系以引入目標流量為核心,採取淘寶站內免費推廣、淘寶站內工具廣告推廣、全網輔助推廣等方式,系統解決淘寶店鋪流量難題,為店鋪帶來帶來大量有效目標購買客戶,我們堅持在策略指引下用最小投入實現最大推廣效果,決不盲目唯流量是從,更不做無效流量的推廣,實現銷售和品牌提升雙重效果。
六、客服銷售
客服銷售是實現銷售的關鍵環節、臨門一腳,具有核心地位。金磚將從業務、文化、管理、培訓四個層面進行標准化和系統化作業,實現銷售客服系統流程化和可復制化。
七、數據分析
數據挖掘和分析是電子商務和傳統線下商務最明顯的區別,電子商務的數據是精準的、即時性的,金磚電商的淘寶運營體系基礎就是數據挖掘和分析。
通過對各項數據橫向、縱向和交叉分析,制訂策略、提升推廣效果,提升店鋪轉化率,從而提升整店的ROI,實現企業利潤最大化。
上述關於淘寶項目運營的看法只是從系統層面淺析了下自己的個人建議,金磚認為,淘寶電商運營應以數據挖掘為基礎,以提升店鋪轉化率為核心,從戰略策劃、網店策劃、產品策劃、商品促銷、淘寶推廣、客服銷售、數據分析等方面一一著手,系統去構建方能制勝!
問題十:數據分析是「大海撈針」 阿里數據挖掘了么? 導讀:大數據是如何產生價值的,大數據是無所不能的嗎,應用邊界在哪裡?這些問題,似乎人人都有一個模糊的概念,但始終沒有一個統一的答案。 今日關於「大數據」的討論達到了一個高峰,數據就是未來已經不置可否地成為了互聯網企業的未來新戰略發展的中心。什麼是大數據,大數據是如何產生價值的,大數據是無所不能的嗎,應用邊界在哪裡?這些問題,似乎人人都有一個模糊的概念,但始終沒有一個統一的答案。 說到大數據,首當其沖的應該是已經圍繞數據海洋中耕耘已久並衍生出金融借貸業務的阿里系。馬雲將集團下的阿里金融與支付寶兩項核心業務合並成立阿里小微金融,並將之前呼聲最高的接班人彭蕾安排到阿里小微金融掌舵,馬雲對未來數據戰場的重視可見一斑。作為籌備中的阿里小微金融服務集團數據平台,負責人馮春培也對數據有著獨到的見解,他向作者表示目前國內對於大數據的討論更偏重技術方向,即「如何沉澱數據」,對於數據的應用則思考較少。數據如何產生價值?這需要要從大數據的本質說起。 線上數據才是大數據 要搞清楚什麼是大數據,首先你要知道什麼樣的數據才是有用的。按照馮春培的理解,任何行為本身都會產生數據,但只有線上數據有可能被沉澱和利用。「比如不通過淘寶,原本人們的交易行為在線下也是產生數據的,只不過這種交易行為是私密的,除了買賣雙方,其他人是不知道我的交易行為的,同時交易雙方也是匿名的,從數據的性質上來說無法沉澱,從來源上來說也沒有一個方法能有效地收集。」 大數據是什麼?馮春培的理解似乎更貼近本質:「擁有數據的本質,是你對這個世界,你對這些人,你對這些企業,你對這個時代,有了一個更全面而清楚的認知,你能理解這些人的需求,你能理解這個世界的任何的變化。」 你可以這么理解,如果你是阿里系的深度用戶(比如淘寶賣家),他們掌握了你足夠多的數據,對你的信用評估也會更加全面,這個數據不僅可以在金融領域中起作用,比如幫助你在阿里小貸更方便的貸款,在生活中也可以反映你的信用狀況,「比如相親 ,你怎麼證明你的收入?你拿出支付寶的賬單,女孩子一看一年花了100萬,你說你的信用良好,每個月信用卡還的都很及時,比你說破嘴皮有用多了吧?」 數據就是生產資料 如果數據僅僅是作為輔助參考信息,也必要投入如此多的精力。從生產要素來說,數據到底是什麼角色?馮春培的定義是「生產資料」。「我們部門的名字是『商業智能部』,數據更多的像是一種業務的輔助決策,作為一個「參謀」的角色,現在我們要逐步的讓這個數據融入到我們的業務和產品這個流程裡面去,數據和業務就像兩個齒輪,能扣在一起轉。當我們對數據的挖掘和理解越來越強,最終數據不僅可以產生價值,還可以直接催生產品,比如阿里金融的一些數據,我們把它定義為生產資料。」 這就是阿里系未來要做的事情,把數據變成生產資料。與傳統的生產資料不同的是,數據是可以無限次使用的,並且是越使用越豐富的。 近期阿里巴巴在移動互聯網市場頻頻出手,未來也許有可能將數據進行融合,用戶的各種信息得以呈現在一個全景圖裡面,即使在完全陌生的城市,藉助這種服務,你也能知道附近哪家店支持支付寶付款,微博上哪個網友剛剛在附近的咖啡店歇腳。 數據分析是「大海撈針」 與大多數互聯網產品存在的問題相同,互聯網產生的數據是有可能被偽造的,同時也是無序的、碎片化的。 對於這一點,馮春培也毫不諱言,「短期的偽造數據當然是有可能的,用特定的維度去偽造數據也是完全可能的,但是因為我們的業務是基於長期數據進行跟蹤分析的,採納的維度也更廣,偽造數據的成本和難度會越來越大。按照我們現在的信用模型,偽造數據的收益是不太可能覆蓋成本的,那麼我們可以基本判斷,數據......>>
3. 運營商大數據,移動大數據,聯通大數據,電信大數據哪個好
我本人認為移動大數據比較好。
4. 目前市面上電信受眾率最高的寬頻套餐是哪一款呢
電信寬頻的信號穩定,速度快,延遲低。肢辯森目前上海電信性價比較高的5G寬頻套餐是十全十美5G暢享融合套餐,手機套餐+寬頻組合。可選129檔、169檔、199檔、299檔、399檔、599檔。
129檔享300M寬頻,包含30G國內流量和500分鍾國內通話;
199檔享千兆寬頻,包含國內流量60G和1000分灶銀鍾國內通話;
一張主卡還可以疊加兩張歷畝副卡,主副卡內通話免費,共享流量和語音。
詳細情況可咨詢當地營業廳,或者是撥打客服熱線10000了解詳情哦。
5. 移動聯通電信運營商大數據好用嗎
移動,聯通,電信運營大數據應該還是比較好用,而且這個因該是能夠找到更多的數據來進行,一些時候會應該也是不知道能不能好的進行一些實用的。
6. 「大數據」要這樣用才賺錢!
「大數據」要這樣用才賺錢!
大數據的生意經其實很簡單,就是收入增加,花費減少;就是增加客戶,提高客戶體驗,提高資金回報的杠桿率;大數據應用成熟之後,大數據可以預測商業未來,發現新的商業機會。
一石激起千層浪,國務院發布的2015 第50號文《促進大數據發展行動綱要》刷滿了朋友圈,特別是其中提到了大力推動政府部門數據共享,穩步推動公共數據資源開放。2017年底前形成跨部門數據資源共享格局,到2018年實現統一共享平台全覆蓋和數據共享及交換。2020年培育10家國際領先的大數據核心龍頭企業,500家大數據應用、服務和產品製造企業。
眾所周知,大數據商業價值巨大。但是中國大數據的商業價值還沒有被充分挖掘。主要的困難在大數據的分散,具有價值的數據大部分集中在在政府內部,壟斷國企業,以及互聯網巨頭之中。分散的數據無法幫助企業拿到具有價值的信息,無法實現大數據的商業變現。政府開放數據,以及大數據交易市場的建立是中國大數據商業價值應用的重中之重。
另外大數據的應用場景和大數據隱私問題,也是大數據商業應用功能的兩大問題,不知道數據應用場景,就無法尋找具有價值的數據,就無讓數據發揮作用,大數據的應用就會停留在解決數據採集、處理、存儲等大數據1.0時代的低級階段,無法實現大數據商業變現,無法激勵企業進一步投資大數據,無法形成數據價值應用的生態循環。大數據隱私問題是所有企業不能迴避的問題,到底何種數據可以進行交換,何種數據可以採集和變現,何種數據可以作為商品在市場流通,這些問題既影響個人隱私保護,又影響到企業購買數據產品的積極性,同時也影響了數據企業的發展。
中國大數據企業分為三類,一類是大數據技術公司,為企業提供大數據平台搭建,技術咨詢,大數據計算和存儲的產品,例如華為、亞信、浪潮等傳統IT公司。一類是大數據服務公司,為企業提供基於大數據技術的服務、平台、產品。包括為企業搭建大數據挖掘工具,搜索引擎,分析引擎等大數據處理平台,大數據清洗和挖掘服務例如明略科技,ADMaster,百分點。最後一類是提供數據產品的大數據公司,他們擁有數據,加工生成具有價值的數據,為市場提供標準的數據產品。例如芝麻信用,TalkingData,九次方,星圖數據等。
中國大數據市場的數據來源有四種,一種是通過網路爬蟲採集的外部數據,大多數提供輿情分析的公司就是通過爬蟲技術來進行數據採集的。例如海量數據。一種是提供SaaS服務得到的數據,例如Talkindata。另外一種是靠和運營商或政府合作,通過數據挖掘得到的數據,例如亞信和九次方。最後一種就是自身平台產生的數據(電商、旅遊、媒體等互聯網企業),包括BAT以及較大的一些互聯網公司如360、當當、唯品會、聚美優品、攜程、今日頭條等。
一、開放數據的價值
開放數據就是政府向社會公布自己所擁有的,並經過脫敏的數據。包括天氣數據、GPS數據、金融數據、教育數據、交通數據、能源數據、醫療數據、政府投資數據、農業數據等。這些原始數據本身並沒有明顯的商業價值,但經過一些公司加工之後,可以產生巨大的商業價值。
開放數據在美國有幾千億美金的市場,包括300億美金的氣象數據,900億美金的GPS數據,上千億美金的醫療數據。但政府開放的數據是原始數據,數據自身的商業價值並不大,需要專業的公司對數據進收集,清洗,挖掘,展現,從而形成具有商業價值的數據。在美國有很多公司是依靠加工政府開放數據而實現其商業價值的,例如處理天氣數據的Zillow公司,the weather channel 公司,以及處理GPS數據的Garmin公司,它們的總市值已經超過了一百億美金。
1 、政府開放數據的主要范圍
a政府收集和製造的科學數據。例如天氣數據,政府資助的醫療研究數據。這些數據都可以作為公共資源進行使用。
b 政府運行的數據,例如政府支出或大型項目運行數據。開放數據一方面可以增加民眾對政府的信任,另一個方面可以給一些公司帶來商業機遇。
c監管行業的數據。這些數據由企業提供給政府,並且經過政府二次加工。這些宏觀數據對於產業規劃,企業的投資戰略都有很大影響。
2、 中國開放數據之路的挑戰
a 國家對數據治理還沒有完成。很多數據沒有集中管理,還是處於信息孤島狀態,這些都是開放數據需要解決的問題。數據治理投資巨大,時間周期較長,都是巨大的挑戰。
b 一些開放數據還不是電子形式。例如醫療數據和教育數據,在一些地區還處於紙質記錄狀態,沒有形成電子檔案。這些數據的電子化也是一個較大的挑戰。
c 開放數據的脫敏和整合將是一項重大的挑戰。特別是國有企業的數據,哪些數據可以公開,哪些數據需要脫敏,如何整合各個地方的數據,這些都是一個挑戰
d 大數據服務公司和大數據人才匱乏。由於大數據市場剛剛開始,市場上缺少大數據人才和大數據服務公司,公開的數據短時間可能很難產生商業價值,這會影響政府和企業開放數據的積極性,不利於形成良性的大數據商業市場,會影響開放數據項目的持續發展。
3、有關開放數據一些建議
人類社會即將進入數字時代,開放數據將會是巨大的生產力。政府已經認識到了開放數據的價值,會持續推動政府和國企的數據開放。即使短時間內開放數據的投資看不到商業價值,但其未來經濟價值會促使政府堅持開放數據的政策,持續進行投資。就像中國的高速公路,開放數據是另外一條信息高速公路,將數據轉化為資產,轉化為巨大的社會生產力,幫助企業實現更大的商業價值。
對於數據擁有者的政府,需要在保障公共安全和個人隱私的前提下,完成數據治理和數據整合,逐步向社會開放數據,並提高數據質量,公開面向所有個人和企業,有效利用政府科技資金,讓利益相關企業和個人參與到開放數據項目中,鼓勵創新,接受外部挑戰,利用集體智慧,實現數據最優選擇。
對於國有企業,需要在保護自身商業利益的前提下開放數據,幫助各自產業鏈企業的發展。同時開放數據也可以幫助其自身進行產業規劃,進行有效投資,發現市場機會和風險,穩健經營,科學決策。企業可以利用開放數據提高生產效率,減少資源浪費,降低決策失誤風險。產業鏈企業的良性發展,也會推動國企自身發展和進化,提高競爭力,優化企業經營,實現產業共贏。
對於企業家,開放數據將會作為新的資源,幫助企業進行發展,聚焦新的商業機遇,特別是在開放數據影響較大的保健行業,金融行業,能源行業,教育行業。數據服務公司可以利用開放數據,幫助消費者挖掘數據的潛在價值,為企業和政府提供具有價值的商業數據。對於經營中的公司,可以利用開放數據評價商業夥伴和潛在投資,通過提供數據來樹立消費者的忠誠度,學會在透明的商業社會中進行經營,尋找公共或私人合作的機會,專注自身產品和客戶,為消費者提供更好的產品和服務。
二、萬億的大數據市場
2014年的GDP中消費佔比已經超過了50%,標志著中國經濟正在向市場經濟轉型,消費佔GDP 50%-70%是中等發達國家向市場經濟過渡的一個表現,未來中國經濟增長最大的引擎應該來源於消費,特別是個人消費。中國正在經歷經濟結構調整和城鎮化,個人消費需求巨大,社會產品較為豐富,渠道也較為通暢,物流成本正在下降,運輸能力正在提高。但是社會消費零售總額增加的還不夠快,資源配置不平衡,社會整體消費水平還處於較低的水平。這些問題正在成為中國經濟發展的難題,是企業和社會需要解決的問題。
大數據的商業應用將會幫助企業解決這些問題;大數據的有效利用將會提高社會消費水平,將會幫住企業提高效率、洞察客戶、增加收入。大數據商業應用未來是萬億級的大市場,大數據是大生意。
大數據時代最重要的特徵是人類所有的行為都被數據記錄下來,無論是在電商的購買行為,旅遊度假,娛樂活動,行為軌跡等,所有的人類社會行為都被各種感測器和互聯網記錄下來。數據記錄了一切,人類社會的行為都變成了數據,用紙質媒體記錄人類歷史的時代已經過去,歷史正在被數據以文字、數據、表格、聲音、影像的方式記錄了下來。中國的大數據應用主要集中在徵信和精準營銷,這兩個市場的規模加在一起不過兩千億,但是大數據如果同所有企業的商業需求相結合,其產生的化學反應將是巨大的,市場規模將會超過萬億,大數據是個大生意。
網路連接了信息與讀者,阿里連接了商品與消費者,騰訊連接了人與人。BAT所有的連接都是建立在數據基礎之上的,可以認為大數據連接了一切。數據連接了消費者和商家,數據連接了客戶習慣,數據連接客戶喜好,數據連接了位置,數據連接了時間和空間,數據連接了歷史和現在。連接一切的大數據將會反饋所連接的事物、空間和時間,通過數據記錄來反饋物體的移動,客戶的消費習慣,個人愛好,行為習慣,活動軌跡,運動規律等。重要的這些反饋數據能知道;你是誰、你在哪裡、你喜歡什麼、你在干什麼、你的消費能力、以及你未來的需求等。所有被反饋的事物都被打上了一個或多個數據標簽,這些具有價值的標簽經過整理和分析後,將會揭示事物之間的相關性和規律,將會為個人、商家、社會帶來巨大價值。
1、大數據幫助製造業規劃生產,降低資源浪費
製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,為客戶定製產品。
例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥,
2、移動大數據幫助房地產開發商規劃房地產開發
房地產行業在過去為中國GDP貢獻了很大力量,未來粗放型的房地產行業將會轉向精細化經營,從選地到規劃和從設計到建設,都需要參考當地到人口數據和消費者信息,進行科學決策;利用大數據商業應用加快房子銷售速度,降低自身負債。
房地產公司可以利用人群的手機位置信息來幫助企業進行開發規劃、土地選址、商鋪開發等。同時利用人群到用戶畫像信息幫助房產公司選擇合作商戶,提升消費人氣,最終提高房產價值。
3、移動大數據幫助餐飲零售行業進行選址和顧客導流
餐飲零售行業最關注客戶流量,過去開店選址時經常安排人員在十字路口進行人流統計,利用統計的人口流動信息來決定開店地址。進入到移動互聯網時代之後,智能手機的位置信息可以幫助餐飲零售行業進行開店選址,企業可以參考客戶畫像來決定開店的規模,以及產品的類別。
移動互聯網端的用戶標簽和畫像數據還可以幫助企業進行一些精準營銷,為新開的商戶導入客流。特別是在規模較大的購物商廈中,移動App端的位置導航功能,可以指引客戶找到新的商戶,參加促銷活動。市場上已經有成熟的零售餐飲商家和移動互聯網大數據公司在開店引流方面進行合作,資金利用的杠桿率超過了5倍,投入產出比較高。
4、感測器數據幫助產品進行故障診斷和預測
家電和汽車正在走向智能化,通過安裝感測器,汽車和智能家電可以將運行參數和運行狀態傳送到廠家的雲平台,廠家可以了解其產品的運行狀態,零部件的老化程度,幫助廠家及時更換故障器件,延長產品使用壽命,提高安全系數。汽車行業和智能家電在物聯網領域將會產生巨大的市場,雲計算和大數據處理平台將起到關鍵的作用。
中國汽車市場的銷售規模超過萬億,家電市場也有一萬多億。車聯網和智能家電涉及的大數據應用市場也是巨大的,按照大數據商業變現高杠桿率的特點,其市場規模至少應該在百億左右。
5、利用移動互聯網位置信息進行精準營銷
O2O已經成為了一個重要的商業模式,很多互聯網企業和傳統企業都在尋找O2O的應用場景,訂餐、教育、家政、汽車美容等都成為O2O的應用典範。移動互聯網數據具有LBS和實時特點,可以幫助企業及時連接客戶,依據客戶需求進行精準營銷。
大型購物中心一般都設有電影院,經常存在某些電影在開場前30分鍾,大量電影票還沒有出售的情況。藉助於手機App推送廣告功能,電影院在電影放映前30分鍾,可以將電影票以2折價格推送給正在周圍就餐的客戶。依據客戶畫像信息,電影票將推送給喜愛看電影的顧客,增加電影銷售額。企業可以利用手機App進行廣告推送,做到千人千面,依據客戶喜好來進行廣告推送。這種精準廣告推送具有成本低、轉化率高的特點,在餐飲、服裝、美容、零售等行業取得了良好的應用效果。如果基於位置信息的精準廣告推送被大規模的商業應用,將會促進商品流轉,大幅度提高社會消費總額,幫助傳統企業實現互聯網+的戰略。
6、電商大數據將會幫助企業優化資源配置
電商是最早利用大數據進行精準營銷的行業,電商網站內推薦引擎將會依據客戶的購買行為,進行關聯產品的推薦。除了精準營銷,電商還可以依據客戶消費習慣來提前為客戶備貨,並利用便利店作為貨物中轉點,在客戶下單後的短時間內,將貨物送上門,提高客戶體驗。電商還可以利用其交易數據和現金流數據,為其生態圈內的商戶提供小額貸款,也可以將此數據提供給銀行,為中小企業信貸提供支持。
電商的數據量足夠大,數據較為集中,數據種類較多,其商業應用具有較大的想像空間。包括預測流行趨勢,消費趨勢、地域消費特點、客戶消費習慣、消費行為的相關度、消費熱點等。依託大數據分析,電商可幫助企業進行產品設計、庫存管理、計劃生產、資源配置等,有利於精細化大生產,提高生產效率,優化資源配置。
7、移動大數據助力交通運輸規劃和管理
交通大數據應用主要在兩個方面,一方面可以利用大數據感測器的數據了解車輛通行密度,合理進行道路規劃。另一方面可以利用大數據分析來實現交通信號燈智能切換,提高已有線路運輸能力。
在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。大數據可以幫助機場安排航班起降,提高管理效率;航空公司可以利用大數據提高上座率,降低運行成本;鐵路公司可以利用大數據安排客運和貨運列車,降低運營成本。
8、大數據幫助金融行業進行價值變現
大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。招商銀行(600036,股吧)利用客戶刷卡、存取款、電子銀行轉帳、微信評論等行為數據進行分析,每周給客戶發送針對性廣告信息。
中國目前金融行業大數據價值變主要在用戶體驗提升和大數據營銷兩個方面,其中招商銀行信用卡中心和平安銀行(000001,股吧)走到了金融行業的前面。
大數據在很多行業都有廣泛的應用場景,例如在醫療行業,農林牧漁、能源行業、物流行業等,大數據將會是電商之後的另外一個巨大市場,結合了所有行業的商業需求之後,大數據產業的市場規模將會是個萬億級別。大數據不是電力但是比電力更能提供動力,大數據不是石油,但是比石油更能驅動企業發展。大數據就是資產,能夠幫助企業進行價值變現。大數據的生意經其實很簡單,就是收入增加,花費減少;就是增加客戶,提高客戶體驗,提高資金回報的杠桿率;大數據應用成熟之後,大數據可以預測商業未來,發現新的商業機會。
7. 大數據要錢嗎,多少
大數據不要錢,你學大數據就要錢了,現在基本上培訓機構的大數據課程大概是1-2W左右,我知道的成都課工場的java大數據,
差不多就是這樣
,不啟氏虧過不算貴啦,學會就悄神業了,差不多一核腔個多月工資而已。問題不大
8. 南通電信用大數據支撐客戶維系服務
南通電信用大數據支撐客戶維系服務_數據分析師考試
近年來,中國電信江蘇南通分公司以提速降費、內容填充為雛形,制定提速和加裝等服務場景的大數據支撐方案,在江蘇省內率先試點大數據支撐寬頻維系,盤活電信豐富的客戶大數據資源,有效提高寬頻客戶的感知。
南通分公司定製的提速模型主要根據客戶上網行為數據,提取後,綜合分析偏好、離網風險等標簽,通過排比組合確定優先順序,梳理高離網風險客戶清單。加裝模型主要根據客戶使用寬頻資源屬性、上網行為數據梳理有加裝iTV產品需求的客戶清單,並按優先順序高低排序。支撐營銷部門基於清單內容,精確化地提供服務,挽留高離網風險客戶。南通分公司以寬頻現網存量客戶為試點,先規范模型數據,調整參數,明確模型目標數據,以全省大數據平台為介面,利用資料庫,從海量原始數據中初步篩選出目標數據;再將前期提取的大文件數據利用關系型資料庫二次清洗和篩選比對;最後,根據模型定義的參數值按照優先順序高低提取維系服務清單。經過一系列的參數定義、數據分析、數據提取、清洗和二次加工,按照優先順序高低,梳理出服務提速目標客戶。
南通分公司借力大數據分析明確了維系方向,定製有針對性的組織提速、加裝等維系服務,提高了電信產品黏性。創新大數據支撐寬頻維系,智能獲取有離網意向的客戶清單,提供和支撐了後向服務評估依據,向前修正和優化模型參數,提高模型預測的准確性和完整性。分公司將與省公司大數據運營中心交流合作,充分挖掘、利用現有大數據平台數據資源,歸納和總結數據處理流程,為構建寬頻維系自動化大數據支撐系統打下基礎。加強本地前後端聯動,與市場部、企信部、創電中心共同討論優化服務維系方案,將目標客戶按區域歸類劃小,通過提速、加裝等途徑提高黏性。制定和優化模型後向評估體系,提高外呼成功率、維系成功率,並實時調整模型參數,提高模型預測和評估准確性。
以上是小編為大家分享的關於南通電信用大數據支撐客戶維系服務的相關內容,更多信息可以關注環球青藤分享更多干貨
9. 大數據培訓一般費用是多少
現在大數據培訓班正常的線下面授班的收費一般都是在25000左右,學習時間是在6個月左右的時間。具體是收費要根據實際的情況去進行分析,不同的機構,城市,不同的授課模式,一般情況下收費也都是不相同的。
1、通常情況下,一線城市大數據培訓班的收費相對來說要比二三線同類型的要貴一點,但是相對教學資源更加豐富;
2、正規的有名氣的機構要比那些沒有名氣的小機構收費多一些,實際差多少還要根據相關咨詢進行了解;
3、不同的模式收費不同,現在主要是線上和線下兩種大的類型,一般線下的要比線上的價格高一些,但是相關的服務也更好,學習效率也更高。
不管是大家想要選擇什麼樣的大數據培訓班,具體的收費是受到很多因素影響的,實際收費具體是多少還需要大家根據實際咨詢進行了解才能夠知道。