Ⅰ 面板數據回歸分析結果看不懂!!
我給你解讀一份stata的回歸表格吧,應該有標准表格的所有內容了,因為你沒有給範例,……不過我們考試基本就是考stata或者eview的輸出表格,它們是類似的。
X變數:教育年限
Y變數:兒女數目
各個系數的含義:
左上列:
Model SS是指計量上的SSE,是y估計值減去y均值平方後加總,表示的是模型的差異
Model df是模型的自由度,一般就是指解釋變數X的個數,這里只有一個
Resial SS 和df 分別是殘差平方和以及殘差自由度 N-K-1(此處K=1)=17565
Total SS 和 df分別是y的差異(y減去y均值平方後加總)以及其自由度N-1=17566
MS都是對應的SS除以df,表示單位的差異
右上列:
Number of obs是觀測值的數目N,這里意味著有17567個觀測值
F是F估計值,它是對回歸中所有系數的聯合檢驗(H0:X1=X2=…=0),這里因為只有一個X,所以恰好是t的平方。這里F值很大,因此回歸十分顯著。
Prob>F是指5%單邊F檢驗對應的P值,P=0意味著很容易否定H0假設,回歸顯著。
R-squared是SSE/SST的值,它的意義是全部的差異有多少能被模型解釋,這里R-squared有0.0855,說明模型的解釋度還是可以的。
Adj R-squared是調整的R-squared,它等於1-(n-1)SSR/(n-k-1)SST,它的目的是為了剔除當加入更多X解釋變數時,R-squared的必然上升趨勢,從而在多元回歸中更好的看出模型的解釋力,但是本回歸是一元的,這個值沒有太大意義。
Root MSE是RMS的開方,是單位殘差平方和的一種表現形式。
下列:
Coef分別出示了X變數schooling的系數和常數項的值,其含義是,如果一個人沒有受過教育,我們預測會平均生育3個子女,當其他因素不變時,一個人每多受一年教育,我們預測其將會少生0.096個孩子。X變數的coef並不大,因此其實際(也叫經濟)顯著性並不太高。
Std.err則是估計系數和常數項的標准差。一般我們認為,標准差越小,估計值越集中、精確。
t是t估計值,它用於檢驗統計顯著性,t值較大,因此回歸是顯著的。
P>abs(t)項是5%雙邊t檢驗對應的P值,P=0意味著很容易否定H0假設,統計顯著。
95%conf interval項是95%的置信區間,它是x變數的系數(或常數項)分別加減1.96*SE,這是說,有95%的可能性,系數的真值落在這個區域。
Ⅱ 如何對面板數據進行F檢驗
以Eviews為例,其中的具體情況步驟如下:
1、直接通過相關窗口輸入面板數據,並選擇下一步。