A. MySQL 如何存儲大數據
行格式為Compact是如何存儲大數據的:
[vb]view plain
mysql>selectversion();
+-----------+
|version()|
+-----------+
|5.1.73|
+-----------+
1rowinset(0.01sec)
mysql>showtablestatuslike'row'G;
***************************1.row***************************
Name:row
Engine:InnoDB
Version:10
Row_format:Compact
Rows:1
Avg_row_length:81920
Data_length:81920
Max_data_length:0
Index_length:0
Data_free:0
Auto_increment:NULL
Create_time:2017-01-0421:46:02
Update_time:NULL
Check_time:NULL
Collation:latin1_swedish_ci
Checksum:NULL
Create_options:
Comment:
1rowinset(0.00sec)
我們建立一張測試表,插入數據:
[html]view plain
CREATETABLE`row`(
`content`varchar(65532)NOTNULLDEFAULT''
)ENGINE=InnoDBDEFAULTCHARSET=latin1
mysql>insertintorow(content)selectrepeat('a',65532);
QueryOK,1rowaffected(0.03sec)
Records:1Duplicates:0Warnings:0
我們使用 py_innodb_page_info.py 工具來查看錶中的頁分布:
[vb]view plain
[root@localhostmysql]#pythonpy_innodb_page_info.py-vcom/row.ibd
pageoffset00000000,pagetype<FileSpaceHeader>
pageoffset00000001,pagetype<InsertBufferBitmap>
pageoffset00000002,pagetype<FileSegmentinode>
pageoffset00000003,pagetype<B-treeNode>,pagelevel<0000>
pageoffset00000004,pagetype<UncompressedBLOBPage>
pageoffset00000005,pagetype<UncompressedBLOBPage>
pageoffset00000006,pagetype<UncompressedBLOBPage>
pageoffset00000007,pagetype<UncompressedBLOBPage>
Totalnumberofpage:8:
InsertBufferBitmap:1
UncompressedBLOBPage:4
FileSpaceHeader:1
B-treeNode:1
FileSegmentinode:1
可以看出,第4頁的 <B-tree Node>, page level <0000> 格式為數據頁,存放著MySQL的行數據。 <Uncompressed BLOB Page> 可以理解為MySQL存放大數據的地方,暫且叫作外部存儲頁。Compact格式沒有將大數據全部放在數據頁中,而是將一部分數據放在了外部存儲頁中。那麼,是全部數據在外部存儲頁中,還是一部分數據。假如是一部分數據,這一部分是多少呢?
我們使用 hexmp -Cv row.ibd 查看一下數據頁 <B-tree Node>, page level <0000> ,也就是第4頁:
[vb]view plain
|.%.W....????????|
|......:?E?......|
|.........?......|
|................|
|................|
|...?.........2..|
|...infimum......|
|supremum.?...??.|
|...............-|
|..aaaaaaaaaaaaaa|
|aaaaaaaaaaaaaaaa|
|aaaaaaaaaaaaaaaa|
|aaaaaaaaaaaaaaaa|
....
....
|aaaaaaaaaaaaaaaa|
|aaaaaaaaaaaaaaaa|
|aa...........&..|
|....??..........|
|................|
|................|
|................|
...
...
|................|
|................|
|................|
|.....p.c.?l+..:?|
B. 傳統大數據存儲的架構有哪些各有什麼特點
數據源:所有大數據架構都從源代碼開始。這可以包含來源於資料庫的數據、來自實時源(如物聯網設備)的數據,及其從應用程序(如Windows日誌)生成的靜態文件。
實時消息接收:假如有實時源,則需要在架構中構建一種機制來攝入數據。
數據存儲:公司需要存儲將通過大數據架構處理的數據。一般而言,數據將存儲在數據湖中,這是一個可以輕松擴展的大型非結構化資料庫。
批處理和實時處理的組合:公司需要同時處理實時數據和靜態數據,因而應在大數據架構中內置批量和實時處理的組合。這是由於能夠應用批處理有效地處理大批量數據,而實時數據需要立刻處理才能夠帶來價值。批處理涉及到長期運轉的作業,用於篩選、聚合和准備數據開展分析。
分析數據存儲:准備好要分析的數據後,需要將它們放到一個位置,便於對整個數據集開展分析。分析數據儲存的必要性在於,公司的全部數據都聚集在一個位置,因而其分析將是全面的,而且針對分析而非事務進行了優化。
這可能採用基於雲計算的數據倉庫或關系資料庫的形式,具體取決於公司的需求。
分析或報告工具:在攝入和處理各類數據源之後,公司需要包含一個分析數據的工具。一般而言,公司將使用BI(商業智能)工具來完成這項工作,而且或者需要數據科學家來探索數據。
「大數據」 通常指的是那些數量巨大、難於收集、處理、分析的數據集,亦指那些在傳統基礎設施中長期保存的數據。大數據存儲是將這些數據集持久化到計算機中。
C. 大數據到底是啥在哪裡(通俗解釋)
大數據(Big
data)
是一個抽象的概念,是一個體量特別大,數據類別特別大的數據集版,並且這權樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。簡單說就是,難以用常規的資料庫工具獲取、存儲、管理、分析的數據集合。
大數據來源:人類社會的所有行為,比如交易、教育、出行、娛樂、吃住......
大數據包含的元素:文字、圖片、視頻、音頻、生物信息、生產資料......
D. 什麼叫大數據,與雲計算有何關系。
1,大數據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產
2,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式計算架構。它的特色在於對海量數據的挖掘,但它必須依託雲計算的分布式處理、分布式資料庫、雲存儲和虛擬化技術。
他倆之間的關系你可以這樣來理解,雲計算技術就是一個容器,大數據正是存放在這個容器中的水,大數據是要依靠雲計算技術來進行存儲和計算的。
大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
雲計算的關鍵詞在於「整合」,無論你是通過現在已經很成熟的傳統的虛擬機切分型技術,還是通過google後來所使用的海量節點聚合型技術,他都是通過將海量的伺服器資源通過網路進行整合,調度分配給用戶,從而解決用戶因為存儲計算資源不足所帶來的問題。
大數據正是因為數據的爆發式增長帶來的一個新的課題內容,如何存儲如今互聯網時代所產生的海量數據,如何有效的利用分析這些數據等等。
大數據的趨勢:
趨勢一:數據的資源化
何為資源化,是指大數據成為企業和社會關注的重要戰略資源,並已成為大家爭相搶奪的新焦點。因而,企業必須要提前制定大數據營銷戰略計劃,搶占市場先機。
趨勢二:與雲計算的深度結合
大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。
趨勢三:科學理論的突破
隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。隨之興起的數據挖掘、機器學習和人工智慧等相關技術,可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。
E. 大數據的存儲
⼤數據的存儲⽅式是結構化、半結構化和⾮結構化海量數據的存儲和管理,輕型資料庫⽆法滿⾜對其存儲以及復雜的數據挖掘和分析操作,通常使⽤分布式⽂件系統、No SQL 資料庫、雲資料庫等。
結構化、半結構化和⾮結構化海量數據的存儲和管理,輕型資料庫⽆法滿⾜對其存儲以及復雜的數據挖掘和分析操作,通常使⽤分布式⽂件系統、No SQL 資料庫、雲資料庫等。
1 分布式系統:分布式系統包含多個⾃主的處理單元,通過計算機⽹絡互連來協作完成分配的任務,其分⽽治之的策略能夠更好的處理⼤規模數據分析問題。
主要包含以下兩類:
1)分布式⽂件系統:存儲管理需要多種技術的協同⼯作,其中⽂件系統為其提供最底層存儲能⼒的⽀持。分布式⽂件系統 HDFS 是⼀個⾼度容錯性系統,被設計成適⽤於批量處理,能夠提供⾼吞吐量的的數據訪問。
2)分布式鍵值系統:分布式鍵值系統⽤於存儲關系簡單的半結構化數據。典型的分布式鍵值系統有 Amazon Dynamo,以及獲得⼴泛應⽤和關注的對象存儲技術(Object Storage)也可以視為鍵值系統,其存儲和管理的是對象⽽不是數據塊。
2 Nosql 資料庫:關系資料庫已經⽆法滿⾜ Web2.0 的需求。主要表現為:⽆法滿⾜海量數據的管理需求、⽆法滿⾜數據⾼並發的需求、⾼可擴展性和⾼可⽤性的功能太低。No SQL 資料庫的優勢:可以⽀持超⼤規模數據存儲,靈活的數據模型可以很好地⽀持 Web2.0 應⽤,具有強⼤的橫向擴展能⼒等,典型的 No SQL 資料庫包含以下⼏種:
3 雲資料庫:雲資料庫是基於雲計算技術發展的⼀種共享基礎架構的⽅法,是部署和虛擬化在雲計算環境中的資料庫。
F. 大數據的存儲方式有哪幾種什麼特點
我好覺得一般來說的話,這種存儲都還是比較穩定的一種方式
G. 第三章 大數據存儲
一,HDFS的基本特徵與構架
1.基本特徵
(1)大規模數據分布存儲能力:以分布式存儲能力和良好的可擴展性。(基於大量分布節點上的本地文件系統,構建一個邏輯上具有巨大容量的分布式文件系統,並且整個文件系統的容量可隨集群中節點的增加而線性擴展)
(2)高並發訪問能力:提供很高的數據訪問寬頻(高數據吞吐率),並且可以把帶寬的大小等比例擴展到集群中的全部節點上
(3)強大的容錯能力:(設計理念中硬體故障被視作常態)保證在經常有節點發生硬體故障的情況下正確檢測硬體故障,並且能自動從故障中快速恢復,確保數據不丟失(採用多副本數據塊形式存儲)
(4)順序式文件訪問:(大數據批處理都是大量簡單數據記錄的順序處理)對順序讀進行了優化,支持大量數據的快速順序讀出,代價是對於隨機的訪問負載較高
(5)簡單的一致性模型(一次寫多次讀):支持大量數據的一次寫入,多次讀取;不支持已寫入數據的更新操作,但允許在文件尾部添加新的數據
(6)數據塊存儲模式:默認的塊大小是64MB。好處:減少元數據的數量,允許這些數據塊通過隨機方式選擇節點,分布存儲在不同地方
2.基本框架與工作過程
(1)基本組成結構與文件訪問過程
[1]HDFS;一個建立在一組分布式伺服器節點的本地文件系統之上的分布式文件系統(採用經典主-從結構)
[2]主控節點NameNode:
1)是一個主伺服器,用來管理整個文件系統的命名空間和元數據,以及處理來自外界的文件訪問請求
2)保存了文件系統的三中元數據
命名空間:整個分布式文件系統的目錄結構
數據塊與文件名的映射表
每個數據塊副本的位置信息,每一個數據塊默認有3個副本
[3]從節點DataNode:
1)用來實際存儲和管理文件的數據塊
2)為了防止數據丟失,每個數據塊默認有3個副本,且3個副本會分別復制在不同節點上,以避免一個節點失效造成一個數據塊的徹底丟失
[4]程序訪問文件時,實際文件數據流並不會通過NameNode傳送,而是從NameNode獲得所需訪問數據塊的存儲位置信息後,直接去訪問對應的DataNode獲取數據
[5]設計好處:
1)可以允許一個文件的數據能同時在不同DataNode上並發訪問,提高數據訪問的速度
2)減少NameNode的負擔,避免使NameNode成為數據訪問瓶頸
[6]基本訪問過程:
1)首先,用戶的應用程序通過HDFS的客戶端程序將文件名發送至NameNode
2)NameNode接收到文件名之後,在HDFS目錄中檢索文件名對應的數據塊,再根據數據塊信息找到保存數據塊的DataNode地址,講這些地址回送到客戶端
3)客戶端接收到這些DataNode地址之後,與這些DataNode並行的進行數據傳輸操作,同時將操作結果的相關日誌提交到NameNode
2.數據塊
(1)為了提高硬碟的效率,文件系統中最小的數據讀寫單元是數據塊
(2)HDFS數據塊的默認大小是64MB,實際部署中,可能會更多
(3)將數據塊設置大的原因是減少定址開銷的時間
(4)當應用發起數據傳輸請求:
[1]NameNode首先檢索文件對應的數據塊信息,找到數據塊對應的DataNode
[2]DataNode根據數據塊信息在自身的存儲中尋找相應的文件,進而與應用程序之間交換數據
[3]因為檢索過程是但進行,所以要增加數據塊大小,這樣就可以減少定址的頻度和時間開銷
3.命名空間
(1)文件命名遵循「目錄/子目錄/文件」格式
(2)通過命令行或者是API可以創建目錄,並且將文件保存在目錄中。可以對文件進行創建,刪除,重命名操作
(3)命令空間由NameNode管理。所有對命名空間的改動都會被記錄
(4)允許用戶配置文件在HDFS上保存的副本數量,保存的副本數稱作「副本因子」
4.通信協議
(1)採用TCP協議作為底層的支撐協議
(2)應用協議
[1]應用可以向NameNode主動發起TCP連接
[2]應用和NameNode交互協議稱為Client協議
[3]NameNode和DataNode交互的協議稱為DataNode協議
(3)用戶和DataNode的交互是通過發起遠程調用(RPC),並由NameNode響應來完成的。另外,NameNode不會主動發起遠程過程調用請求
5.客戶端:是用戶和HDFS通信最常見的渠道,部署的HDFS都會提供客戶端
二,HDFS可靠性設計
1.HDFS數據塊多副本存儲設計
(1)採用了在系統中保存多個副本的方式保存數據,且同一個數據塊的多個副本會存放在不同節點上
(2)優點:
[1]採用多副本,可以讓客戶從不同數據塊中讀取數據,加快傳輸速度
[2]HDFS的DataNode之間通過網路傳輸數據,如果採用多個副本可以判斷數據傳輸是否出錯
[3]多副本可以保證某個DataNode失效的情況下,不會丟失數據
2.可靠性的設計實現
(1)安全模式:
[1]HDFS啟動時,NameNode進入安全模式
[2]處於安全模式的NameNode不能做任何文本操作,甚至內部的副本創建不允許
[3]NameNode需要和各個DataNode通信,獲得其中保存的數據塊信息,並對數據塊信息進行檢查
[4]只有通過了NameNode檢查,一個數據塊被認為安全。當被認為安全的數據塊所佔比例達到某個閾值,NameNode退出
(2)SecondaryNmaeNode
[1]使用它來備份NameNode元數據,以便在其失效時能從中恢復出其上的元數據
[2]它充當NameNode的一個副本,本身並不處理任何請求。
[3]作用:周期性保存NameNode的元數據
(3)心跳包和副本重新創建
[1]心跳包:位於HDFS核心的NameNode,通過周期性的活動檢查DataNode的活動
[2]檢測到DataNode失效,保存在其上的數據不可用。則其上保存的副本需要重新創建這個副本,放到另外可用的地方
(4)數據一致性
[1]採用了數據校驗和機制
[2]創建文件時,HDFS會為這個文件生成一個校驗和,校驗和文件和文件本身保存在同一空間上,
[3]傳輸數據時會將數據與校驗和一起傳輸,應用收到數據後可以進行校驗
(5)租約
[1]防止同一個文件被多個人寫入數據
[2]NameNode保證同一個文件只會發放一個允許的租約,可以有效防止出現多人寫入的情況
(6)回滾
三,HDFS文件存儲組織與讀寫
1.文件數據的存儲組織
(1)NameNode目錄結構
[1]藉助本地文件系統來保存數據,保存文件夾位置由配置選項({dfs.name.dir}/{/tmp/dfs/name})決定
[2]在NameNode的${dfs.name.dir}之下有3個文件夾和1個文件:
1)current目錄:
文件VERSION:保存了當前運行的HDFS版本信息
FsImages:是整個系統的空間鏡像文件
Edit:EditLog編輯文件
Fstime:上一次檢查點時間
2)previous.checkpoint目錄:和上一個一致,但是保存的是上一次檢查點的內容
3)image目錄:舊版本的FsImage存儲位置
4)in_use.look:NameNode鎖,只在NameNode有效(啟動並且能和DataNode正常交互)時存在。
(2)DataNode目錄結構
[1]藉助本地文件系統來保存數據。保存文件夾位置由配置選項{dfs.data.dir}決定
[2]在其之下有4個子目錄和2個文件
1)current目錄:已經成功寫入的數據塊,以及一些系統需要的文件
a)文件VERSION:保存了當前運行的HDFS版本信息
b)subdirXX:當同一目錄下文件超過一定限制,新建一個目錄,保存多出來的數據塊和元數據
2)tmp目錄和blockBeingWritten目錄:正在寫入的數據塊,是HDFS系統內部副本創建時引發的寫入操作對應的數據塊
3)detach目錄:用於DataNode升級
4)Storage目錄:防止版本不同帶來風險
5)in_user.lock文件:DataNode鎖。只有在DataNode有效時存在。
(3)CheckPointNode目錄結構:和上一個基本一致
2.數據的讀寫過程
(1)數據讀取過程
[1]首先,客戶端調用FileSystem實例的open方法,獲得這個文件對應的輸入流,在HDFS中就是DFSInputStream
[2]構造第一步的輸入流時,通過RPC遠程調用NameNode可以獲得NameNode中此文件對應的數據塊保存位置,包括這個文件副本的保存位置(註:在輸入流中會按照網路拓撲結構,根據與客戶端距離對DataNode進行簡單排序)
[3]-[4]獲得此輸入流後,客戶端調用READ方法讀取數據。輸入流選擇最近的DFSInputStream會根據前面的排序結果,選擇最近的DataNode建立連接並讀取數據。
[5]如果已達到數據塊末端,關閉這個DataNode的連接,然後重新查找下一個數據塊
[6]客戶端調用close,關閉輸入流DFSInputStream
(2)數據輸入過程
[1]-[2]:客戶端調用FileSystem實例的create方法,創建文件。檢查後,在NameNode添加文件信息,創建結束之後,HDFS會返回一個輸出流DFSDataOutputStream給客戶端
[3]調用輸出流的write方法向HDFS中對應的文件寫入數據。
數據首先會被分包,這些分包會寫入一個輸出流的內部隊列Data隊列中,接收完整數據分包,輸出流回想NameNode申請保存文件和副本數據塊的若干個DataNode
[4]DFSDataOutputStream會(根據網路拓撲結構排序)將數據傳輸給距離上最短的DataNode,這個節點接收到數據包後傳給下一個。數據在各節點之間通過管道流通,減少傳輸開銷
[5]數據節點位於不同機器上,數據需要通過網路發送。(為保證數據節點數據正確,接收到數據的節點要向發送者發送確認包)
[6]執行3-5知道數據全部寫完,DFSDataInputStream繼續等待知道所有數據寫入完畢並確認,調用complete方法通知NameNode文件寫入完成
[7]NameNode接收到complete消息之後,等待相應數量的副本寫入完畢後,告知客戶端
傳輸過程,當某個DataNode失效,HDFS執行:
1)關閉數據傳輸的管道
2)將等待ACK隊列的數據放到Data隊列頭部
3)更新正常DataNode中所有數據塊版本。當失效的DataNode重啟,之前的數據塊會因為版本不對被清除
4)在傳輸管道中刪除失效的DataNode,重新建立管道並發送數據包
4.HDFS文件系統操作命令
(1)HDFS啟動與關閉
[1]啟動過程:
1)進入到NameNode對應節點的Hadoop安裝目錄
2)執行啟動腳本:bin/start-dfs.sh
[2]關閉過程:bin/stop-dfs.sh
(2)文件操作命令格式與注意事項
[1]基本命令格式:
1)bin/hadoop dfs-cmd <args> args-> scheme://authority/path
2)args參數基本格式前面是scheme,authority是機器地址和對應埠
a)本地文件,scheme是file
b)HDFS上文件,scheme是hdfs
(3)文件操作基本格式
[1]hadoop dfs-cat URL [URL ...]
[2]作用:將參數所指示文件內容輸出到stdout
H. 國家大資料庫在哪裡
中心基地-北京
2015年1月16日,由藍汛與北京市供銷總社共同投資的藍訊首鳴國際數據中心項目啟動儀式在北京天竺綜合保稅區舉行。據了解,該數據中心是北京首個國家級、超大規模雲數據中心,產業園佔地面積8萬平方米,包含9棟數據中心機房和1棟感知體驗中心。
南方基地-貴州
2015年7月9日,首個國家級數據中心 ——災備中心落戶貴州,該大資料庫災備中心在貴州揭牌,這標志著大數據專項行動第一階段任務順利落。位於貴州貴安新區的國家旅遊大資料庫災備中心機房內,有著一根特殊的網路虛擬專線,這條專線跨越了北京與貴州之間2200多公里的距離,實現了國家旅遊局北京機房與貴州災備中心數據的同步傳輸和異地備份。
多年以來,200餘個大數據信息產業項目簽約落戶貴州,富士康、阿里巴巴、騰訊、華為等大型企業搶灘貴州發展。中國電信雲計算貴州信息園1.1期、中國移動(貴州)大數據中心、中國聯通貴安雲數據中心一期建成運營。中電樂觸、高新翼雲、翔明科技等第三方數據中心已建成並投運,目前數據中心伺服器達到2.2萬台;北京供銷社數據中心、惠普數據中心等一批項目已經啟動,預計今後將達5萬台伺服器規模。
北方基地-內蒙古
「烏蘭察布國家大數據災備中心啟動大會於2016年7月8日早上八點正式啟動」內蒙古主席布小林將出席會議。烏蘭察布市委市政府依據自身地理位置優越,地質板塊穩定,電力資源豐富,氣候冷涼適宜,臨近京津冀經濟圈核心市場等優勢,將信息產業作為戰略性新興產業來發展,致力於將烏蘭察布市打造成面向華北、服務京津的國家級雲計算產業基地,為承接高科技產業、加快產業轉型升級提供強有力的支撐。 市委市政府將為該建設國家大數據災備中心項目提供充足的土地與極具競爭力的投資政策吸引廣大企業參與建設
I. 大數據的數據的存儲方式是什麼
大數據有效存儲和管理大數據的三種方式:
1. 不斷加密
任何類型的數據對於任何一個企業來說都是至關重要的,而且通常被認為是私有的,並且在他們自己掌控的范圍內是安全的。然而,黑客攻擊經常被覆蓋在業務故障中,最新的網路攻擊活動在新聞報道不斷充斥。因此,許多公司感到很難感到安全,尤其是當一些行業巨頭經常成為攻擊目標時。
隨著企業為保護資產全面開展工作,加密技術成為打擊網路威脅的可行途徑。將所有內容轉換為代碼,使用加密信息,只有收件人可以解碼。如果沒有其他的要求,則加密保護數據傳輸,增強在數字傳輸中有效地到達正確人群的機會。
2. 倉庫存儲
大數據似乎難以管理,就像一個永無休止統計數據的復雜的漩渦。因此,將信息精簡到單一的公司位置似乎是明智的,這是一個倉庫,其中所有的數據和伺服器都可以被充分地規劃指定。然而,有些報告指出了反對這種方法的論據,指出即使是最大的存儲中心,大數據的指數增長也不再能維持。
然而,在某些情況下,企業可能會租用一個倉庫來存儲大量數據,在大數據超出的情況下,這是一個臨時的解決方案,而LCP屬性提供了一些很好的機會。畢竟,企業不會立即被大量的數據所淹沒,因此,為物理機器租用倉庫至少在短期內是可行的。這是一個簡單有效的解決方案,但並不是永久的成本承諾。
3. 備份服務 - 雲端
當然,不可否認的是,大數據管理和存儲正在迅速脫離物理機器的范疇,並迅速進入數字領域。除了所有技術的發展,大數據增長得更快,以這樣的速度,世界上所有的機器和倉庫都無法完全容納它。
因此,由於雲存儲服務推動了數字化轉型,雲計算的應用越來越繁榮。數據在一個位置不再受到風險控制,並隨時隨地可以訪問,大型雲計算公司(如谷歌雲)將會更多地訪問基本統計信息。數據可以在這些服務上進行備份,這意味著一次網路攻擊不會消除多年的業務增長和發展。最終,如果出現網路攻擊,雲端將以A遷移到B的方式提供獨一無二的服務。