A. 大數據:Hadoop入門
什麼是大數據:
(1.)大數據是指在一定時間內無法用常規軟體對其內容進行抓取,管理和處理的數據集合,簡而言之就是數據量非常大,大到無法用常規工具進行處理,如關系型資料庫,數據倉庫等。這里「大」是一個什麼量級呢?如在阿里巴巴每天處理數據達到20PB(即20971520GB).
2.大數據的特點:
(1.)體量巨大。按目前的發展趨勢來看,大數據的體量已經到達PB級甚至EB級。
(2.)大數據的數據類型多樣,以非結構化數據為主,如網路雜志,音頻,視屏,圖片,地理位置信息,交易數據,社交數據等。
(3.)價值密度低。有價值的數據僅佔到總數據的一小部分。比如一段視屏中,僅有幾秒的信息是有價值的。
(4.)產生和要求處理速度快。這是大數據區與傳統數據挖掘最顯著的特徵。
3.除此之外還有其他處理系統可以處理大數據。
Hadoop (開源)
Spark(開源)
Storm(開源)
MongoDB(開源)
IBM PureDate(商用)
Oracle Exadata(商用)
SAP Hana(商用)
Teradata AsterData(商用)
EMC GreenPlum(商用)
HP Vertica(商用)
註:這里我們只介紹Hadoop。
二:Hadoop體系結構
Hadoop來源:
Hadoop源於Google在2003到2004年公布的關於GFS(Google File System),MapRece和BigTable的三篇論文,創始人Doug Cutting。Hadoop現在是Apache基金會頂級項目,「
Hadoop」一個虛構的名字。由Doug Cutting的孩子為其黃色玩具大象所命名。
Hadoop的核心:
(1.)HDFS和MapRece是Hadoop的兩大核心。通過HDFS來實現對分布式儲存的底層支持,達到高速並行讀寫與大容量的儲存擴展。
(2.)通過MapRece實現對分布式任務進行處理程序支持,保證高速分區處理數據。
3.Hadoop子項目:
(1.)HDFS:分布式文件系統,整個Hadoop體系的基石。
(2.)MapRece/YARN:並行編程模型。YARN是第二代的MapRece框架,從Hadoop 0.23.01版本後,MapRece被重構,通常也稱為MapRece V2,老MapRece也稱為 MapRece V1。
(3.)Hive:建立在Hadoop上的數據倉庫,提供類似SQL語音的查詢方式,查詢Hadoop中的數據,
(5.)HBase:全稱Hadoop Database,Hadoop的分布式的,面向列的資料庫,來源於Google的關於BigTable的論文,主要用於隨機訪問,實時讀寫的大數據。
(6.)ZooKeeper:是一個為分布式應用所設計的協調服務,主要為用戶提供同步,配置管理,分組和命名等服務,減輕分布式應用程序所承擔的協調任務。
還有其它特別多其它項目這里不做一一解釋了。
三:安裝Hadoop運行環境
用戶創建:
(1.)創建Hadoop用戶組,輸入命令:
groupadd hadoop
(2.)創建hser用戶,輸入命令:
useradd –p hadoop hser
(3.)設置hser的密碼,輸入命令:
passwd hser
按提示輸入兩次密碼
(4.)為hser用戶添加許可權,輸入命令:
#修改許可權
chmod 777 /etc/sudoers
#編輯sudoers
Gedit /etc/sudoers
#還原默認許可權
chmod 440 /etc/sudoers
先修改sudoers 文件許可權,並在文本編輯窗口中查找到行「root ALL=(ALL)」,緊跟後面更新加行「hser ALL=(ALL) ALL」,將hser添加到sudoers。添加完成後切記還原默認許可權,否則系統將不允許使用sudo命令。
(5.)設置好後重啟虛擬機,輸入命令:
Sudo reboot
重啟後切換到hser用戶登錄
安裝JDK
(1.)下載jdk-7u67-linux-x64.rpm,並進入下載目錄。
(2.)運行安裝命令:
Sudo rpm –ivh jdk-7u67-linux-x64.rpm
完成後查看安裝路徑,輸入命令:
Rpm –qa jdk –l
記住該路徑,
(3.)配置環境變數,輸入命令:
Sudo gedit /etc/profile
打開profile文件在文件最下面加入如下內容
export java_HOME=/usr/java/jdk.7.0.67
export CLASSPATH=$ JAVA_HOME/lib:$ CLASSPATH
export PATH=$ JAVA_HOME/bin:$PATH
保存後關閉文件,然後輸入命令使環境變數生效:
Source /etc/profile
(4.)驗證JDK,輸入命令:
Java –version
若出現正確的版本則安裝成功。
配置本機SSH免密碼登錄:
(1.)使用ssh-keygen 生成私鑰與公鑰文件,輸入命令:
ssh-keygen –t rsa
(2.)私鑰留在本機,公鑰發給其它主機(現在是localhost)。輸入命令:
ssh--id localhost
(3.)使用公鑰來登錄輸入命令:
ssh localhost
配置其它主機SSH免密登錄
(1.)克隆兩次。在VMware左側欄中選中虛擬機右擊,在彈出的快捷鍵菜單中選中管理---克隆命令。在克隆類型時選中「創建完整克隆」,單擊「下一步」,按鈕直到完成。
(2.)分別啟動並進入三台虛擬機,使用ifconfig查詢個主機IP地址。
(3.)修改每台主機的hostname及hosts文件。
步驟1:修改hostname,分別在各主機中輸入命令。
Sudo gedit /etc/sysconfig/network
步驟2:修改hosts文件:
sudo gedit /etc/hosts
步驟3:修改三台虛擬機的IP
第一台對應node1虛擬機的IP:192.168.1.130
第二台對應node2虛擬機的IP:192.168.1.131
第三台對應node3虛擬機的IP:192.168.1.132
(4.)由於已經在node1上生成過密鑰對,所有現在只要在node1上輸入命令:
ssh--id node2
ssh--id node3
這樣就可以將node1的公鑰發布到node2,node3。
(5.)測試SSH,在node1上輸入命令:
ssh node2
#退出登錄
exit
ssh node3
exit
四:Hadoop完全分布式安裝
1. Hadoop有三種運行方式:
(1.)單機模式:無須配置,Hadoop被視為一個非分布式模式運行的獨立Java進程
(2.)偽分布式:只有一個節點的集群,這個節點即是Master(主節點,主伺服器)也是Slave(從節點,從伺服器),可在此單節點上以不同的java進程模擬分布式中的各類節點
(3.)完全分布式:對於Hadoop,不同的系統會有不同的節點劃分方式。
2.安裝Hadoop
(1.)獲取Hadoop壓縮包hadoop-2.6.0.tar.gz,下載後可以使用VMWare Tools通過共享文件夾,或者使用Xftp工具傳到node1。進入node1 將壓縮包解壓到/home/hser目錄下,輸入命令:
#進入HOME目錄即:「/home/hser」
cd ~
tar –zxvf hadoop-2.6.0.tar.gz
(2.)重命名hadoop輸入命令:
mv hadoop-2.6.0 hadoop
(3.)配置Hadoop環境變數,輸入命令:
Sudo gedit /etc/profile
將以下腳本加到profile內:
#hadoop
export HADOOP_HOME=/home/hser/hadoop
export PATH=$HADOOP_HOME/bin:$PATH
保存關閉,最後輸入命令使配置生效
source /etc/profile
註:node2,和node3都要按照以上配置進行配置。
3.配置Hadoop
(1.)hadoop-env.sh文件用於指定JDK路徑。輸入命令:
[hser@node1 ~]$ cd ~/hadoop/etc/hadoop
[hser@node1 hadoop]$ gedit hadoop-env.sh
然後增加如下內容指定jDK路徑。
export JAVA_HOME=/usr/java/jdk1.7.0_67
(2.)打開指定JDK路徑,輸入命令:
export JAVA_HOME=/usr/java/jdk1.7.0_67
(4.)core-site.xml:該文件是Hadoop全局配置,打開並在
B. 解讀Hadoop Hbase適合存儲哪類數據
最適合使用Hbase存儲的數據是非常稀疏的數據(非結構化或者半結構化的數據)。Hbase之所以擅長存儲這類數據,是因為Hbase是column-oriented列導向的存儲機制,而我們熟知的RDBMS都是row- oriented行導向的存儲機制(郁悶的是我看過N本關於關系資料庫的介紹從來沒有提到過row- oriented行導向存儲這個概念)。在列導向的存儲機制下對於Null值得存儲是不佔用任何空間的。比如,如果某個表 UserTable有10列,但在存儲時只有一列有數據,那麼其他空值的9列是不佔用存儲空間的(普通的資料庫MySql是如何佔用存儲空間的呢?)。 Hbase適合存儲非結構化的稀疏數據的另一原因是他對列集合 column families 處理機制。 打個比方,ruby和python這樣的動態語言和c++、java類的編譯語言有什麼不同? 對於我來說,最顯然的不同就是你不需要為變數預先指定一個類型。Ok ,現在Hbase為未來的DBA也帶來了這個激動人心的特性,你只需要告訴你的數據存儲到Hbase的那個column families 就可以了,不需要指定它的具體類型:char,varchar,int,tinyint,text等等。 Hbase還有很多特性,比如不支持join查詢,但你存儲時可以用:parent-child tuple 的方式來變相解決。 由於它是Google BigTable的 Java 實現,你可以參考一下:google bigtable 。
解讀Hadoop Hbase適合存儲哪類數據,參考:http://e.51cto.com/course/course_id-3819.html