Ⅰ 大數據的表現形態有哪些
大數據裡面的數據,分三種類型:
(1)結構化的數據:即有固定格式和有限長度的數據。
(2)非結構化的數據:現在非結構化的數據越來越多,就是不定長、無固定格式的數據,例如網頁、語音,視頻等。
(3)半結構化數據:是一些XML或者HTML的格式的數據。
Ⅱ 什麼不屬於非結構化數據
結構化數據。非結構化數據把一堆團鬧水果的種類、顏色、名稱等屬性按照一定的格式記錄下來,此類數據不屬於非結構化數據,結構化數遲搜據是可以通過固定的模板讀取碼或歷某一條記錄的某一個屬性值。
Ⅲ 什麼是半結構化數據
什麼是結構化數據?什麼是半結構化數據
結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據) 非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等 對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。 非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖象、聲音、影視、超媒體等信息)。 非結構化WEB資料庫主要是針對非結構化數據而產生的,與以衫返往流行的關系資料庫相比,其最大區別在於它突破了關系資料庫結構定義不易改變和數據定長的限制,支持重復欄位、子欄位以及變長欄位並實現了對變長數據和重復欄位進行處理和數據項的變長存儲管理,在處理連續信息(包括全文信息)和非結構化信息(包括各種多媒體信息)中有著傳統關系型資料庫所無法比擬的優勢。
什麼是結構化數據?什麼是半結構化數據
結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)
非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等
對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據彎塌鋒(全文文本、圖象、聲音、影視、超媒體等信息)。
非結構化WEB資料庫主要是針對非結構化數據而產生的,與以往流行的關系資料庫相比,其最大區別在於它突破了關系資料庫結構定義不易改變和數據定長的限制,支持重復欄位、子欄位以及變長欄位並實現了對變長數據和重復欄位進行處理和數據項的變長存儲管理,在處理連續信息(包括全文信息)和非結構化信息(包括各種多媒體信息)中有著傳統關系型資料庫所無法比擬的優勢。
什麼是結構化數據,非結構化數據和半結構化數據
結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)
非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖象、聲音、影視、超媒體等信息)。
非結構化WEB資料庫主要是針對非結構化數據而產生的,與以往
什麼是半結構化信息?
結構化:數據結構欄位含義確定,清晰,典型的如資料庫中的表結構.
半結構化:具有一定結構,但語義不夠確定,典型的如HTML網頁,有些欄位是確定的(title),有些不確定(table)
非結構化:雜亂無章的數據,很難按照一個概念去進行抽取,無規律性
結構化程度是埋晌指對某一決策問題的決策過程、決策環境和規律,能否用明確的語言(數學的或邏輯學的、形式的禒非形式的、定量的或定性的)給予說明或描述清晰程度或准確程度。按照決策問題的結構化程度不同把決策問題分成結構化問題、半結構化問題和非結構化問題三種類型。
1).結構化決策問題
結構化決策問題相對比較簡單、直接,其決策過程和決策方法有固定的規律可以遵循,能用明確的語言和模型加以描述,並可依據一定的通用模型和決策規則實現其決策過程的基本自動化。早期的多數管理信息系統,能夠求解這類問題,例如,應用運籌學方法等求解資源優化問題。
如:飼料配方、生產計劃、調度等
2).非結構化決策問題
非結構化決策問題是指那些決策過程復雜,其決策過程和決策方法沒有固定的規律可以遵循,沒有固定的決策規則和通用模型可依,決策者的主觀行為(學識、經驗、直覺、判斷力、洞察力、個人偏好和決策風格等)對各階段的決策效果有相當影響。往往是決策者根據掌握的情況和數據臨時做出決定。
如:聘用人員,為雜志選封面
3).半結構化決策問題
半結構化決策問題介於上述兩者之間,其決策過程和決策方法有一定規律可以遵循,但又不能完全確定,即有所了解但不全面,有所分析但不確切,有所估計但不確定。這樣的決策問題一般可適當建立模型,但無法確定最優方案。
如:開發市場,經費預算;
參考資料:網路一下
什麼是結構化數據,非結構化數據和半結構化數據
相對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。
欄位可根據需要擴充,即欄位數目不定,可稱為半結構化數據,例如Exchange存儲的數據。
非結構化資料庫
在信息社會,信息可以劃分為兩大類。一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據。結構化數據屬於非結構化數據,是非結構化數據的特例
數據清洗從名字上也看的出就是把「臟」的「洗掉」。因為數據倉庫中的數據是面向某一主題的數據的 *** ,這些數據從多個業務系統中抽取而來而且包含歷史數據,這樣就避免不了有的數據是錯誤數據、有的數據相互之間有沖突,這些錯誤的或有沖突的數據顯然是我們不想要的,稱為「臟數據」。我們要按照一定的規則把「臟數據」「洗掉」,這就是數據清洗.而數據清洗的任務是過濾那些不符合要求的數據,將過濾的結果交給業務主管部門,確認是否過濾掉還是由業務單位修正之後再進行抽取。不符合要求的數據主要是有不完整的數據、錯誤的數據、重復的數據三大類。
(1)不完整的數據
這一類數據主要是一些應該有的信息缺失,如供應商的名稱、分公司的名稱、客戶的區域信息缺失、業務系統中主表與明細表不能匹配等。對於這一類數據過濾出來,按缺失的內容分別寫入不同Excel文件向客戶提交,要求在規定的時間內補全。補全後才寫入數據倉庫。
(2)錯誤的數據
這一類錯誤產生的原因是業務系統不夠健全,在接收輸入後沒有進行判斷直接寫入後台資料庫造成的,比如數值數據輸成全形數字字元、字元串數據後面有一個回車操作、日期格式不正確、日期越界等。這一類數據也要分類,對於類似於全形字元、數據前後有不可見字元的問題,只能通過寫SQL語句的方式找出來,然後要求客戶在業務系統修正之後抽取。日期格式不正確的或者是日期越界的這一類錯誤會導致ETL運行失敗,這一類錯誤需要去業務系統資料庫用SQL的方式挑出來,交給業務主管部門要求限期修正,修正之後再抽取。
(3)重復的數據
對於這一類數據——特別是維表中會出現這種情況——將重復數據記錄的所有欄位導出來,讓客戶確認並整理。
數據清洗是一個反復的過程,不可能在幾天內完成,只有不斷的發現問題,解決問題。對於是否過濾,是否修正一般要求客戶確認,對於過濾掉的數據,寫入Excel文件或者將過濾數據寫入數據表,在ETL開發的初期可以每天向業務單位發送過濾數據的郵件,促使他們盡快地修正錯誤,同時也可以做為將來驗證數據的依據。數據清洗需要注意的是不要將有用的數據過濾掉,對於每個過濾規則認真進行驗證,並要用戶確認。
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大。這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯。因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代。所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成。簡單地說,非結構化資料庫就是欄位可變的資料庫。
我國非結構化資料庫以北京國信貝斯(iBase)軟體有限公司的iBase資料庫為代表。IBase資料庫是......>>
什麼是結構化數據表
結構化信息與非結構化信息我們可以把科技信息劃分為結構化信息與非結構化信息。結構化信息是可以數字化的數據信息,可以方便地通過計算機和資料庫技術進行管理。無法完全數字化的信息稱為非結構化信息,如文檔文件、圖片、圖紙資料 、縮微膠片等。這些資源中擁有大量的有價值的信息。現在這類非結構化信息正以成倍的速度增長。另一種定義:對於來源繁多的信息資料,專業人士根據信息的格式加以劃分,將其分為結構化信息和非結構化信息兩大類。結構化信息,我們通常接觸的資料庫所管理的信息,包括生產、業務、交易、客戶信息等方面的記錄。非結構化信息,專業術語為內容,所涵蓋的信息更為廣泛,可分為:營運內容(operational content):如合約、發票、書信與采購記錄;部門內容(workgroup content):如文書處理、電子表格、簡報檔案與電子郵件;Web內容:如HTML與XML等格式的信息;多媒體內容(Rich Media Content):如聲音、影片、圖形等。如果說結構化信息更多的忠實、詳實地記錄了企業的生產交易活動,是顯性的表示,那麼非結構化信息則隱性包含了掌握著企業命脈的關鍵,隱含著許多提高企業效益的機會。對於企業來說,企業內部,以及企業與供應商、客戶、合作夥伴和員工數字化共享所有形式的數據資源,已越來越重要。90%的信息和知識在結構化世界之外,IT應用中還存在著一個非結構化的世界。對大多數企業來說,ERP等業務系統所管理的結構化數據只佔到企業全部信息和知識的10%左右,其他的90%都是資料庫難以存取到的非結構化信息和知識。來自IDC的分析顯示,雖然很多企業投資不菲建立了諸多業務支撐系統,但仍有72%的管理者認為知識沒有在他們的組織得到重復利用,88%的人認為他們沒有接觸到企業最佳實踐的機會。Gartner 也曾預言,對非結構化信息和知識的管理將會帶來一個新IT應用潮流。目前的非結構化信息處理類似於上世紀70年代以前的結構化信息應用。割裂、無法進行數據互操作的應用是其主流。以人們最常用的文檔軟體來看,DOC文檔是MS WORD的專用格式,WPS、永中、中文2000等OFFICE產品廠商則各有各的自留地。這種情況下,由於文檔格式的束縛而使信息四分五裂,信息流無法通暢流轉,信息處理更加困難,信息資源因為信息流的不通暢而喪失了其應有的巨大價值。從非結構化到半結構化,從半結構化到結構化,從結構化到關聯數據體系,從關聯數據體繫到數據挖掘,從數據挖掘到故事化呈現,從故事化呈現到決策導向。互連網上出現的海量信息,大概分為結構化、半結構化和非結構化三種。結構化信息如電子商務信息,信息的性質和量值的出現的位置是固定的;半結構化的信息如專業網站上的細分頻道,其標題和正文的語法相當規范,關鍵詞的范圍相當局限;非結構化的信息如BLOG和BBS,所有內容都是不可預知的。結構化信息和非結構化信息是IT應用的兩個世界,它們有著各自不同的應用進化特點和規律。
什麼叫結構化,半結構化和非結構化數據
相對於結構化數據(即行數據,存儲在資料庫里,可以用二維表結構來邏輯表達實現的數據)而言,不方便用資料庫二維邏輯表來表現的數據即稱為非結構化數據,包括所有格式的辦公文檔、文本、圖片、XML、HTML、各類報表、圖像和音頻/視頻信息等等。 欄位可
半結構化數據的簡介
半結構化數據(semi-structured data)在做一個信息系統設計時肯定會涉及到數據的存儲,一般我們都會將系統信息保存在某個指定的關系資料庫中。我們會將數據按業務分類,並設計相應的表,然後將對應的信息保存到相應的表中。比如我們做一個業務系統,要保存員工基本信息:工號、姓名、性別、出生日期等等;我們就會建立一個對應的staff表。但不是系統中所有信息都可以這樣簡單的用一個表中的欄位就能對應的。
什麼是結構化數據.非結構華數據,之間有什麼區別?
在信息社會,耿息可以劃分為兩大類。一類信息能夠用數據或統一的結構加以表示,我們稱之為結構化數據,如數字、符號;而另一類信息無法用數字或統一的結構表示,如文本、圖像、聲音、網頁等,我們稱之為非結構化數據。結構化數據屬於非結構化數據,是非結構化數據的特例。
隨著網路技術的發展,特別是Internet和Intranet技術的飛快發展,使得非結構化數據的數量日趨增大。這時,主要用於管理結構化數據的關系資料庫的局限性暴露地越來越明顯。因而,資料庫技術相應地進入了「後關系資料庫時代」,發展進入基於網路應用的非結構化資料庫時代。所謂非結構化資料庫,是指資料庫的變長紀錄由若干不可重復和可重復的欄位組成,而每個欄位又可由若干不可重復和可重復的子欄位組成。簡單地說,非結構化資料庫就是欄位可變的資料庫。
什麼叫結構化數據,什麼叫非結構化數據?能舉例說明下嗎?--ITJOB
概念可以網路下,用食品舉例子。
把一堆水果的種類、顏色、名稱等屬性按照一定的格式記錄下來,這部分數據就是結構化數據,可以通過固定的模板讀取某一條記錄的某一個屬性值。
現在給水果們拍照,用語言描述水果的口感,甚至給每個水果做一個網頁,這些數據都是非結構化數據,這些數據不直接對應某個屬性,需要相對復雜的方式來分析才能知道其含義。
Ⅳ 我想問問大數據包括哪些數據類型
大數據的數據類型有:
1、結構化數據:能夠用數據或統一的結構加以表示,人們稱之為結構轎局備化數據,如數字、符號;
2、半結構化數據:所謂半結構化數據,就是介於完全結構化數據和完全無結構的數據之間的數據,XML、HTML文檔就屬於半結構化數據;
3、非結構化數據:非結構化資料庫是指其欄位長度可變,並且每隔臘喚欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據,而且更適合處理非結構化數據。
更多關於大數據包括哪些數據類型,進入:https://m.abcgonglue.com/ask/64fefd1615831522.html?zd查看更多內閉毀容
Ⅳ 以下哪些數據是非結構化數據
您想問的是哪些數據是非結構化數據嗎?辦公文檔、文本、圖片,HTML、各類報表、圖像和音頻。
非結構化數據是數襲寬據結構不規則或不完整,敬哪沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片,HTML、各類報表、圖像和音頻信息等。
非結構化拍稿亮數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。
Ⅵ 大數據有哪些類型
1、結構化數據
可以以固定格式存儲,訪問和處理的數據稱為“結構化數據”。由於此數據採用類似的格式,因此企業可以通過執行分析來獲得最大的收益。還發明了各種先進技術來從結構化數據中提取數據驅動的決策。但是,由於結構化數據的創建已經達到Zettabytes標記,因此世界正朝著這樣一個程度發展。
2、非結構化數據
任何以未知形式或結構出現的數據都屬於非結構化數據。處理非結構化數據並對其進行分析以獲取數據驅動的答案是一項艱巨的任務,因為它們來自不同類別,將它們放在一起只會使情況變得更糟。包含簡單文本文件,圖像,視頻等的組合的異構數據源是非結構化數據的示例。
3、半結構化數據
半結構化數據中同時具有結構化和非結構化數據。我們可以看到半結構化數據是形式化的結構,但實際上它不是在關系DBMS中用表定義來定義的。Web應用程序數據是半結構化數據的示例。它具有非結構化數據,例如日誌文件,事務歷史記錄文件等。OLTP系統旨在與結構化數據一起工作,其中數據存儲在關系中。
Ⅶ 數據劃分
評價資料庫內存放的數據將支持資源評價的整個過程。為了能更好地管理庫中數據,需要對整個過程中將用到的數據進行分類管理。具體分類方式如圖3-1所示。
1.按照應用類型劃分
按照數據在資源評價過程中的應用類型劃分,可以劃分為基礎數據、參數數據和評價結果數據。
基礎數據是指從勘探生產活動及認識中直接獲取的原始數據,這些數據一般沒有經過復雜的處理和計算過程。如分析化驗數據、鑽井地質數據、盆地基礎數據等。這些數據是整個評價工作的基礎。
圖3-1 數據分類示意圖
參數數據是指在評價過程中各種評價方法和軟體直接使用的參數數據。
評價結果數據是指資源評價中產生的各種評價結果數據,如資源量結果數據、地質評價結果數據等。
2.按照評價對象劃分
本次評價共分為大區、評價單元、計算單元三個層次,在研究中又使用了盆地、一級構造單元,在評價對象總體考慮中按照評價對象將數據劃分為大區、評價單元、計算單元等類型。
3.按照獲取方式劃分
按照獲取方式可以將數據分為直接獲取、研究獲取、間接獲取幾類。
4.按照存儲類型劃分
按照存儲類型可以將數據劃分為結構化數據和非結構化數據。
結構化數據是指能夠用現有的關系資料庫系統直接管理的數據,進一步又可以分為定量數據和定性數據兩類。
非結構化數據是指不能用現有的關系資料庫系統直接管理和操作的數據,它必須藉助於另外的工具管理和操作。如圖件數據、文檔數據等。
庫中數據類型的劃分共分六個層次逐次劃分,包括:數據存儲類型→資源類型—→評價對象→應用→獲取方式→數據特徵。
對於結構化存儲的數據在應用層分為三類:基礎數據、中間數據和結果數據,基礎數據中包含用於類比的基礎數據、用於統計分析的基礎數據和直接用於公式運算的基礎數據;
結構化存儲的數據在獲取方式上可以繼續劃分,其中,用於公式運算的數據可以細化為專家直接錄入、由地質類比獲取、通過生產過程獲取、通過地質研究過程獲取及其他方式。中間數據可以從以下方式獲取:標准、統計、類比、參數的關聯。結果數據的獲取有兩種方式:公式運算結果和通過鑽井、地質、綜合研究等提交的文字報告。
對於非結構化存儲的數據在應用層分為兩類:圖形數據和文檔數據;
圖形數據在獲取方式上可以繼續劃分成四種方式:通過工程測量數據獲取(如地理圖件、井位坐標數據等)、通過地質研究過程獲取(如沉積相圖、構造區劃圖等)、由綜合研究獲取(如綜合評價圖等)、其他方式獲取。
圖形數據在表現方式上又可以進一步分為有坐標意義的圖形(如構造單元劃分圖、地理圖、井點陣圖等)、數值圖(如產烴率曲線圖、酐洛根熱降解圖等)和無坐標含義圖(如剖面圖)等。
文檔數據是指評價過程中產生的各種報告、項目運行記錄等。
Ⅷ 數據是什麼,數據有哪些分類
1、結構化數據
結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;教育一卡通;政府行政審茄野批;其他核心資料庫等。
基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
2、非結構化數據
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、XML, HTML、各類報表、圖像和音頻/視頻信息等等。
3、半結顫攔喊構化數據
和普通純文本相比,半結構化數據具有一定的結構性,OEM(Object exchange Model)是一種典型的半結構化數據模型。
半結構化數據(semi-structured data)。在做一個信息系統設計時肯定會涉及到數據的存儲,一般我們都會將系統信息保存在某個指定的關系資料庫中。我們會將數據按業務分類,並設計相應的表,然後將對應的信息保存到相應的表中。
數據:
數據是指對客觀事件進行記錄並可以鑒別的符號,是對客觀事物的性質、狀態以及相互關系等進行記載的物理符號或這些物理符號的組合。它是可識別的、抽象的符號。
它不僅指狹義上的數字,還可以是具有一定意義的文字、字母、數字元號的組合、圖形、圖像、視頻、音頻等,也是客觀事物的屬性、數量、位置及其相互關系的抽象表示。例如,「0、1、2…」、「陰、雨、下降、氣溫」、「學生的檔案記錄、貨衡悉物的運輸情況」等都是數據。數據經過加工後就成為信息。
在計算機科學中,數據是所有能輸入計算機並被計算機程序處理的符號的介質的總稱,是用於輸入電子計算機進行處理,具有一定意義的數字、字母、符號和模擬量等的通稱。計算機存儲和處理的對象十分廣泛,表示這些對象的數據也隨之變得越來越復雜。
Ⅸ 哪些數據屬於結構化數據,哪些數據屬於非結構化數據
(1)結構化數據,簡單來說就是資料庫。結合到典型場景中更容易理解,比如企業ERP、財務系統;醫療HIS資料庫;政府行政審批;其他核心資料庫等。這些應用需要哪些存儲方案呢?基本包括高速存儲應用需求、數據備份需求、數據共享需求以及數據容災需求。
(2)非結構化資料庫是指其欄位長度可變,並且每個欄位的記錄又可以由可重復或不可重復的子欄位構成的資料庫,用它不僅可以處理結構化數據(如數字、符號等信息)而且更適合處理非結構化數據(全文文本、圖像、聲音、影視、超媒體等信息)。