導航:首頁 > 數據分析 > 數據分析是哪個分類

數據分析是哪個分類

發布時間:2023-03-23 08:25:34

A. 什麼是數據分析

數據分析有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

B. 數據分析有哪些分類

常見的分析方法有:分類分析,矩陣分析,漏斗分析,相關分析,邏輯樹分析,趨勢分析,行為軌跡分析,等等。 我用HR的工作來舉例,說明上面這些分析要怎麼做,才能得出洞見。

01) 分類分析
比如分成不同部門、不同崗位層級、不同年齡段,來分析人才流失率。比如發現某個部門流失率特別高,那麼就可以去分析。

02) 矩陣分析
比如公司有價值觀和能力的考核,那麼可以把考核結果做出矩陣圖,能力強價值匹配的員工、能力強價值不匹配的員工、能力弱價值匹配的員工、能力弱價值不匹配的員工各佔多少比例,從而發現公司的人才健康度。

03) 漏斗分析
比如記錄招聘數據,投遞簡歷、通過初篩、通過一面、通過二面、通過終面、接下Offer、成功入職、通過試用期,這就是一個完整的招聘漏斗,從數據中,可以看到哪個環節還可以優化。

04) 相關分析
比如公司各個分店的人才流失率差異較大,那麼可以把各個分店的員工流失率,跟分店的一些特性(地理位置、薪酬水平、福利水平、員工年齡、管理人員年齡等)要素進行相關性分析,找到最能夠挽留員工的關鍵因素。

05) 邏輯樹分析
比如近期發現員工的滿意度有所降低,那麼就進行拆解,滿意度跟薪酬、福利、職業發展、工作氛圍有關,然後薪酬分為基本薪資和獎金,這樣層層拆解,找出滿意度各個影響因素裡面的變化因素,從而得出洞見。

06) 趨勢分析
比如人才流失率過去12個月的變化趨勢。

07)行為軌跡分析
比如跟蹤一個銷售人員的行為軌跡,從入職、到開始產生業績、到業績快速增長、到疲憊期、到逐漸穩定。

C. 數據分析的類型

在統計學領域,有些人將數據分析劃分為描述性統計分析、探索性數據分析以及驗證性數據分析;其中,探索性數據分析側重於在數據陪察之中發現新的特徵,而驗證性數據分析則側重於已有假設的證實或證偽。
探索性數據分析是指為了形成值得假設的檢驗而對數據進握咐行分析的一種方法,是對傳統統計學假設檢驗手段的補充。該方法由美國著名統計學家約翰·圖基(John Tukey)命名。
定性數據分析又稱為「定性資料分析」、「定性研究」或者「質性研究資料分析」,是指對諸如詞語、照片、蘆皮茄觀察結果之類的非數值型數據(或者說資料)的分析。

D. 數據分析的類型有哪些

1.交易數據


大數據平台能夠獲取時間跨度更大、更海量的結構化交易數據,這樣就可以對更廣泛的交易數據類型進行分析,不僅僅包括POS或電子商務購物數據,還包括行為交易數據,例如Web伺服器記錄的互聯網點擊流數據日誌。


2.人為數據


非結構數據廣泛存在於電子郵件、文檔、圖片、音頻、視頻,以及通過博客、維基,尤其是社交媒體產生的數據流。這些數據為使用文本分析功能進行分析提供了豐富的數據源泉。


3.移動數據


能夠上網的智能手機和平板越來越普遍。這些移動設備上的App都能夠追蹤和溝通無數事件,從App內的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)。


4.機器和感測器數據


這包括功能設備創建或生成的數據,例如智能電表、智能溫度控制器、工廠機器和連接互聯網的家用電器。這些設備可以配置為與互聯網路中的其他節點通信,還可以自動向中央伺服器傳輸數據,這樣就可以對數據進行分析。

E. 數據分析屬於什麼專業

數據分析員屬於什麼專業
沒有屬於什麼專業,一般從事的人都是統計學或者數學專業的。
數據分析師屬於什麼職能分類
數據分析師指的是不同行業中,專門從事行業數據蒐集、整理、分析,並依據數據做出行業研究、評估和預測的專業人員。 互聯網本身具有數字化和互動性的特徵,這種屬性特徵給數據蒐集、整理、研究帶來了革命性的突破。以往「原子世界」中數據分析師要花較高的成本(資金、資源和時間)獲取支撐研究、分析的數據,數據的豐富性、全面性、連續性和及時性都比互聯網時代差很多。在「原子世界」中,抽樣調查是最經常採用的數據獲取方式,主要原因就是大范圍普查的成本太高——最典型的應用就是電視收視率。而在互聯網時代,針對互聯網行業的研究,在局部(例如某個網站或同類網站的集群)做到低成本、高效率的全樣本數據採集是有可能實現的。同樣,「原子世界」中的很多數據不具備連續性,而互聯網世界中的數據卻有可能做到連續更新,甚至實時——最典型的應用就是網站全樣本、全天候數據統計和分析研究。 與傳統的數據分析師相比,互聯網時代的數據分析師面臨的不是數據匱乏,而是數據過剩。因此,互聯網時代的數據分析師必須學會藉助技術手段進行高效的數據處理。更為重要的是,互聯網時代的數據分析師要不斷在數據研究的方法論方面進行創新和突破。例如,結合傳統的消費心理學理論,構建豐富的互聯網信息消費行為模型。 就行業而言,數據分析師的價值與此類似。就新聞出版行業而言,無論在任何時代,媒體運營者能否准確、詳細和及時地了解受眾狀況和變化趨勢,都是媒體成敗的關鍵。數據分析師在這方面大有可為。 此外,對於新聞出肢輪版等內容產業來說,更為關鍵的是,數據分析師可以發揮內容消費者數據分析的職能,這是支撐新聞出版機構改善客戶服務的關鍵職能。例如,收集內容消費者信息、形成內容消費者信息資料庫、根據資料庫的信息與內容消費者保持即時聯系、傳遞產品和服務的信息、資料庫的更新和維護。由此,數據分析師提供的數據還將成為定製產品、個性化服務的重要依據:藉助先進的資料庫技術,對內容資源進行深入挖掘和多次利用,提供個人偏好的內容服務,或藉助數字印刷和出版技術,實現按需生產產品並交付出版印刷。
與數據分析有關的大學專業有哪些
與數據分析有關的專業:

數學相關的專業都算,比如:統計學、應用數學、信息與計算科學等等

還有IT相關的專業,比如:計算機科學與技術、資料庫

其實,想要在數據分析行業發展,現在高校也沒有純數據分析專業

而數據分析本身又是一個邊緣學科,交叉學科,你選擇了某個專業,但是還需要你多方面的知識儲備!
數據分析師一般是什麼專業?如何成為數據分析師?
考取項目數據分析師證書,積累經驗,就可以成為項目數據分析師了
數據分析師在智聯招聘里屬於什麼職業類別?
數據分析崗位涉及各個行業的各個類別,比如銷售管理、業務支持、市場推廣等等,沒有特定的職業類別
大數據分析這個職位屬於哪個行業
這個問題,可能是絕大部分人的疑問。

數據分析行業是屬於邊緣學科,交叉學科,

可以說不屬於哪個行業,不屬於IT,也不屬於金融業

但配賀同時也會用到IT的知識和工具,也會用到金融的原理,

還有,財務、統計、管理、營銷……
有哪些大學的哪些專業是與大數據有關的??
計算機科學與技術
什麼是數據分析?
數=數學、數字(來源、架構);據=憑據、依據(標准、報表);分=劃分、區分(篩選、處理);析=解析、剖析(結果)。我們了解數據分析的意義之後,更需懂得數據對做好數據分析,除了具備專業的數據分析知識或技巧,學會使用好數據分析軟體也是非常重要的,做起事來更能事半功倍歷賣信,如大家所熟悉的TopBox(智投分析)這類軟體,具有非常強的數據監測實力,以前很多需要人工提取、再計算的轉化數據,現在軟體能直接監測得到。
數據分析師是一個什麼樣的職業?
隨著各行業計算機應用以及信息化水平提高,各行業企事業單位已裝備了非常完備的計算機系統,搭建了暢通無阻的互聯網平台,信息化「硬體」設施已初具規模,但與此同時,隨著業務發展以及市場信息不斷積累,商業領域和行業部門產生了大量的業務數據,很多企業信息中心或統計部門數據量非常之大已成為名副其實的信息海洋,大量的、雜亂無章的

數據以及錯誤的數據分析方法非但沒有給企業創造競爭力,相反給企業帶來人力、物力、時間巨大浪費和難以擺脫的長期壓力,甚至由於誤用錯誤的數據分析方法或使用不完整的數據,給企業發展帶來負面影響或相反作用。因此,面對用於決策的有效信息隱藏在大量數據中的現實問題,如何採用正確的數據分析統計和數據挖掘方法,從大量的數據中提取對人們有價值、有意義的數據,獲得有利於商業運作、提高競爭力的信息,已成為企業面臨的共同問題。

為推動知識管理,挖掘數據價值,適應商業企業的市場競爭需要,同時更好的配合國家對專業技術人員進行培訓的要求, 信息產業部通信行業職業技能鑒定指導中心根據國家對專業技術人員加強培訓且須持證上崗等文件精神,於2005年9月正式面向全國推出了國家數據分析師認證(NTC-CCDA)培訓項目。

國家數據分析認證(NTC-CCDA)課程包括數據分析思維訓練、數據分析理念和誤區陷阱提示、數據分析方法內容精解、數據分析工具軟體應用(SPSS、Clementine、Decision Time & What If、AMOS4.0-5.0、AnswerTree3.0等)、市場預測分析等方面內容,它是對數據進行調查統計、分析預測、數據挖掘等一系列活動的總和,其基本目的是採用科學的正確的數據統計、分析預測、數據挖掘等方法,從大量的、雜亂無章的數據中提取對人們有價值、有意義的數據,從而提升數據價值,提高企業核心競爭力。

國家數據分析認證(NTC-CCDA)作為2005年最新的國家級認證培訓項目,必將在今後相當長的一段時間內,成為非常熱門的職業之一,專家預測,在今後的五年內,我國將至少需要50萬名持有國家數據分析認證(NTC-CCDA)證書的數據分析專業人才。

目前, *** 經濟部門、金融機構、投資公司以及企業統計和分析人員對國家數據分析師的需求正在與日俱增。項目數據分析行業在歐美發展得十分成熟,數據分析這一幫助企業決策的方式已經深入到各行各業。而在中國,數據分析剛剛走過了7個年頭,巨大的市場潛力和人才缺口使得數據分析行業進入了發展的黃金時期,而數據分析師則成為了一個朝陽職業。數據分析如何切實地幫助企業決策?數據分析師這一新興職業的工作性質是什麼?整個行業的未來發展前景如何?近日筆者帶著這些問題采訪了相關人士。

●數據分析在我國屬於朝陽行業

數據分析在國外廣泛應用於各個領域,但在中國仍屬於朝陽行業,至今剛剛走過了7個年頭。「中國數據分析行業的發展大致可以分成四個階段」, 中國商業聯合會數據分析專業委員會培訓處主任任彥博表示,「第一階段可稱為覺醒與前瞻。90年代,大量海外機構將西方投資決策技術引進中國,並受到中國企業和金融投資機構的廣泛學習借鑒。數據分析行業到了21世紀進入到第二個階段,迎來了數據分析師的誕生。從2004年到2010年,我國項目數據分析師人數從零起步,猛增至近萬人。到了第三階段,我國首家數據分析事務所創立。在第四個階段中,中國商業聯合會數據分析專業委員會正式成立,首屆中國數據分析業峰會在京成功的舉行都標志著中國數據分析行業已經進入快速發展的成長期。」...
數據分析員,是做什麼的,有專業要求嗎? 5分
數據分析員的具體工作:籠統的說應該是負責數據的收集、各類數據整理、匯總、分析整理以及傳遞和管理。

不同專業數據分析所用的分析工具和方法會有所不同,所以有比較好的專業知識才比較容易上手,另外需要有計算機應用知識,數理統計,經濟學,資料庫原理以及相關知識;能熟練使用EXCLE、SPSS、QUANVERT、SAS等統計軟體。

F. 數據分析方法一般分為哪三種

1、漏斗分析
漏斗分析是指通過數據分析找到有問題的業務環節,並對其優化。
漏斗分析兩大作用:其一,漏斗分析可以對各個業務階段的用戶、流量的變化進行監控,及時分析低轉化率的環節,找出流失的關鍵,並不斷優化。其二,漏斗分析可以根據不同的人群、渠道,進行差異化的分析,比如新渠道、新客戶,分析出最佳的和最差的,這樣能夠提高操作的准確性和效率。

3、對比分析法
對比分析法即對比數據,分析差別,可以直觀地看到某個方面的變化或差距,並能准確量化地表示這些變化或差距。對比分析既可以基於時間進行對比,也可以基於分類,如部門、地區、類別等進行對比。在工作中,我們會使用對比分析法比較多,比如,如上年的銷量對比、目標與實際對比等。我們拍梁渣在對比的過程中要注意要找相似的對比對象。比如,佛山的人口與上海的人口對比就沒有可比性,是毫無意義的。

G. 數據分析屬於商標哪一類

數據分析屬於服務類項歷滲盯目,屬喊旦於第三十肢和五類商標

H. 數據分析有哪些分類

這個問題需要多方面考慮,比如: 探索性消稿數據分析、定性數據分析、離線數據分析、拿肢孝在線數據分析。就探索性數據分析來說:探索性數據分析是指為了形成值得假設的飢運檢驗而對數據進行分析的一種方法,是對傳統統計學假設檢驗手段的補充。

I. 數據分析有哪些分類

​按數據分析面對的問題不同分類:戰略、運營

戰略分析:是為了解決公司戰略方向問題,回答要向哪裡去的問題。

此類分析通常比較宏觀,需要分析者有大局觀、有戰略思維;

所用的數據除了公司內部的數據,還需要競品數據、行業數據。

戰略分析的方法:需要從競品及行業數據中發現行業發展趨勢及競品的戰略定位,同時結合公司內部數據,可以發現相對於行業和競品發展,內部在哪些地方存在不足,以此制定進攻和防守策略

運營分析:不同於戰略分析,運營分析以解決實際運營問題為目標,比較微觀。

需要分析者對公司業務模式、運營細節有深入的了解;

使用的數據以公司內部數據為主。

此類分析最重要的是,分析結果要能夠與運營結合,並能有效落地

按數據分析服務的部門不同分類:業務、數據

業務分析:此類分析由業務部門發起,提交給分析師執行,最終結果交付給業務部門。此類分析一般在最終的價值發現環節效率較高,問題的針對性較強。

數據分析:此類分析由數據部門發起,最終結果視具體情況可能提高給業務部門或者管理層。由於此類分析的視角不同於業務分析,在最終的價值發現和實現環節需要與業務部門的深入溝通。同時,也正是由於視角不同,會經常發現業務部門沒有發現或者忽視的問題。

數據分析按分析的范圍不同分類:行業、公司、部門、業務環節

行業分析:目的是總結和預測整個行業的過去和未來的發展趨勢,時間窗口一般在1年以上。使用場景較多的是在投資公司中或者很多公司的市場宣傳稿中會出現。行業分析的對象是商業模式或者業務形態,關注的是資金、市場格局、用戶需求的變化和各企業的應對。最有價值和最難的是要提前預測行業的增長爆發點和衰退的轉折點。

公司分析:目的是結合行業分析對公司業務發展做出診斷,給公司發展提供決策建議。時間窗口一般在一年以內,在公司戰略決策會發揮較大的作用。SWOT等方法適合在公司分析中使用。分析者首先要認清企業的商業模式,要與公司的管理者同步公司的短期和長期目標,了解企業的盈利來源和運作方式,通過公司內外部數據的對比發現運營中的問題和商機。在這個過程中,了解市場和競品的動態是非常重要的。

部門分析:目的是對部門職能范圍內的業務發展做出正確的診斷並給出適當的建議。前提是能充分理解部門在整個公司中的角色和地位、該部門與其他部門的協作關系、在工作流程中的上下游關系。基於以上理解,以配合公司業務發展為目的,以提升部門KPI或某個關鍵任務為分析目標,利用公司和部門運營數據去做分析。此類分析中,理解公司業務、有產品和業務思維很重要,指標的分解、對比,數據變化的歸因往往是常用的分析方法。

業務環節分析:這是數據分析在業務最細粒度的應用。分析者只需要關注非常具體的某個業務環節,讓大家感興趣的是這個業務環節數據的變化原因和改善方式。此時分析的指標經常是確定的,目標也很直接。但所謂牽一發動全身,這個環節的變化通常是由其他環節的變化引起的。所以萬萬不能走入一葉障目不見泰山的誤區。

數據分析按項目的階段不同分類:咨詢、實施

咨詢分析:以前有過跟咨詢公司合作的經歷。在項目開始階段,乙方通常需要花很多時間討論項目立項的必要性、收益等,以此來說服甲方老闆,你懂的。但是,我要說的是,即使是公司自行研發的項目,在立項階段,數據分析需要做的是樹立目標。通過數據分析,可以對業務有一個全面的診斷,發現問題,提出項目需要改善的主要指標,並預測出項目上線後的收益。立項是需要管理層批準的,因此這個階段的分析需要簡明扼要、一針見血,分析結果的呈現起著至關重要的作用。

實施分析:項目開始後,數據分析需要做的是過程式控制制。除了項目目標涉及的主要指標需要持續關注之外,還需要關注過程類指標。所謂過程類指標,是指能夠反映出項目執行內容的數據。因為主要指標的表現通常是滯後的,而且是若干因素影響的結果,過程指標是為了明確各影響因素的作用效果。比如項目目標是提升使用時長,項目內容可能包括提升新用戶和老用戶的使用時長,那麼則應該把新老用戶的時長作為指標單獨監控和分析。

J. 數據分析常見類型有哪些

1. 描述性分析


通過描述性分析這一手段,我們可以分析和描述數據的特徵。這是一個處理信息匯總的好方法。描述性分析與視覺分析相結合,為我們提供了全面的數據結構。


在描述性分析中,我們處理過去的數據以得出結論,並以儀錶板的形式展現出來。在企業中,描述性分析多用於確定關鍵績效指標或KPI以評估企業績效。


2. 預測分析


藉助預測分析,我們可以確定未來的結果。基於對歷史數據的分析,我們甚至可以預測未來。它利用描述性分析來生成有關未來的預測,藉助技術進步和機器學習,能夠獲得有關未來的預測性見解。


預測分析是一個復雜的領域,需要大量數據來熟練地執行預測模型及其調整從而獲得較為准確的預測,這需要我們精通機器學習並開發有效的模型。


3. 診斷分析


有時,企業需要對數據的性質進行批判性思考,並深入了解描述性分析。為了找到數據中的問題,我們需要對一些分析進行診斷。


4. 規范分析


規范分析結合了以上所有分析技術的見解嗎,它被稱為數據分析的最終領域,規范分析使公司可以根據這些數據結論制定相關決策。


規范分析需要大量使用人工智慧,以方便公司做出謹慎的業務決策,像Facebook、Netflix、Amazon和Google之類的大公司正在使用規范分析來制定關鍵業務決策。

閱讀全文

與數據分析是哪個分類相關的資料

熱點內容
怎麼樣對excel設密碼 瀏覽:108
光纖移動撥號連接錯誤代碼651 瀏覽:165
什麼網站買票訂酒店便宜 瀏覽:317
天涯攝影小說網站怎麼找 瀏覽:915
搜索不到視頻文件 瀏覽:560
求生之路2哪個版本可以聯機 瀏覽:472
word2010關閉頁眉橫線 瀏覽:626
db在數據結構里什麼意思 瀏覽:29
室內效果圖建模教程 瀏覽:364
A類地址網路號為什麼不能全0 瀏覽:466
上古卷軸ol目前版本 瀏覽:420
黑蝴蝶的app是什麼軟體 瀏覽:456
程序批量查詢網站信息 瀏覽:57
麗楓酒店訂房間app是什麼 瀏覽:241
拾零工具箱官網下載 瀏覽:49
房地產估價師視頻哪個網站有 瀏覽:836
cad圖形工具在哪 瀏覽:487
mastercamx哪個版本好 瀏覽:539
微信數據如何全部導出 瀏覽:781
織夢幫密碼 瀏覽:223

友情鏈接