導航:首頁 > 數據分析 > 大數據風險分析崗是哪個單位

大數據風險分析崗是哪個單位

發布時間:2023-03-24 06:38:36

大數據行業就業三大方向和十大職位介紹

大數據行業就業三大方向和十大職位介紹

當下,大數據的趨勢已逐步從概念走向落地,而在IT人跟隨大數據浪潮的轉型中,各大企業對大數據高端人才的需求也越來越緊迫。這一趨勢,也給想要從事大數據方面工作的人員提供了難得的職業機遇。

思數雲計算和大數據服務中心,簡稱思數雲(隸屬於北京思數科技有限公司),是國內專業大數據分析培訓、咨詢機構。中國雲計算大數據處理委員會、與中科院軟體所、清華大學以及Google、Yahoo、騰訊、阿里、移動研究院等大數據技術人員一起合作,在2012年組建了」NewBI-思數雲服務」大數據服務中心。

思數雲從長期實踐總結出大數據主要的三大就業方向: 大數據系統研發類人才、大數據應用開發類人才和大數據分析類人才。 在此三大方向中,各自的基礎崗位一般為大數據系統研發工程師、大數據應用開發工程師和數據分析師。

從企業方面來說,大數據人才大致可以分為產品和市場分析、安全和風險分析以及商業智能三大領域。產品分析是指通過演算法來測試新產品的有效性,是一個相對較 新的領域。在安全和風險分析方面,數據科學家們知道需要收集哪些數據、如何進行快速分析,並最終通過分析信息來有效遏制網路入侵或抓住網路罪犯。

一、ETL研發

隨著數據種類的不斷增加,企業對數據整合專業人才的需求越來越旺盛。ETL開發者與不同的數據來源和組織打交道,從不同的源頭抽取數據,轉換並導入數據倉庫以滿足企業的需要。

ETL研發,主要負責將分散的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。

目前,ETL行業相對成熟,相關崗位的工作生命周期比較長,通常由內部員工和外包合同商之間通力完成。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。

二、Hadoop開發

Hadoop的核心是HDFS和MapRece.HDFS提供了海量數據的'存儲,MapRece提供了對數據的計算。隨著數據集規模不斷增大,而傳統BI的數據處理成本過高,企業對Hadoop及相關的廉價數據處理技術如Hive、HBase、MapRece、Pig等的需求將持續增長。如今具備Hadoop框架經驗的技術人員是最搶手的大數據人才。

三、可視化(前端展現)工具開發

海量數據的分析是個大挑戰,而新型數據可視化工具如Spotifre,Qlikview和Tableau可以直觀高效地展示數據。

可視化開發就是在可視開發工具提供的圖形用戶界面上,通過操作界面元素,由可視開發工具自動生成應用軟體。還可輕松跨越多個資源和層次連接您的所有數據,經過時間考驗,完全可擴展的,功能豐富全面的可視化組件庫為開發人員提供了功能完整並且簡單易用的組件集合,以用來構建極其豐富的用戶界面。

過去,數據可視化屬於商業智能開發者類別,但是隨著Hadoop的崛起,數據可視化已經成了一項獨立的專業技能和崗位。

四、信息架構開發

大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以最有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。

五、數據倉庫研究

數據倉庫是為企業所有級別的決策制定過程提供支持的所有類型數據的戰略集合。它是單個數據存儲,出於分析性報告和決策支持的目的而創建。為企業提供需要業務智能來指導業務流程改進和監視時間、成本、質量和控制。

數據倉庫的專家熟悉Teradata、Neteeza和Exadata等公司的大數據一體機。能夠在這些一體機上完成數據集成、管理和性能優化等工作。

六、OLAP開發

隨著資料庫技術的發展和應用,資料庫存儲的數據量從20世紀80年代的兆(M)位元組及千兆(G)位元組過渡到現在的兆兆(T)位元組和千兆兆(P)位元組,同時,用戶的查詢需求也越來越復雜,涉及的已不僅是查詢或操縱一張關系表中的一條或幾條記錄,而且要對多張表中千萬條記錄的數據進行數據分析和信息綜合。聯機分析處理(OLAP)系統就負責解決此類海量數據處理的問題。

OLAP在線聯機分析開發者,負責將數據從關系型或非關系型數據源中抽取出來建立模型,然後創建數據訪問的用戶界面,提供高性能的預定義查詢功能。

七、數據科學研究

這一職位過去也被稱為數據架構研究,數據科學家是一個全新的工種,能夠將企業的數據和技術轉化為企業的商業價值。隨著數據學的進展,越來越多的實際工作將會直接針對數據進行,這將使人類認識數據,從而認識自然和行為。因此,數據科學家首先應當具備優秀的溝通技能,能夠同時將數據分析結果解釋給IT部門和業務部門領導。

總的來說,數據科學家是分析師、藝術家的合體,需要具備多種交叉科學和商業技能。

八、數據預測(數據挖掘)分析

營銷部門經常使用預測分析預測用戶行為或鎖定目標用戶。預測分析開發者有些場景看上有有些類似數據科學家,即在企業歷史數據的基礎上通過假設來測試閾值並預測未來的表現。

九、企業數據管理

企業要提高數據質量必須考慮進行數據管理,並需要為此設立數據管家職位,這一職位的人員需要能夠利用各種技術工具匯集企業周圍的大量數據,並將數據清洗和規范化,將數據導入數據倉庫中,成為一個可用的版本。然後,通過報表和分析技術,數據被切片、切塊,並交付給成千上萬的人。擔當數據管家的人,需要保證市場數據的完整性,准確性,唯一性,真實性和不冗餘。

十、數據安全研究

數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。數據安全研究員還需要具有較強的管理經驗,具備運維管理方面的知識和能力,對企業傳統業務有較深刻的理解,才能確保企業數據安全做到一絲不漏。


;

② 大數據分析師是什麼職業

越來復越多的企業將選擇擁有項制目數據分析師資質的專業人士為他們的項目做出科學、合理的分析,以便正確決策項目;越來越多的風險投資機構把項目數據分析師所出具的項目數據分析報告作為其判斷項目是否可行及是否值得投資的重要依據;越來越多的企業把項目數據分析師課程作為其中高管理層及決策層培訓計劃的重要內容;越來越多的有志之士把項目數據分析師培訓內容作為其職業生涯發展中必備的知識體系,數據分析這個職業應運而生,毫不誇張的說,數據分析師帶給企業的不僅僅是一個個數據報告,更是一桶桶黃金,一片片亟待探索的藍海

③ 數據分析員應該屬於公司哪個部門

所在部門:市場研究公司數據部上級職位:數據部經理
編輯本段
主要工作內容/職責/流程
1、根據數據分析方案進行數據分析,在既定時間內提交給市場研究人員;
2、能進行較高級的數據統計分析;
3、公司錄入人員的管理和業績考核;以及對編碼人員的行業知識和問卷結構的培訓;
4、錄入資料庫的設立,數據的校驗,資料庫的邏輯查錯,對部分問卷的核對;

④ 大數據有哪些職位和工作機會

下面是比較熱門的幾個大數據崗位:

1、首席數據官(CDO)

首席數據官的工作內容非常多,職責也很復雜,他們負責公司的數據框架搭建、數據管理、數據安全保證、商務智能管理、數據洞察和高級分析。因此,首席數據師必須個人能力出眾,同時還需要具備足夠的領導力和遠見,找准公司發展目標,協調應變管理過程。

2、營銷分析師/客戶關系管理分析師

客戶忠誠度項目、網路分析和物聯網技術積攢了大量的用戶數據,很多先進公司已經在使用相關策略來支持公司的發展計劃。尤其是市場部門能夠運用這些數據進行更有針對性的營銷。營銷分析師能夠發揮他們在Excel和SQL等數據分析工具方面的專業特長,對客戶進行細分,確保數字化營銷能夠到達目標客戶群體。

3、數據工程師

隨著Hadoop和非結構化數據倉庫的流行,所有分析功能的第一要務就是要得到正確的數據。高水平的工程師需要掌握數據管理技能,熟悉提取轉換載入過程,很多公司都急需這樣的人才。事實上,很多首席數據官甚至認為,數據工程師才是大數據相關行業中最重要的職位。

4、商務智能開發工程師

商務智能開發工程師的最基本職能,是管理結構數據從資料庫分配至終端用戶的過程。商務智能(BI)曾經只是商務金融的基礎,現在已經獨立出來,成為了單獨的部門,很多商務智能團隊正在搭建自服務指示板,這樣運營經理就能快速且有效地獲取高性能數據,評價公司運營情況。

5、數據可視化

隨著指示板和可視化工具的增多,商務智能「前端」研發工程師需要更熟練掌握Tableau、QlikView/QlikSense、SiSense和Looker。能夠使用d3.js在網路瀏覽器中製作數據可視化的研發工程師也越來越受到公司歡迎。很多大公司開出的年薪已經超過了7萬5千英鎊,平均日薪500多英鎊。

6、大數據工程師

正如上文提到過的,數據工程師的工作是負責管理公司的數據,包括數據的收集,存儲、處理和分析。大數據工程師需要能夠搭建並維護大型異構數據框架,這些數據通常是在MongoDB等NoSQL資料庫中。很多公司採用Hadoop框架和很多Hadoop次級軟體包,如Hive(數據軟體),Pig(數據流語言)和Spark(多編程模型)。

⑤ 大數據領域有哪些崗位

一是大數據維護、研發、架構工程師方向;所涉及的職業崗位為:大數據工程師、大數據維護工程師、大數據研發工程師、大數據架構師等;
二是大數據挖掘、分析方向;所涉及的職業崗位為:大數據分析師、大數據高級工程師、大數據分析師專家、大數據挖掘師、大數據演算法師等。

⑥ 大數據就業崗位有哪些

大數據方面的就業主要有三大方向:

一是數據分析類大數據人才,二是系統研發類大數據人才,三是應用開發類大數據人才。他們的基礎崗位分別是大數據系統研發工程師、大數據應用開發工程師、大數據分析師。

2大數據熱門專業

1、Hadoop開發 隨著數據規模不斷增大,傳統BI的數據處理成本過高企業負擔加重。而Hadoop廉價的數據處理能力被重新挖掘,企業需求持續增長。並成為大數據人才必須掌握的一種技術。

2、信息架構開發 大數據重新激發了主數據管理的熱潮。充分開發利用企業數據並支持決策需要非常專業的技能。信息架構師必須了解如何定義和存檔關鍵元素,確保以十分有效的方式進行數據管理和利用。信息架構師的關鍵技能包括主數據管理、業務知識和數據建模等。

3、數據安全研究 數據安全這一職位,主要負責企業內部大型伺服器、存儲、數據安全管理工作,並對網路、信息安全項目進行規劃、設計和實施。

4、ETL研發 企業數據種類與來源的不斷增加,對數據進行整合與處理變得越來越困難,企業迫切需要一種有數據整合能力的人才。ETL開發者這是在此需求基礎下而誕生的一個職業崗位。ETL人才在大數據時代炙手可熱的原因之一是:在企業大數據應用的早期階段,Hadoop只是窮人的ETL。

⑦ 大數據有哪些工作崗位

1、大數據開發工程師


開發,建設,測試和維護架構,負責公司大數據平台的開發和維護,負責大數據平台持續集成相關工具平台的架構設計與產品開發等。


2、數據分析師


收集,處理和執行統計數據分析;運用工具,提取、分析、呈現數據,實現數據的商業意義,需要業務理解和工具應用能力。


3、數據挖掘工程師


數據建模、機器學習和演算法實現;商業智能,用戶體驗分析,預測流失用戶等;需要過硬的數學和統計學功底以外,對演算法的代碼實現也有很高的要求。


4、數據架構師


需求分析,平台選擇,技術架構設計,應用設計和開發,測試和部署;高級演算法設計與優化;數據相關系統設計與優化,需要平台級開發和架構設計能力。成都加米穀大數據培訓機構,大數據開發,數據分析與挖掘。


5、資料庫開發


設計,開發和實施基於客戶需求的資料庫系統,通過理想介面連接資料庫和資料庫工具,優化資料庫系統的性能效率等。


6、資料庫管理


資料庫設計、數據遷移、資料庫性能管理、數據安全管理,故障檢修問題、數據備份、數據恢復等。


7、數據科學家


數據挖掘架構、模型標准、數據報告、數據分析方法;利用演算法和模型提高數據處理效率、挖掘數據價值、實現從數據到知識的轉換。


8、數據產品經理


把數據和業務結合起來做成數據產品;平台線提供基礎平台和通用的數據工具,業務線提供更加貼近業務的分析框架和數據應用。

⑧ 大數據行業就業方向有哪些大數據技術就業崗位有哪些

方向:大數據開發方向,數據挖掘、數據分析和機器學習方向,大數據運維和雲計算方向

就業崗位:

1、大數據工程師

大數據工程師的話其實包涵了很多,比如大數據開發,測試,運維,挖據等等,各個崗位不同薪資水平也不大相同。總的來說的話它共有6093個崗位在智聯招聘上招聘,平均工資也在11643元。

2、Hadoop開發工程師

職位描述:參與優化改進新浪集團數據平台基礎服務,參與日傳輸量超過百TB的數據傳輸體系優化,日處理量超過PB級別的數據處理平台改進,多維實時查詢分析系統的構建優化。

3、大數據研發工程師

職位描述:

構建分布式大數據服務平台,參與和構建公司包括海量數據存儲、離線/實時計算、實時查詢,大數據系統運維等系統;服務各種業務需求,服務日益增長的業務和數據量。

4、大數據架構師

大數據架構師的招聘崗位有1446個,從招聘的薪資來看,大數據架構師基本薪資都是15K~60K,大數據架構師的薪資可以說是相當可觀的,在大數據行業里,大數據架構師的酬勞可以說是領先與其他的,所以大數據架構師對於人才的要求也是比較嚴格的。

5、大數據分析師

工作職責:根據公司產品和業務需求,利用數據挖掘等工具對多種數據源進行診斷分析,建設徵信分析模型並優化,為公司徵信運營決策、產品設計等方面提供數據支持;負責項目的需求調研、數據分析、商業分析和數據挖掘模型等,通過對運行數據進行分析挖掘背後隱含的規律及對未來的預測。

⑨ 大數據分析崗位都有哪些

1、數據分析師


偏向商業化的數據分析,運營廣告等活動效果分析賣耐,銷售額或利潤預測,用戶特徵描述等,需要較好的統計知識,需要懂1-2門數據分析工具如SAS、R等。


2、咨詢顧問


面向客戶,為客戶者帆提供數據抓取、數據分析、出數據報表、改進建議落實等咨詢服務,需要有較好的溝通能力,需要懂1-2門數據分析工具如SAS、R等;(咨詢顧問其實也分技術和非技術,技術類的主要是為客戶搭建數據平台)。


3、數據產品首配雹經理


一般是互聯網公司獨有,數據量大的公司會有自己的數據產品,如阿里巴巴的數據魔方等,主要是針對數據產品從產品立項、提開發需求、跟進產品開發、測試一直到產品上線等工作。

⑩ 大數據分析這個職位屬於哪個行業

數據來分析行業屬於一個邊緣學自科,交叉學科,准確的說它不屬於哪個行業,不屬於IT,也不屬於金融業,但是同時也會用到IT的知識和工具,也會用到金融的原理的這種。

閱讀全文

與大數據風險分析崗是哪個單位相關的資料

熱點內容
angularjs表頭固定 瀏覽:43
怎麼樣對excel設密碼 瀏覽:108
光纖移動撥號連接錯誤代碼651 瀏覽:165
什麼網站買票訂酒店便宜 瀏覽:317
天涯攝影小說網站怎麼找 瀏覽:915
搜索不到視頻文件 瀏覽:560
求生之路2哪個版本可以聯機 瀏覽:472
word2010關閉頁眉橫線 瀏覽:626
db在數據結構里什麼意思 瀏覽:29
室內效果圖建模教程 瀏覽:364
A類地址網路號為什麼不能全0 瀏覽:466
上古卷軸ol目前版本 瀏覽:420
黑蝴蝶的app是什麼軟體 瀏覽:456
程序批量查詢網站信息 瀏覽:57
麗楓酒店訂房間app是什麼 瀏覽:241
拾零工具箱官網下載 瀏覽:49
房地產估價師視頻哪個網站有 瀏覽:836
cad圖形工具在哪 瀏覽:487
mastercamx哪個版本好 瀏覽:539
微信數據如何全部導出 瀏覽:781

友情鏈接