『壹』 大數據應用在哪些領域
大數據應用於各個行業,包括金融、汽車、餐飲、電信、能源、娛樂等在內的社會各行各業都已經融入了大數據的痕跡。
1、製造業:利用工業大數據提升製造業水平,包括產品故障診斷與預測、分析工藝流程、改進生產工藝,優化生產過程能耗、工業供應鏈分析與優化、生產計劃與排程。
2、金融業:大數據在高頻交易、社交情緒分析和信貸風險分析三大金融創新領域發揮重大作用。
3、汽車行業:利用大數據和物聯網技術的無人駕駛汽車,在不遠的未來將走入我們的日常生活。
4、互聯網行業:藉助於大數據技術分析用戶行為,進行商品推薦和針對性廣告投放。
5、餐飲行業:利用大數據實現餐飲O2O模式,徹底改變傳統餐飲經營方式。
6、電信行業:利用大數據技術實現客戶離網分析,及時掌握客戶離網傾向,出台客戶挽留措施。
7、能源行業:隨著智能電網的發展,電力公司可以掌握海量的用戶用電信息,利用大數據技術分析用戶用電模式,可以改進電網運行,合理設計電力需求響應系統,確保電網運行安全。
8、物流行業:利用大數據優化物流網路,提高物流效率,降低物流成本。
9、城市管理:利用大數據實現智能交通、環保監測、城市規劃和智能安防。
10、生物醫學:大數據可以幫助我們實現流行病預測、智慧醫療、健康管理,同時還可以幫助我們解讀DNA,了解更多的生命奧秘。
11、公共安全領域:政府利用大數據技術構建強大的國家安全保障體系,公共安全領域的大數據分析應用,反恐維穩與各類案件分析的信息化手段,藉助大數據預防犯罪。
12、個人生活:大數據還可以應用於個人生活,利用與每個人相關聯的「個人大數據」,分析個人生活行為軌跡,為其提供更加周到的個性化服務。
大數據的價值遠不止於此,大數據對各行各業的滲透,是推動社會生產和生活的核心要素。
(1)電信的大數據是哪些擴展閱讀
七個典型的大數據應用案例
1、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。
2、Tipp24AG針對歐洲博彩業構建的下注和預測平台。該公司用KXEN軟體來分析數十億計的交易以及客戶的特性,然後通過預測模型對特定用戶進行動態的營銷活動。這項舉措減少了90%的預測模型構建時間。SAP公司正在試圖收購KXEN。
3、沃爾瑪的搜索。這家零售業寡頭為其網站Walmart.com自行設計了最新的搜索引擎Polaris,利用語義數據進行文本分析、機器學習和同義詞挖掘等。根據沃爾瑪的說法,語義搜索技術的運用使得在線購物的完成率提升了10%到15%。「對沃爾瑪來說,這就意味著數十億美元的金額。」Laney說。
4、快餐業的視頻分析。該公司通過視頻分析等候隊列的長度,然後自動變化電子菜單顯示的內容。如果隊列較長,則顯示可以快速供給的食物;如果隊列較短,則顯示那些利潤較高但准備時間相對長的食品。
5、Morton牛排店的品牌認知。當一位顧客開玩笑地通過推特向這家位於芝加哥的牛排連鎖店訂餐送到紐約Newark機場(他將在一天工作之後抵達該處)時,Morton就開始了自己的社交秀。首先,分析推特數據,發現該顧客是本店的常客,也是推特的常用者。根據客戶以往的訂單,推測出其所乘的航班,然後派出一位身著燕尾服的侍者為客戶提供晚餐。
6、PredPolInc.。PredPol公司通過與洛杉磯和聖克魯斯的警方以及一群研究人員合作,基於地震預測演算法的變體和犯罪數據來預測犯罪發生的幾率,可以精確到500平方英尺的范圍內。在洛杉磯運用該演算法的地區,盜竊罪和暴力犯罪分布下降了33%和21%。
7、TescoPLC(特易購)和運營效率。這家超市連鎖在其數據倉庫中收集了700萬部冰箱的數據。通過對這些數據的分析,進行更全面的監控並進行主動的維修以降低整體能耗。
『貳』 什麼是大數據,請不要給我背概念,請求解釋通俗易懂
數以億兆的數據謂之大數據,傳統企業需要處理這么多數據必須自建數據中心,雲計算的好處在於以網路雲為儲存媒介,結合大數據運算能力,擁有了未來萬物相連後巨大數據運算的能力。
『叄』 有誰知道大數據指的是什麼
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。
商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。
商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。
目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。
為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。
把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表
2.掌握指標管理
3.隨時線上分析處理
4.視覺化之企業儀表版
5.協助預測規劃
導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。
2.降低整體營運成本(Power the Bottom Line):BIS改善企業的資訊取得能力,大幅降低IT人員撰寫程式、Poweruser製作報表的時間與人力成本,而彈性的模組設計介面,完全不需撰寫程式的特色也讓日後的維護成本大幅降低。
3.協同組織目標與行動(Achieve a Fully Coordinated Organization):BIS加強企業的資訊傳播能力,消除資訊需求者與IT人員之間的認知差距,並可讓更多人獲得更有意義的資訊。全面改善企業之體質,使組織內的每個人目標一致、齊心協力。
商業智能領域的技術應用
商業智能的技術體系主要有數據倉庫(Data Warehouse,DW)、聯機分析處理(OLAP)以及數據挖掘(Data Mining,DM)三部分組成。
數據倉庫是商業智能的基礎,許多基本報表可以由此生成,但它更大的用處是作為進一步分析的數據源。所謂數據倉庫(DW)就是面向主題的、集成的、穩定的、不同時間的數據集合,用以支持經營管理中的決策制定過程。多維分析和數據挖掘是最常聽到的例子,數據倉庫能供給它們所需要的、整齊一致的數據。
在線分析處理(OLAP)技術則幫助分析人員、管理人員從多種角度把從原始數據中轉化出來、能夠真正為用戶所理解的、並真實反映數據維特性的信息,進行快速、一致、交互地訪問,從而獲得對數據的更深入了解的一類軟體技術。
數據挖掘(DM)是一種決策支持過程,它主要基於AI、機器學習、統計學等技術,高度自動化地分析企業原有的數據,做出歸納性的推理,從中挖掘出潛在的模式,預測客戶的行為,幫助企業的決策者調整市場策略,減少風險,做出正確的決策。
商業智能的應用范圍
1.采購管理
2.財務管理
3.人力資源管理
4.客戶服務
5.配銷管理
6.生產管理
7.銷售管理
8.行銷管理
商業智能實施步驟
商業智能系統處理流程[1]
商業智能(BI)作為一個概念,描述與業務緊密結合,並且根據需要進行相關特性展示和數據處理的過程。
為了讓數據「活」起來,往往需要利用數據倉庫、數據挖掘、報表設計與展示、聯機在線分析(OLAP)等技術。數據或者數據源包含的種類繁多,例如存儲在關系型資料庫中的,在外圍數據文件中的,在業務流中實時產生存儲在內存中的等等。而商業智能最終能夠輔助的業務經營決策,既可以是操作層的,也可以是戰術層和戰略層的決策。
這些分析有財務管理、點擊流分析(Clickstream)、供應鏈管理、關鍵績效指標(Key Performance Indicators, KPI)、客戶分析等。商業智能關注的是,從各種渠道(軟體,系統,人,等等)發掘可執行的戰略信息。商業智能用的工具有抽取(Extraction)、轉換(Transformation)和載入(Load)軟體(搜集數據,建立標準的數據結構,然後把這些數據存在另外的資料庫中)、數據挖掘和在線分析(Online Analytical Processing,允許用戶容易地從多個角度選取和察看數據)等 。
商業智能系統的功能
商業智能系統應具有的主要功能:
數據倉庫:高效的數據存儲和訪問方式。提供結構化和非結構化的數據存儲,容量大,運行穩定,維護成本低,支持元數據管理,支持多種結構,例如中心式數據倉庫,分布式數據倉庫等。存儲介質能夠支持近線式和二級存儲器。能夠很好的支持現階段容災和備份方案。
數據ETL:數據ETL支持多平台、多數據存儲格式(多數據源,多格式數據文件,多維資料庫等)的數據組織,要求能自動化根據描述或者規則進行數據查找和理解。減少海量、復雜數據與全局決策數據之間的差距。幫助形成支撐決策要求的參考內容。
數據統計輸出(報表):報表能快速的完成數據統計的設計和展示,其中包括了統計數據表樣式和統計圖展示,可以很好的輸出給其他應用程序或者Html形式表現和保存。對於自定義設計部分要提供簡單易用的設計方案,支持靈活的數據填報和針對非技術人員設計的解決方案。能自動化完成輸出內容的發布。
分析功能:可以通過業務規則形成分析內容,並且展示樣式豐富,具有一定的交互要求,例如預警或者趨勢分析等。要支持多維度的聯機在線分析(OLAP分析),實現維度變化、旋轉、數據切片和數據鑽取等。幫助決策做出正確的判斷。
典型的商業智能系統
典型的商業智能系統有:
客戶分析系統、菜籃分析系統、反洗錢系統、反詐騙系統、客戶聯絡分析系統、市場細分系統、信用計分系統、產品收益系統、庫存運作系統以及與商業風險相關的應用系統等。
[編輯]商業智能解決方案廠商
提供商業智能解決方案的著名IT廠商包括微軟、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等
最後,希望你關注一下FineBI,帆軟軟體的大數據解決方案,我看了,還是很不錯的
『肆』 大數據體現在哪些方面
1、疫情期間的大數據
就比如疫情期間我們所用的健康碼,其實也就是基於大數據,採集每位用戶的行動軌跡,然後自動生成綠碼或者紅碼。又比如說,在疫情爆發時,浙江通過使用交通流大數據技術,排查分析從疫情嚴重地區駛入的車輛,幫助提高疫情防控效率。另外,大數據也被廣泛應用到語音智能識別、智慧城市和信息安全、醫療、交通等方方面面。
2、業務流程優化
大數據還會更多的幫助業務流程的優化。我們可以通過利用社交媒體數據、網路搜索以及天氣預報等等去挖掘出大量的有價值的數據,其中大數據的應用最廣泛的就是供應鏈以及配送路線的優化。從這兩個方面,地理定位和無線電頻率的識別追蹤貨物和送貨車,利用實時交通路線數據制定更加優化的路線。
3、更了解用戶需求
大數據的應用目前在這領域是最廣為人知的。重點是如何應用大數據更好的了解客戶以及他們的愛好和行為。企業非常喜歡搜集社交方面的數據、瀏覽器的日誌、分析出文本和感測器的數據,為了更加全面的了解客戶。在一般情況下,建立出數據模型進行預測。舉一個比較簡單的例子就是通過大數據的應用,電信公司可以更好預測出流失的客戶,沃爾瑪則會更加精準的預測哪個產品會大賣,汽車保險行業會了解客戶的需求和駕駛水平,政府也能了解到選民的偏好。
4、提高醫療和研發
大數據分析應用的計算能力可以讓我們能夠在幾分鍾內就可以解碼整個DNA。並且讓我們可以制定出最新的治療方案。同時可以更好的去理解和預測疾病。就好像人們戴上智能手錶等可以產生的數據一樣,大數據同樣可以幫助病人對於病情進行更好的治療。大數據技術目前已經在醫院應用監視早產嬰兒和患病嬰兒的情況,通過記錄和分析嬰兒的心跳,醫生針對嬰兒的身體可能會出現不適症狀做出預測。這樣可以幫助醫生更好的救助嬰兒。
5、金融交易
大數據在金融行業主要是應用金融交易。高頻交易(HFT)是大數據應用比較多的領域。其中大數據演算法應用於交易決定。現在很多股權的交易都是利用大數據演算法進行,這些演算法現在越來越多的考慮了社交媒體和網站新聞來決定在未來幾秒內是買出還是賣出。
6、改善安全和執法
大數據現在已經廣泛應用到安全執法的過程當中。想必大家都知道美國安全局利用大數據進行恐怖主義打擊,甚至監控人們的日常生活。而企業則應用大數據技術進行防禦網路攻擊。警察應用大數據工具進行捕捉罪犯,信用卡公司應用大數據工具來檻車欺詐性交易。
『伍』 看看全球十大電信巨頭的大數據玩法
看看全球十大電信巨頭的大數據玩法
大數據時代,掌握海量數據無疑使自己在這競爭激烈的時代佔得先機,對於電信運營商來說,更是如此。通過深度挖掘這些數據,他們正試圖打造全新的商業生態圈,實現新的業績增長點,當然也實現從電信網路運營商到信息運營商的轉變。中雲網的這篇文章將從全球十大電信運營商的角度分析它們是如何利用大數據的,從中或許可以給你一點啟示。
對於電信運營商而言,沒有哪一個時代能比肩4G時代,輕松掌握如此海量的客戶數據。4G時代,手機購物、視頻通話、移動音樂下載、手機游戲、手機IM、移動搜索、移動支付等移動數據業務層出不窮。它們在為用戶創造了前所未有的新體驗同時,也為電信運營商挖掘用戶數據價值提供了大數據的視角。數據挖掘、數據共享、數據分析已經成為全球電信運營商轉變商業模式,贏取深度商業洞察力的基本共識。
目前,全球120家運營商中,已經有48%的企業正在實施大數據戰略。通過提高數據分析能力,他們正試圖打造著全新的商業生態圈,實現從電信網路運營商(Telecom)到信息運營商(Infocom)的華麗轉身。從曾經的「管道」到大數據戰略融合,電信運營商到底該如何善用大數據?全球10強電信「大佬們」的大數據應用之道及其培育的新經濟增長點啟示頗多。
1. AT&T:位置數據貨幣化
AT&T是美國最大的本地和長途電話公司,創建於1877年。2009年,AT&T利用全球領先的數據分析平台、應用和服務供應商Teradata天睿公司的大數據解決方案,開始了向信息運營商的轉變。
在培育新型業績增長點的過程中,AT&T決定和星巴克開展合作,利用大數據技術收集、分析用戶的位置信息,通過客戶在星巴克門店附近通話或者其他通信行為,預判消費者的購物行為。為此,AT&T挑選高忠誠度客戶,讓其了解AT&T與星巴克之間的這項業務,並簽署協議,將客戶隱私的管理權交給客戶自己。在獲得允許情況下,AT&T將這些信息服務以一定金額交付給星巴克。星巴克通過對這些數據的挖掘,可以預估消費者登門消費的大概時間段,並且預測個人用戶行為,並做出個性化的推薦。此外,在iPhone上市伊始,為了解iPhone的市場反響,AT&T還選擇與Facebook結成戰略聯盟,通過對Facebook的非結構化數據進行分析,發現用戶對價格、移動功能、服務感知等產品指標的體驗情況,從而推出更加准確的電信捆綁服務。
2. NTT:創新醫療行業的社會化整合
NTT是日本最大電信服務提供商,創立於1976年。它旗下的NTTDOCOMO是日本最大的移動通訊運營商,也是全球最大的移動通訊運營商之一,擁有超過6千萬的簽約用戶。
自2010年,NTTDOCOMO利用大數據解決方案,實現了醫療資源的社會化創新,培育了醫療信息服務增長點。面對日本社會的老齡化趨勢,NTTDOCOMO想到了通過搭建信息服務平台,滿足用戶的個性化醫療需求。因此,NTTDOCOMO和Teradata天睿公司進行充分合作,利用其大數據解決方案,建立自己的資料庫。通過開設MedicalBrain和MD+平台,聚合大量的醫療專業信息,網聚了大批醫療行業專業人士。這使用戶和各種專業醫療和保健服務提供商共同擁有了符合標準的、安全可靠的生命參數採集和分發平台。在這個平台上,NTTDOCOMO能夠根據用戶的以往行為洞察其個性化需求,再將這些需求反饋至對應的醫療人員,幫助用戶獲得高價值的信息反饋。
3. Verizon:數據倉庫促進精準營銷
Verizon是美國最大的本地電話公司、最大的無線通信公司之一,也是全世界最大的印刷黃頁和在線黃頁信息提供商。它在美國、歐洲、亞洲、太平洋等全球45個國家經營電信及無線業務。
隨著年輕一代用戶成為電信消費主力人群,通過多媒體、社交媒體等渠道了解他們的消費行為成為Verizon的營銷重點。因此,Verizon成立精準營銷部門(PrecisionMarketingDivision),利用Teradata天睿公司的企業級數據倉庫,對用戶產生的結構化、非結構化數據進行挖掘、探索和分析。在大數據解決方案的幫助下,Verizon實現了對消費者的精準營銷洞察,並且向他們提供商業數據分析服務,同時在獲得允許情況下,將用戶數據直接向第三方交易。此外,這些對用戶購買行為的洞察也為Verizon的廣告投放提供支撐,實現精準營銷。憑借著獲取的消費者行為的洞察力,Verizon還決定進軍移動電子商務,形成自己全新的業績增長點。
4. 德國電信:智能網路培育新增長點
德國電信是歐洲最大的電信運營商,全球第五大電信運營商。旗下T-Systems是全球領先的ICT解決方案和服務供應商。
正是T-Systems將德國電信帶上了大數據的發展快車道。基於擁有全球12萬平方米數據中心的優勢,T-Systems提出了「智能網路」的概念。通過實時獲得汽車、醫療以及能源企業的數據,T-Systems先後開發了車載互聯網導航系統、交通意外自動呼叫系統以及聲控電郵系統,以及能源網開發解決方案,實現電量的供需平衡。此外,它還通過設計安全的傳輸方式和便捷的解決方案,將醫生和患者對接,提供整合的醫療解決方案。
5. Telefónica:大數據支撐用戶體驗優化
Telefónica創立於1924年,是西班牙的一家大型跨國電信公司,主要在西班牙本國和拉丁美洲運營,它也是全球最大的固定線路和移動電信公司之一。
Telefónica一直將用戶體驗視為企業發展重點。Telefónica啟動一個針對移動寬頻網路的端到端用戶體驗管理項目,並建立了一個包含60多個用戶體驗指標的系統,支持無線網路控制器(RNC)、域名系統(DNS)、在線計費系統(OCS)、GPRS業務支撐節點(SGSN)、探針等各種網路節點的信息採集。所有採集來的信息經過整合後存儲到資料庫中,為後續的用戶體驗測量提供數據支撐。
6. Vodafone:動態數據倉庫支持商業決策
沃達豐是跨國性的行動電話運營商,現為全球最大的流動通訊網路公司之一。
Vodafone在大數據應用方面取得了豐碩成果。早在2009年,旗下SmarTone-Vodafone就委託Teradata天睿公司為其完成動態數據倉庫的部署,使企業所有管理人員可以根據信息輕松制定最佳決策。它主要通過開放API,向數據挖掘公司等合作方提供部分用戶匿名地理位置數據,以掌握人群出行規律,有效地與一些LBS應用服務對接。這些大數據解決方案極大提高了SmarTone-Vodafone的市場領導力。
7. 中國移動:客戶投訴智能識別系統降低投訴率
中國移動通信集團公司是中國規模最大的移動通信運營商,也是全球用戶規模最大的移動運營商。
在中國移動近實現客戶數量迅猛增長的同時,相應也帶來了客戶投訴量的增長。
為了辨別客戶投訴的真實原因、發現問題、改進產品、提升服務體驗,中國移動和Teradata天睿公司進行了密切合作。Teradata為其配置了基於CCR模型的客戶投訴智能識別系統,以投訴內容為源頭,通過智能文本分析,實現了從發現問題到分析問題,再到解決問題以及跟蹤評估的閉環管理。經過一段時間使用,僅中國移動某省級公司,就實現全網投訴內容的智能識別:769個投訴原因被識別,配合業務部門提出37個產品優化建議,協助優化11個產品;優化不滿意點58個,消除368,295客戶的潛在不滿隱患,每年節約成本達540萬。
8. 法國電信:數據分析改善服務水平
法國電信是法國最大的企業,也是全球第四大電信運營商,擁有全球最大的3G網路Orange。
為了優化用戶體驗,法國電信旗下企業Orange採用Teradata天睿公司大數據解決方案,開展了針對用戶消費數據的分析評估。Orange通過分析掉話率數據,找出了超負荷運轉的網路並及時進行擴容,從而有效完善了網路布局,給客戶提供了更好的服務體驗,獲得了更多的客戶以及業務增長。同時,Orange承建了一個法國高速公路數據監測項目。面對每天產生500萬條記錄,Orange深入挖掘和分析,為行駛於高速公路上的車輛提供准確及時的信息,有效提高道路通暢率。
9. 義大利電信:數據驅動的個性化業務
義大利電信是歐洲最大的移動運營商之一,同時也是基於單一網路提供GSM系列服務的領先歐洲運營商。
面對固網業務的下滑,義大利電信構建了面向全業務運營的客戶數據倉庫,以適應市場、銷售、客戶服務等領域的業務規則和需要。通過對客戶數據的洞察,有效地預測收入狀況與客戶行為的關聯性,推出了諸多個性化產品滿足客戶需求。義大利電信推出的NapsterMobile音樂業務就提供包括手機鈴聲、藝術家肖像牆紙以及接入NapsterMobile歌曲目錄等個性化服務,直接拉動了企業業績。
10. KDDI:數據管理服務是核心
KDDI是日本知名的電信運營商,在世界多個國家設有子公司。
通過大數據資產,提供數據管理服務是KDDI的核心業務之一。KDDI利用自身優勢,以數據中心為核心,向企業提供包括雲計算服務在內的信息通訊綜合服務。KDDI於2000年開始在中國開展為日系及當地企業提供數據管理服務,業務發展迅猛。2012年,KDDI在北京經濟技術開發區建設了當地最大規模數據中心,佔地2.5萬平米,試圖實現2015年海外營業額為2010年2倍的目標。
以4G為代表的移動互聯網時代,令信息、互聯網行為數據、話單數據、WAP日誌/WEB日誌、互聯網網頁、投訴文本、簡訊文本等結構化數據以及非結構數據呈現幾何式增長。面對新型海量數據,傳統電信運營商正面臨越來越大的挑戰:
客戶與內容服務提供商聯系更加緊密,但對電信企業的忠誠度反而下降;企業無法通過流量內容服務提供商業價值,盈利能力持續下降;「管道化」嚴重弱化對承載信息的掌控,喪失創新產品、業務發展的基礎。
電信運營商需要憑借數據分析來競爭,實現數據價值貨幣化。同時,利用大數據實現企業從電信網路運營商到信息運營商的轉型。通過對數據的分析,了解客戶流量業務的消費習慣,識別客戶消費的地理位置,洞察客戶接觸不同信息的渠道等等,電信運營商將獲得深度商業洞察力,打造基於大數據的租售數據模式、租售信息模式、數字媒體模式、數據使能模式、數據空間運營模式、大數據技術提供商等全新商業模式。
以上是小編為大家分享的關於看看全球十大電信巨頭的大數據玩法的相關內容,更多信息可以關注環球青藤分享更多干貨
『陸』 大數據變現,電信運營商只需往前邁一步
大數據變現,電信運營商只需往前邁一步
經過多年的技術積累和市場培育,大數據已經從「炒作」走向落地。全球主流的電信運營商普遍認識到大數據所蘊藏的高價值,開始積極探索如何將手中掌握的大量數據資源變現。目前,電信運營商的大數據探索主要集中在如何利用大數據分析用戶行為、優化網路質量和推動業務創新等方面。數據堂創始人、CEO齊紅威在接受《人民郵電》報記者采訪時指出,這些對於大數據的內部利用,往往需要對原有系統進行大規模改造,而且無法直接快速地帶來收入的增長,其實電信運營商可以用另一種思路,在基本不改造現有系統的情況下,立竿見影地獲得可觀的收益。
國務院為大數據發展「定調」
齊紅威具有十多年的數據挖掘研發應用經驗,曾任NEC中國研究院研發部部長、高級研究員。「大數據的本質特徵並不是『規模大』」,他闡述了對於大數據的理解。
現在人們對於大數據的認識普遍存在著誤區,認為當數據量達到一定量(TB級或PB級)就是大數據,其實不然,區分大數據與海量數據的標准並不取決於其數據量,從技術上講,「非結構化」數據才是大數據最典型的特徵。現實生活中80%的數據都是非結構化的,解讀這些數據,蘊藏著巨大的商業價值,這才是大數據。從商業模式上講,大數據就是移動互聯網產生的大量的關於人的數據。
近日,國務院總理李克強主持召開國務院常務會議,討論並通過了《關於促進大數據發展的行動綱要》,對消除信息孤島、支持大數據產業發展、強化信息安全等提出了明確要求。
齊紅威認為,這是一個極大的利好消息。「大數據作為全球發展的戰略資源,未來將像石油一樣,影響到世界格局。對於中國而言,大數據是國家戰略轉型升級的基礎,依靠數據和互聯網相結合的方式,減少中間環節,提升傳統行業運作效率。以前,一些地方政府或者企業雖然都認識到大數據的價值,但對於發展大數據仍心存顧慮:能不能做?做到什麼程度?『紅線』在哪裡?《綱要》的推出相當於政府給大數據發展定了調——不僅要做,而且要做大做強。」
大數據變現的閉環已經形成
2014年是大數據的商用元年,許多行業開始利用大數據真正地產生價值,齊紅威認為:「現在很像電商井噴式發展前的2006年、2007年,市場培育已經完成,生態圈初具規模,商業模式逐漸成熟。價值萬億的大數據市場的大門已經打開。」
齊紅威將大數據生態圈劃分為雲計算服務商、數據提供商、數據服務商和數據應用商四部分,實現從」數據流「到」資金流「分享共贏的商業運作模式。
其中,雲計算服務商主要負責提供計算、存儲和帶寬等基礎能力。
數據服務商則提供各種數據,包括政府大數據(公安、交通等)、行業大數據(電信、金融、電力等)、互聯網大數據(互聯網企業的用戶數據、互聯網公共數據)以及線下大數據等。
「現在網路上隨時都在產生海量的數據,但線下的許多資源都還沒有被數據化,這些數據同樣價值連城。」他透露,數據堂獨家推出了一款名為「眾客堂」的眾包平台,普通用戶可以通過該應用上傳照片、錄音等提供線下的數據並獲得一定的酬勞,目前「眾客堂」的眾客數量在全球范圍內已超過40萬。這些線下數據已經開始產生價值,例如,自拍照幫助美顏相機優化美顏程序;大量的購物小票分析出商品的價格走勢和促銷信息;語音數據幫助語音交互系統提高識別准確度等。
數據應用商則利用經過初步處理的大數據開發各類應用,例如徵信、個性化旅遊和交通服務等。他認為,「數據應用商將『百花齊放』,規模有望達到數萬家。」
數據服務商是大數據變現閉環形成的關鍵,具有三大功能:第一,連接數據提供商和應用商的紐帶,免去了雙方一一洽談的麻煩;第二,匯總大數據的平台,將各領域數據提供商的大數據整合、融合起來,將產生1+1大於2的價值,實現數據增值;第三,對大數據進行初步分析、過濾和分類,「數據服務商從提供商那兒收來的是『小麥』,但應用商需要的是『麵粉』,所以服務商就要完成把『小麥』加工成『麵粉』的工作。」
「簡單地說,數據服務商就相當於『數據銀行』,接收各方的『存款』,再將這些『資金』包裝成不同的產品後貸款給有需要的人,搭建數據共享的『生命線』,達成商業共贏,實現大數據變現的閉環。」齊紅威表示。
數據堂是國內首家也是唯一一家在新三板上市的大數據服務商,團隊的主創人員都有著十多年在大數據領域的技術積累,並在大數據產業發展過程中有著先發優勢,經過多年的數據源積累,已獲得金融徵信、交通地理、人工智慧、商家貨價等多領域的大數據,與國內外多家數據提供商和應用商建立了合作關系,摸索出一套適應我國國情的商業模式。
電信運營商如何從「數據銀行」提現
「電信運營商坐擁著一大片未被開發的『油田』。」齊紅威認為,電信運營商擁有著海量的高價值數據,例如掌握著用戶的各類地理位置信息、商業活動、搜索歷史和社交網路信息等大數據,具有維度豐富、群體性強、連續性好、網路行為全覆蓋和關聯性強等獨特優勢,「關鍵是如何將這些大數據變現,實現數據價值。」
齊紅威逐一分析並回應了目前電信運營商在發展大數據時普遍存在的幾點顧慮:
一是「能不能做」的問題。現在國家已經明確表示要大力支持大數據發展,在政策方面為電信運營商發展大數據鋪平了道路。
二是「投入與收益」問題。與數據服務商合作,電信運營商幾乎不需要改造現有系統就可以通過大數據獲利,預計產生的價值有望達到億萬元級別。
三是「競爭」問題。數據服務商只生產「麵粉」不生產「麵包」,不會與電信運營商形成業務競爭。
四是「數據安全」問題。數據堂獨創了一種模式——不「取走」數據提供商的數據,只是將軟體嵌入到數據提供商的系統中,最終只生成數據結果,經數據提供商審核後再將相關結果提供給數據應用商,這就有效地消除了可能出現的信息泄漏風險。
齊紅威表示,阻礙電信運營商挖掘大數據價值的障礙已經被一一清除,他們只需「向前邁一步」,即可擁抱蘊藏著無限商機的大數據時代。
「如果說大數據的發展是一場數萬米的馬拉松比賽的話,那麼現在才剛剛跑了1000多米。」但齊紅威同時指出,大數據發展已進入高速發展期,2015年將是各方布局大數據的關鍵時期,未來兩三年將初步奠定大數據市場的格局,大數據將迎來超過十年的上升期。
以上是小編為大家分享的關於大數據變現,電信運營商只需往前邁一步的相關內容,更多信息可以關注環球青藤分享更多干貨
『柒』 什麼是大數據,看完這篇就明白了
什麼是大數據
如果從字面上解釋的話,大家很容易想到的可能就是大量的數據,海量的數據。這樣的解釋確實通俗易懂,但如果用專業知識來描述的話,就是指數據集的大小遠遠超過了現有普通資料庫軟體和工具的處理能力的數據。
大數據的特點
海量化
這里指的數據量是從TB到PB級別。在這里順帶給大家科普一下這是什麼概念。
MB,全稱MByte,計算機中的一種儲存單位,含義是「兆位元組」。
1MB可儲存1024×1024=1048576位元組(Byte)。
位元組(Byte)是存儲容量基本單位,1位元組(1Byte)由8個二進制位組成。
位(bit)是計算機存儲信息的最小單位,二進制的一個「0」或一個「1」叫一位。
通俗來講,1MB約等於一張網路通用圖片(非高清)的大小。
1GB=1024MB,約等於下載一部電影(非高清)的大小。
1TB=1024GB,約等於一個固態硬碟的容量大小,能存放一個不間斷的監控攝像頭錄像(200MB/個)長達半年左右。
1PB=1024TB,容量相當大,應用於大數據存儲設備,如伺服器等。
1EB=1024PB,目前還沒有單個存儲器達到這個容量。
多樣化
大數據含有的數據類型復雜,超過80%的數據是非結構化的。而數據類型又分成結構化數據,非結構化數據,半結構化數據。這里再對三種數據類型做一個分類科普。
①結構化數據
結構化的數據是指可以使用關系型資料庫(例如:MySQL,Oracle,DB2)表示和存儲,表現為二維形式的數據。一般特點是:數據以行為單位,一行數據表示一個實體的信息,每一行數據的屬性是相同的。所以,結構化的數據的存儲和排列是很有規律的,這對查詢和修改等操作很有幫助。
但是,它的擴展性不好。比如,如果欄位不固定,利用關系型資料庫也是比較困難的,有人會說,需要的時候加個欄位就可以了,這樣的方法也不是不可以,但在實際運用中每次都進行反復的表結構變更是非常痛苦的,這也容易導致後台介面從資料庫取數據出錯。你也可以預先設定大量的預備欄位,但這樣的話,時間一長很容易弄不清除欄位和數據的對應狀態,即哪個欄位保存有哪些數據。
②半結構化數據
半結構化數據是結構化數據的一種形式,它並不符合關系型資料庫或其他數據表的形式關聯起來的數據模型結構,但包含相關標記,用來分隔語義元素以及對記錄和欄位進行分層。因此,它也被稱為自描述的結構。半結構化數據,屬於同一類實體可以有不同的屬性,即使他們被組合在一起,這些屬性的順序並不重要。常見的半結構數據有XML和JSON。
③非結構化數據
非結構化數據是數據結構不規則或不完整,沒有預定義的數據模型,不方便用資料庫二維邏輯表來表現的數據。包括所有格式的辦公文檔、文本、圖片、各類報表、圖像和音頻/視頻信息等等。非結構化數據其格式非常多樣,標准也是多樣性的,而且在技術上非結構化信息比結構化信息更難標准化和理解。所以存儲、檢索、發布以及利用需要更加智能化的IT技術,比如海量存儲、智能檢索、知識挖掘、內容保護、信息的增值開發利用等。
快速化
隨著物聯網、電子商務、社會化網路的快速發展,全球大數據儲量迅猛增長,成為大數據產業發展的基礎。根據國際數據公司(IDC)的監測數據顯示,2013年全球大數據儲量為4.3ZB(相當於47.24億個1TB容量的移動硬碟),2014年和2015年全球大數據儲量分別為6.6ZB和8.6ZB。近幾年全球大數據儲量的增速每年都保持在40%,2016年甚至達到了87.21%的增長率。2016年和2017年全球大數據儲量分別為16.1ZB和21.6ZB,2018年全球大數據儲量達到33.0ZB。預測未來幾年,全球大數據儲量規模也都會保持40%左右的增長率。在數據儲量不斷增長和應用驅動創新的推動下,大數據產業將會不斷豐富商業模式,構建出多層多樣的市場格局,具有廣闊的發展空間。
核心價值
大數據的核心價值,從業務角度出發,主要有如下的3點:
a.數據輔助決策:為企業提供基礎的數據統計報表分析服務。分析師能夠輕易獲取數據產出分析報告指導產品和運營,產品經理能夠通過統計數據完善產品功能和改善用戶體驗,運營人員可以通過數據發現運營問題並確定運營的策略和方向,管理層可以通過數據掌握公司業務運營狀況,從而進行一些戰略決策;
b.數據驅動業務:通過數據產品、數據挖掘模型實現企業產品和運營的智能化,從而極大的提高企業的整體效能產出。最常見的應用領域有基於個性化推薦技術的精準營銷服務、廣告服務、基於模型演算法的風控反欺詐服務徵信服務,等等。
c.數據對外變現:通過對數據進行精心的包裝,對外提供數據服務,從而獲得現金收入。市面上比較常見有各大數據公司利用自己掌握的大數據,提供風控查詢、驗證、反欺詐服務,提供導客、導流、精準營銷服務,提供數據開放平台服務,等等。
大數據能做什麼?
1、海量數據快速查詢(離線)
能夠在海量數據的基礎上進行快速計算,這里的「快速」是與傳統計算方案對比。海量數據背景下,使用傳統方案計算可能需要一星期時間。使用大數據 技術計算只需要30分鍾。
2.海量數據實時計算(實時)
在海量數據的背景下,對於實時生成的最新數據,需要立刻、馬上傳遞到大數據環境,並立刻、馬上進行相關業務指標的分析,並把分析完的結果立刻、馬上展示給用戶或者領導。
3.海量數據的存儲(數據量大,單個大文件)
大數據能夠存儲海量數據,大數據時代數據量巨大,1TB=1024*1G 約26萬首歌(一首歌4M),1PB=1024 * 1024 * 1G約2.68億首歌(一首歌4M)
大數據能夠存儲單個大文件。目前市面上最大的單個硬碟大小約為10T左右。若有一個文件20T,將 無法存儲。大數據可以存儲單個20T文件,甚至更大。
4.數據挖掘(挖掘以前沒有發現的有價值的數據)
挖掘前所未有的新的價值點。原始企業內數據無法計算出的結果,使用大數據能夠計算出。
挖掘(演算法)有價值的數據。在海量數據背景下,使用數據挖掘演算法,挖掘有價值的指標(不使用這些演算法無法算出)
大數據行業的應用?
1.常見領域
2.智慧城市
3.電信大數據
4.電商大數據
大數據行業前景(國家政策)?
2014年7月23日,國務院常務會議審議通過《企業信息公示暫行條例(草案)》
2015年6月19日,國家主席、總理同時就「大數據」發表意見:《國務院辦公廳關於運用大數據加強對市場主體服務和監管的若干意見》
2015年8月31日,國務院印發《促進大數據發展行動綱要》。國發〔2015〕50號
2016年12月18日,工業和信息化部關於印發《大數據產業發展規劃》
2018年1月23日。中央全面深化改革領導小組會議審議通過了《科學數據管理辦法》
2018年7月1日,國務院辦公廳印發《關於運用大數據加強對市場主體服務和監管的若干意見》
2019年政府工作報告中總理指出「深化大數據、人工智慧等研發應用,培育新一代信息技術、高端裝備、生物醫葯、新能源汽車、新材料等新興產業集群,壯大數字經濟。」
總結
我國著名的電商之父,阿里巴巴創始人馬雲先生曾說過,未來10年,乃至20年,將是人工智慧的時代,大數據的時代。對於現在正在學習大數據的我們來說,未來對於我們更是充滿了各種機遇與挑戰。
python學習網,大量的免費python視頻教程,歡迎在線學習!
『捌』 大數據到底是啥在哪裡(通俗解釋)
大數據(Big
data)
是一個抽象的概念,是一個體量特別大,數據類別特別大的數據集版,並且這權樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單說就是,難以用常規的資料庫工具獲取、存儲、管理、分析的數據集合。
大數據來源:人類社會的所有行為,比如交易、教育、出行、娛樂、吃住......
大數據包含的元素:文字、圖片、視頻、音頻、生物信息、生產資料......
『玖』 電信可以查出二年前的活動軌跡嗎
查不了。
默認查詢是14天的,可以發送簡訊給10001即可查詢行程軌跡。具體操作步驟如下:
1、簡訊編輯CXMYD#身份證後四位數,發送到10001。
2、10001發送簡訊,問是否確認授權查詢,輸入大寫的Y。
3、10001回復給的簡訊即是14天的行程軌跡。
電信大數據主要獲取於公眾通信網路中的基礎數據,可以較為准確地統計分析全國各省市以及重點區域人員流動,一般可以分析到區縣級流動和分布情況。通過結合衛生防疫等其他部門數據,可以進一步對確診、疑似患者和密切接觸者等重點人群的分布等進行分析研判。從2月14日工信部舉行的媒體通氣會上也了解到,電信大數據將對疫情防控的總體情況提供全面的分析和支撐,電信大數據將在疫情溯源、疫情監測、配合疫情態勢研判等方面積極作為,對我國的疫情防控工作起到了積極的支撐和推動作用。通過電信大數據,可以統計分析全國特別是武漢和湖北等重點地區的人員動態流動情況,分析預測確診、疑似患者及密切接觸人員等重點人群的動態流動情況。