導航:首頁 > 數據分析 > 常用的報告數據處理方法有哪些

常用的報告數據處理方法有哪些

發布時間:2023-03-10 13:14:35

㈠ 常用數據分析處理方法有哪些

1、漏斗分析法


漏斗分析法能夠科學反映用戶行為狀態,以及從起點到終點各階段用戶轉化率情況,是一種重要的分析模型。漏斗分析模型已經廣泛應用於網站和APP的用戶行為分析中,例如流量監控、CRM系統、SEO優化、產品營銷和銷售等日常數據運營與數據分析工作中。


2、留存分析法


留存分析法是一種用來分析用戶參與情況和活躍程度的分析模型,考察進行初始行為的用戶中,有多少人會進行後續行為。從用戶的角度來說,留存率越高就說明這個產品對用戶的核心需求也把握的越好,轉化成產品的活躍用戶也會更多,最終能幫助公司更好的盈利。


3、分組分析法


分組分析法是根據數據分析對象的特徵,按照一定的標志(指標),把數據分析對象劃分為不同的部分和類型來進行研究,以揭示其內在的聯系和規律性。


4、矩陣分析法


矩陣分析法是指根據事物(如產品、服務等)的兩個重要屬性(指標)作為分析的依據,進行分類關聯分析,找出解決問題的一種分析方法,也稱為矩陣關聯分析法,簡稱矩陣分析法。

㈡ 常用的數據處理方法

前面所述的各種放射性測量方法,包括航空γ能譜測量,地面γ能譜測量和氡及其子體的各種測量方法,都已用在石油放射性勘查工作之中。數據處理工作量大的是航空γ能譜測量。

(一)數據的光滑

為了減少測量數據的統計漲落影響及地面偶然因素的影響,對原始測量數據進行光滑處理。消除隨機影響。

放射性測量數據光滑,最常用的光滑方法是多項式擬合移動法。在要光滑測量曲線上任取一點,並在該點兩邊各取m個點,共有2m+1點;用一個以該點為中心的q階多項式對這一曲線段作最小二乘擬合,則該多項式在中心點的值,即為平滑後該點的值。用此法逐點處理,即得光滑後的曲線,光滑計算公式(公式推導略)為

核輻射場與放射性勘查

式中:yi+j、為第i點光滑前後的值;為系數;為規范化常數。

五點光滑的二次多項式的具體光滑公式為

核輻射場與放射性勘查

如果一次光滑不夠理想,可以重復進行1~2次,但不宜過多重復使用。

光滑方法,還有傅里葉變換法,以及多點平均值法,多點加權平均值法等。

使用那種方法選定之後,一般都通過編程存入計算機,進行自動化處理。

圖7-2-1是美國東得克薩斯州一個油田上的航空γ放射性異常中的兩條剖面圖(A-B和B-C)。經過光滑處理後,低值連續,清晰明顯,與油田對應的位置較好。說明四個油藏都在鈾(w(U))和鉀(w(K))的低值位置。

圖7-2-1 美國東得克薩斯油田航空γ放射性異常剖面圖

(二)趨勢面分析方法

趨勢分析主要反映測量變數在大范圍(區域)連續變化的趨勢。在原始數據中常含有許多隨機誤差和局部點異常,直觀反映是測量曲線上下跳動或小范圍突變。使用趨勢分析處理是為了得到研究區域輻射場的總體分布趨勢。

趨勢面分析,實質上是利用多元回歸分析,進行空間數據擬合。根據計算方法不同,又可分為圖解法趨勢面分析和數學計演算法趨勢面分析。圖解法趨勢面分析的基本思路是對觀測數據採用二維方塊取平均值法,或滑動平均值法計算趨勢值。方塊平均值法是對每一方塊內的數據取平均值,作為該方塊重心點的趨勢值。滑動平均值法是設想一個方框,放在測區數據分布的平面圖上,把落在方框內的測點數據取平均值,記在方框中心上,最後得到趨勢面等值圖。一般講做一次是不夠的,需要如此重復3~9次。一般都有專門程序可供使用(不作詳述)。如圖7-1-14(a)為原始數據等值圖,中間有許多呈點狀高值或低值分布,經過四次趨勢面分析之後可以清楚地看出三個低值異常區。

計演算法趨勢面分析是選定一個數學函數,對觀測數據進行擬合,給出一個曲線。擬合函數常用的有多項式函數,傅里葉級數,三角函數以及指數函數的多項式函數等。目前以二維多項式函數應用最多。

(三)岩性影響及其校正分析

不同岩石、不同土壤中放射性核素含量是有差別,有的相差還比較大,有的相差甚至超過10%~20%。這是油田放射性測量的主要影響因素。

一個測區可能出現不同土壤分布,把不同放射性水平的土壤上測量結果校正到同一水平(叫歸一化方法)是非常重要的工作,主要有下面三種方法。

1.確定土壤核素含量的歸一化方法

利用γ能譜測量資料,根據測區地質圖或土壤分布圖,分別統計總道的總計數率和鈾、釷、鉀含量的平均值。然後進行逐點校正,即逐點減去同類土壤的平均值,其剩餘值即為異常值。

核輻射場與放射性勘查

式中:分別為第 i類土壤中測點 j的總計數和鈾、釷、鉀含量。分別為i類土壤的平均總計數和鈾、釷、鉀的平均值。分別為扣除各類土壤平均值後的剩餘值,即為各測點不同土壤校正後的歸一化的油田的放射性異常。根據需要可以用來繪制平面剖面圖或等值線圖,即為經過不同岩性(土壤)校正後的油田放射性異常圖。

這個方法的缺點是計算工作量較大。

2.用釷歸一化校正鈾、鉀含量

對自然界各種岩石中的釷、鈾、鉀含量的相關性研究(D.F.Saundr,1987),發現它們的含量具有很好的相關性(表7-2-2);而且隨岩性不同含量確有相應的增加或減小,據此可以利用釷的含量計算鈾和鉀的含量。釷有很好的化學穩定性,釷在地表環境條件下基本不流失。因此,利用釷含量計算出來的鈾、鉀含量,應當是與油藏存在引起的鈾、鉀

表7-2-2 幾種岩石的釷、鈾、鉀含量

異常無關的正常值。用每點實測的鈾、鉀,減去計算的正常值,那麼每個測點的鈾、鉀剩餘值(差值)應當是油氣藏引起的異常值。這樣就校正了岩性(土壤)變化的影響。

對於航空γ能譜測量的總道計數率,也同樣可以用釷含量(或計數率)歸一化校正總道計數率,效果也非常好。

具體方法如下。

1)對鈾、鉀的歸一化校正。

2)根據航空γ能譜測量或地面γ能譜測量數據,按測線計算鈾、釷、鉀含量。根據岩石(土壤)中釷與鈾,釷與鉀的相關關系(表7-2-1),認為鈾和釷存在線性關系,鉀和釷存在對數線性關系,於是建立相應的擬合關系式。

核輻射場與放射性勘查

式中:A、B、A′、B′為回歸系數(對每個測區得到一組常數);wi(Th)為測點i實測的釷含量;w點i(U)、w點i(K)為i點由釷含量計算的鈾、鉀含量。

計算每個測點的鈾、鉀剩餘值:

核輻射場與放射性勘查

式中:wi(U)、wi(K)為測點i的實測值。剩餘值Δwi(U)和Δwi(K)為油藏引起的異常值。

南陽-泌陽航空γ能譜測區,測得的釷、鈾、鉀含量,按釷含量分間隔,計算其平均值,列於表7-2-3。根據此表中數據,由(7-2-7)和(7-2-8)式得:

核輻射場與放射性勘查

表7-2-3 南陽-泌陽航空γ能譜計算的釷、鈾、鉀

3)對總道γ計數率的歸一化校正。釷比較穩定,可以認為與油氣藏形成的放射性異常無關。經研究得知,原岩的總道計數率(I點i)與釷含量的對數值存在近似的線性關系,即

核輻射場與放射性勘查

根據γ能譜實測數據求得實測i點的總道計數率(Ii)與I點i的差值:

核輻射場與放射性勘查

即為消除岩性影響的,由油氣藏引起的γ總計數率異常值。

圖7-2-2 釷歸一化校正岩性影響的結果

圖7-2-2為任丘雙河油田,兩條測線(1100線和11010線)。用釷歸一化法,消除岩性影響的結果。油田邊界高值和油田上方低值,除鉀11010線外都比較明顯清晰。與已知油田邊界基本一致。

㈢ 數據處理的常用方法有

1、列表法:是將實驗所獲得的數據用表格的形式進行排列的數據處理方法。列表法的作用有兩種:一是記錄實驗數據,二是能顯示出物理量間的對應關系。
2、圖示法:是用圖象來表示物理規律的一種實驗數據處理方法。一般來講,一個物理規律可以用三種方式來表述:文字表述、解析函數關系表述、圖象表示。
3、圖解法:是在圖示法的基礎上,利用已經作好的圖線,定量地求出待測量或某些參數或經驗公式的方法。
4、逐差法:由於隨機誤差具有抵償性,對於多次測量的結果,常用平均值來估計最佳值,以消除隨機誤差的影響。
5、最小二乘法:通過實驗獲得測量數據後,可確定假定函數關系中的各項系數,這一過程就是求取有關物理量之間關系的經驗公式。從幾何上看,就是要選擇一條曲線,使之與所獲得的實驗數據更好地吻合。

㈣ 數據處理方法有哪些

數據處理方法有:

1、標准化:標准化是數據預處理的一種,目的的去除量綱或方差對分析結果的影響。作用:消除樣本量綱的影響;消除樣本方差的影響。主要用於數據預處理。

2、匯總:匯總是一個經常用於減小數據集大小的任務。匯總是一個經常用於減小數據集大小的任務。執行匯總之前,應該花一些時間來清理數據,尤其要關注缺失值。

3、追加:追加節點將結構類似的表,選取一個主表,將另外的表追加在主表後面(相當於增加行記錄)。注意:要追加文件,欄位測量級別必須相似。例如,名義欄位無法附加測量級別為連續的欄位,即欄位類型的相同。

4、導出:用戶可以修改數據值並從現有數據中派生出新欄位。可以根據一個或多個現有欄位按6種方式創建出一個或者多個相同的新欄位。

5、分區:分區節點用於生成分區欄位,將數據分割為單獨的子集或樣本,以供模型構建的訓練、測試和驗證階段使用。通過用某個樣本生成模型並用另一個樣本對模型進行測試,可以預判此模型對類似於當前數據的大型數據集的擬合優劣。

㈤ 常用的數據分析方法有哪些


常見的數據分析方法有哪些?
1.趨勢分析
當有大量數據時,我們希望更快,更方便地從數據中查找數據信息,這時我們需要使用圖形功能。所謂的圖形功能就是用EXCEl或其他繪圖工具來繪制圖形。
趨勢分析通常用於長期跟蹤核心指標,例如點擊率,GMV和活躍用戶數。通常,只製作一個簡單的數據趨勢圖,但並不是分析數據趨勢圖。它必須像上面一樣。數據具有那些趨勢變化,無論是周期性的,是否存在拐點以及分析背後的原因,還是內部的或外部的。趨勢分析的最佳輸出是比率,有環比,同比和固定基數比。例如,2017年4月的GDP比3月增加了多少,這是環比關系,該環比關系反映了近期趨勢的變化,但具有季節性影響。為了消除季節性因素的影響,引入了同比數據,例如:2017年4月的GDP與2016年4月相比增長了多少,這是同比數據。更好地理解固定基準比率,即固定某個基準點,例如,以2017年1月的數據為基準點,固定基準比率是2017年5月數據與該數據2017年1月之間的比較。
2.對比分析
水平對比度:水平對比度是與自己進行比較。最常見的數據指標是需要與目標值進行比較,以了解我們是否已完成目標;與上個月相比,要了解我們環比的增長情況。
縱向對比:簡單來說,就是與其他對比。我們必須與競爭對手進行比較以了解我們在市場上的份額和地位。
許多人可能會說比較分析聽起來很簡單。讓我舉一個例子。有一個電子商務公司的登錄頁面。昨天的PV是5000。您如何看待此類數據?您不會有任何感覺。如果此簽到頁面的平均PV為10,000,則意味著昨天有一個主要問題。如果簽到頁面的平均PV為2000,則昨天有一個跳躍。數據只能通過比較才有意義。
3.象限分析
根據不同的數據,每個比較對象分為4個象限。如果將IQ和EQ劃分,則可以將其劃分為兩個維度和四個象限,每個人都有自己的象限。一般來說,智商保證一個人的下限,情商提高一個人的上限。
說一個象限分析方法的例子,在實際工作中使用過:通常,p2p產品的注冊用戶由第三方渠道主導。如果您可以根據流量來源的質量和數量劃分四個象限,然後選擇一個固定的時間點,比較每個渠道的流量成本效果,則該質量可以用作保留的總金額的維度為標准。對於高質量和高數量的通道,繼續增加引入高質量和低數量的通道,低質量和低數量的通過,低質量和高數量的嘗試策略和要求,例如象限分析可以讓我們比較和分析時間以獲得非常直觀和快速的結果。
4.交叉分析
比較分析包括水平和垂直比較。如果要同時比較水平和垂直方向,則可以使用交叉分析方法。交叉分析方法是從多個維度交叉顯示數據,並從多個角度執行組合分析。
分析應用程序數據時,通常分為iOS和Android。
交叉分析的主要功能是從多個維度細分數據並找到最相關的維度,以探究數據更改的原因。

㈥ 調研報告數據分析方法有哪些

1、簡單趨勢


通過實時訪問趨勢了解供應商及時交貨情況。如產品類型,供應商區域(交通因子),采購額,采購額對供應商佔比。


2、多維分解


根據分析需要,從多維度對指標進行分解。例如產品采購金額、供應商規模(需量化)、產品復雜程度等等維度。


3、轉化漏斗


按照已知的轉化路徑,藉助漏斗模型分析總體和每一步的轉化情況。常見的轉化情境有不同供應商及時交貨率趨勢等。


4、用戶分群


在精細化分析中,常常需要對有某個特定行為的供應商群組進行分析和比對;數據分析需要將多維度和多指標作為分群條件,有針對性地優化供應鏈,提升供應鏈穩定性。


5、細查路徑


數據分析可以觀察供應商的行為軌跡,探索供應商與本公司的交互過程;進而從中發現問題、激發靈感亦或驗證假設。


6、留存分析


留存分析是探索用戶行為與回訪之間的關聯。一般我們講的留存率,是指“新新供應商”在一段時間內“重復行為”的比例。通過分析不同供應商群組的留存差異、使用過不同功能供應商的留存差異來找到供應鏈的優化點。

㈦ 常用的數據分析方法有哪些

1、聚類分析(Cluster Analysis)
聚類分析指將物理或抽象對象的集合分組成為由類似的對象組成的多個類的分析過程。聚類是將數據分類到不同的類或者簇這樣的一個過程,所以同一個簇中的對象有很大的相似性,而不同簇間的對象有很大的相異性。聚類分析是一種探索性的分析,在分類的過程中,人們不必事先給出一個分類的標准,聚類分析能夠從樣本數據出發,自動進行分類。聚類分析所使用方法的不同,常常會得到不同的結論。不同研究者對於同一組數據進行聚類分析,所得到的聚類數未必一致。
2、因子分析(Factor Analysis)
因子分析是指研究從變數群中提取共性因子的統計技術。因子分析就是從大量的數據中尋找內在的聯系,減少決策的困難。
因子分析的方法約有10多種,如重心法、影像分析法,最大似然解、最小平方法、阿爾發抽因法、拉奧典型抽因法等等。這些方法本質上大都屬近似方法,是以相關系數矩陣為基礎的,所不同的是相關系數矩陣對角線上的值,採用不同的共同性□2估值。在社會學研究中,因子分析常採用以主成分分析為基礎的反覆法。
3、相關分析(Correlation Analysis)
相關分析(correlation analysis),相關分析是研究現象之間是否存在某種依存關系,並對具體有依存關系的現象探討其相關方向以及相關程度。相關關系是一種非確定性的關系,例如,以X和Y分別記一個人的身高和體重,或分別記每公頃施肥量與每公頃小麥產量,則X與Y顯然有關系,而又沒有確切到可由其中的一個去精確地決定另一個的程度,這就是相關關系。
4、對應分析(Correspondence Analysis)
對應分析(Correspondence analysis)也稱關聯分析、R-Q型因子分析,通過分析由定性變數構成的交互匯總表來揭示變數間的聯系。可以揭示同一變數的各個類別之間的差異,以及不同變數各個類別之間的對應關系。對應分析的基本思想是將一個聯列表的行和列中各元素的比例結構以點的形式在較低維的空間中表示出來。
5、回歸分析
研究一個隨機變數Y對另一個(X)或一組(X1,X2,…,Xk)變數的相依關系的統計分析方法。回歸分析(regression analysis)是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法。運用十分廣泛,回歸分析按照涉及的自變數的多少,可分為一元回歸分析和多元回歸分析;按照自變數和因變數之間的關系類型,可分為線性回歸分析和非線性回歸分析。
6、方差分析(ANOVA/Analysis of Variance)
又稱「變異數分析」或「F檢驗」,是R.A.Fisher發明的,用於兩個及兩個以上樣本均數差別的顯著性檢驗。由於各種因素的影響,研究所得的數據呈現波動狀。造成波動的原因可分成兩類,一是不可控的隨機因素,另一是研究中施加的對結果形成影響的可控因素。方差分析是從觀測變數的方差入手,研究諸多控制變數中哪些變數是對觀測變數有顯著影響的變數。這個 還需要具體問題具體分析

㈧ 數據處理方式

什麼是大數據:大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

大數據的5V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性),網路隨便找找都有。

大數據處理流程:

1.是數據採集,搭建數據倉庫,數據採集就是把數據通過前端埋點,介面日誌調用流數據,資料庫抓取,客戶自己上傳數據,把這些信息基礎數據把各種維度保存起來,感覺有些數據沒用(剛開始做只想著功能,有些數據沒採集, 後來被老大訓了一頓)。

2.數據清洗/預處理:就是把收到數據簡單處理,比如把ip轉換成地址,過濾掉臟數據等。

3.有了數據之後就可以對數據進行加工處理,數據處理的方式很多,總體分為離線處理,實時處理,離線處理就是每天定時處理,常用的有阿里的maxComputer,hive,MapRece,離線處理主要用storm,spark,hadoop,通過一些數據處理框架,可以吧數據計算成各種KPI,在這里需要注意一下,不要只想著功能,主要是把各種數據維度建起來,基本數據做全,還要可復用,後期就可以把各種kpi隨意組合展示出來。

4.數據展現,數據做出來沒用,要可視化,做到MVP,就是快速做出來一個效果,不合適及時調整,這點有點類似於Scrum敏捷開發,數據展示的可以用datav,神策等,前端好的可以忽略,自己來畫頁面。

數據採集:

1.批數據採集,就是每天定時去資料庫抓取數據快照,我們用的maxComputer,可以根據需求,設置每天去資料庫備份一次快照,如何備份,如何設置數據源,如何設置出錯,在maxComputer都有文檔介紹,使用maxComputer需要注冊阿里雲服務

2.實時介面調用數據採集,可以用logHub,dataHub,流數據處理技術,DataHub具有高可用,低延遲,高可擴展,高吞吐的特點。

高吞吐:最高支持單主題(Topic)每日T級別的數據量寫入,每個分片(Shard)支持最高每日8000萬Record級別的寫入量。

實時性:通過DataHub ,您可以實時的收集各種方式生成的數據並進行實時的處理,

設計思路:首先寫一個sdk把公司所有後台服務調用介面調用情況記錄下來,開辟線程池,把記錄下來的數據不停的往dataHub,logHub存儲,前提是設置好接收數據的dataHub表結構

3.前台數據埋點,這些就要根據業務需求來設置了,也是通過流數據傳輸到數據倉庫,如上述第二步。

數據處理:

數據採集完成就可以對數據進行加工處理,可分為離線批處理,實時處理。

1.離線批處理maxComputer,這是阿里提供的一項大數據處理服務,是一種快速,完全託管的TB/PB級數據倉庫解決方案,編寫數據處理腳本,設置任務執行時間,任務執行條件,就可以按照你的要求,每天產生你需要數據

2.實時處理:採用storm/spark,目前接觸的只有storm,strom基本概念網上一大把,在這里講一下大概處理過程,首先設置要讀取得數據源,只要啟動storm就會不停息的讀取數據源。Spout,用來讀取數據。Tuple:一次消息傳遞的基本單元,理解為一組消息就是一個Tuple。stream,用來傳輸流,Tuple的集合。Bolt:接受數據然後執行處理的組件,用戶可以在其中執行自己想要的操作。可以在里邊寫業務邏輯,storm不會保存結果,需要自己寫代碼保存,把這些合並起來就是一個拓撲,總體來說就是把拓撲提交到伺服器啟動後,他會不停讀取數據源,然後通過stream把數據流動,通過自己寫的Bolt代碼進行數據處理,然後保存到任意地方,關於如何安裝部署storm,如何設置數據源,網上都有教程,這里不多說。

數據展現:做了上述那麼多,終於可以直觀的展示了,由於前端技術不行,借用了第三方展示平台datav,datav支持兩種數據讀取模式,第一種,直接讀取資料庫,把你計算好的數據,通過sql查出,需要配置數據源,讀取數據之後按照給定的格式,進行格式化就可以展現出來

@jiaoready @jiaoready 第二種採用介面的形式,可以直接採用api,在數據區域配置為api,填寫介面地址,需要的參數即可,這里就不多說了。

閱讀全文

與常用的報告數據處理方法有哪些相關的資料

熱點內容
找不到手雷文件夾 瀏覽:26
dnf劇情視頻在哪個文件夾 瀏覽:252
遠程桌面可以復制文件 瀏覽:752
win10星際爭霸聯網嗎 瀏覽:212
windowsgit配置文件 瀏覽:508
c編程跟c編程有什麼區別 瀏覽:119
6M網路怎麼樣 瀏覽:473
word文檔如何另外保存文件 瀏覽:176
creo20國標配置文件下載 瀏覽:172
win10自動散熱 瀏覽:664
xp系統用戶桌面文件交換 瀏覽:858
把蘋果密碼改了怎麼辦 瀏覽:209
護照用微信怎麼繳費 瀏覽:526
matlab生成dll文件 瀏覽:836
小米平板2win10恢復出廠設置 瀏覽:6
東方財富app怎麼增加指標 瀏覽:985
ajax獲取資料庫 瀏覽:855
中國移動adsl上網賬號密碼 瀏覽:198
win10怎麼添加畫圖3d文件 瀏覽:921
新舊手機文件如何轉移 瀏覽:479

友情鏈接