① 如何運用大數據思維進行營銷管理
大數據時代要求公司所有的部門和運營都需要以客戶為核心。企業需要一個以CRM系統為核心的數據收集系統與業務流程運作相結合。這樣才可能把公司外部客戶和內部員工圍繞業務連接起來。
企業利用CRM基於大數據思維的營銷管理方法:
基於大數據的智能化客戶關系管理
基於大數據和移動互聯等新技術,在更新視角、更深層次上,幫助銷售人員站在客戶的角度思考問題。包括客戶的價值,客戶的需求,客戶的真正目的。銷售人員可以藉助大數據平台上源源不斷的數據來源和數據分析結果成為客戶售前顧問。向客戶提供其所需要的產品詳細信息,和產品功能。
基於客戶生命周期的營銷管理
CRM通過資料庫的建立和分析,各個部門都對顧客的資料有詳細全面的了解,可以給予顧客更加個性化的服務支持和營銷設計。另外銷售自動化功能為客戶建立了強大的資料庫,再通過關鍵詞對資料庫搜索,通過區分不同的營銷對象來規劃市場活動和推動營銷層次。
部門協同合作提高效率
CRM主要包括銷售自動化、營銷管理、客戶服務和支持、客戶呼叫中心等幾個模塊。它的實質是充分發揮市場、銷售、服務三大部門的作用,並且使三個部門能充分共享客戶信息,打破各部門之間的信息堡壘的封鎖,從而使各個部門以一個企業的整體形象出現在客戶面前。
② 如何用大數據做好企業運營
大數據對企業來說有什麼用?對於這個連IT界都眾說紛紜的事情,要讓希望使用大數據產品和服務的企業主們來說,更是一頭霧水。大數據是工具,那麼它究竟對企業會有什麼作用呢?了解了大數據的作用,才能讓大數據更好的服務自身。其實,從傳統企業的運行流程來看,大數據主要能夠在了解用戶、鎖定資源、規劃生產、做好運營、開展服務等方面,幫上企業的忙。
下面,我們來看一下到底大數據到底能幫什麼忙:
1、幫企業了解用戶
大數據通過相關性分析,將客戶、用戶和產品進行有機串聯,對用戶的產品偏好,客戶的關系偏好進行個性化定位,生產出用戶驅動型的產品,提供客戶導向性的服務。
從大數據技術方面來看,用數據來指引企業的成長,將不再單單是一句口號。據網路副總裁曾良表示,從挖掘的角度來看,他們通過對每天60億的檢索請求數
據分析,可以發現檢索某一品牌的受眾行為特徵,進而反饋給企業的品牌、產品研發部門,能更准確地了解目標用戶,並推出與調性相匹配的產品。
通過運用大數據,不僅可以從數據中發掘出適應企業發展環境的社會和商業形態,用數據對用戶和客戶對待產品的態度,進行挖掘和洞察,准確發現並解讀客戶及用戶的諸多新需求和行為特徵,這必將顛覆傳統企業在用戶調研過程中,過分依賴主觀臆斷的市場分析模式。
2、幫企業鎖定資源
通過大數據技術,可以實現企業對所需資源的精準鎖定,在企業在運營過程中,所需要的每一種資源的挖掘方式、具體情況和儲量分布等,企業都可以進行搜集
分析,形成基於企業的資源分布可視圖,就如同「電子地圖」一般,將原先只是虛擬存在的各種優勢點,進行「點對點」的數據化、圖像化展現,讓企業的管理者可
以更直觀地面對自己的企業,更好地利用各種已有和潛在資源。如果沒有大數據,將很難發現曾經認為是完全無關行為間的相互關聯性,就如同外媒曾經提到的「啤
酒」與「尿片」之間的關聯營銷一樣,如果美元大數據這將是一種幾乎不可能的事情。
3、幫企業規劃生產
大數據不僅改變了數據的組合方式,而且影響到企業產品和服務的生產和提供。通過用數據來規劃生產架構和流程,不僅能夠幫助他們發掘傳統數據中無法得知的價值組合方式,而且能給對組合產生的細節問題,提供相關性的、一對一的解決方案,為企業開展生產提供保障。
過去的所謂商業智能,往往大多是「事後諸葛亮」,而大數據則讓企業可預測未來的走向,幫助企業做到「未雨綢繆」。大數據的虛擬化特徵,還將大大降低企業的經營風險,能夠在生產或服務尚未展開之前就給出相關確定性答案,讓生產和服務做到有的放矢。
在這方面,不得不提到的就是最近火爆的《紙牌屋》,它的劇集為什麼會受到全球歡迎?有很大一部分原因就跟它前期依據大數據技術和思維方式所做的准備。
據稱,《紙牌屋》的資料庫包含了3000萬用戶的收視選擇、400萬條評論、300萬次主題搜索。下一季劇情拍什麼、誰來拍、誰來演、怎麼播,都由數千萬
觀眾的客觀喜好統計決定。
4、幫企業做好運營
過去某一品牌要做市場預測,大多靠自身資源、公共關系和以往的案例來進行分析和判斷,得出的結論往往也比較模糊,很少能得到各自行業內的足夠重視。通
過大數據的相關性分析,根據不同品牌市場數據之間的交叉、重合,企業的運營方向將會變得直觀而且容易識別,在品牌推廣、區位選擇、戰略規劃方面將做到更有
把握地面對。
對於大數據對企業運營的導航左右,夢芭莎集團董事長佘曉成深有感觸,他不禁感慨「大數據讓我們能夠及時調整運營策略,現在的庫存每季售罄率從80%提升到95%,實行30天缺貨銷售,能把30天缺貨控制在每天訂單的10%左右,比以前有3倍的提升。」
5、幫企業開展服務
通過大數據計算對社交信息數據、客戶互動數據等,可以幫助企業進行品牌信息的水平化設計和碎片化擴散。經濟學家Richard H.
Thaler曾經提出一種觀點,「個人觀點的微小變化都可以演變為所有人的群體行為模式的重大變革。」在這一重大變革的背景之下,對微小的信息流,企業都
必須重視,而客戶服務為應對這種情況,也需要像空氣一樣分布在一些細枝末節之中。企業可以藉助社交媒體中公開的海量數據,通過大數據信息交叉驗證技術、分
析數據內容之間的關聯度等,進而面向社會化用戶開展精細化服務,提供更多便利、產生更大價值。
③ 政府利用大數據分析可以怎麼樣
大數據時代的到來為政府治理理念的轉型帶來了新機遇。對於政府而言,要提升自身的治理能力,必須要在其中融入新的思維和新的文化,在這一方面,大數據中的數據思維與文化模式可以為政府治理工作的轉型提供思路,如果將大數據充分地利用起來,政府治理工作便可以實現多層次、多元化、多角度發展,最終實現政府管理工作以公共服務為主、協同共治為輔的目的。如今,政府開展治理工作時,不能僅僅依靠傳統的經驗了,任何工作都必須要基於數據的基礎上開展,這就要求政府工作人員深入到群眾之中,採集客觀資料,並進行科學的實證分析,以此作為開展工作的基礎。也就是說,任何一項工作的開展都必須要用數據來說話,這對於促進政府工作的轉型有著非常積極的效果。
大數據為政府治理模式的創新帶來了新的發展機遇。大數據是對海量數據的科學運算,人們可以找尋到不同數據之間的密切聯系,這也是大數據方法論的思想。此外,在大數據技術平台的支持下,人們可以採用眾包、外包等一系列的組織模式來革新政府治理的組織架構,將傳統的組織架構向合作、協同方面進行轉型,從這一層面而言,將大數據理論引入到政府治理工作中,可以為政府治理模式的開展提供創新的模式。種種實踐證實,大數據給政府治理模式的創新主要帶來了幾個方面的發展機遇:一是促進了政府治理模式從粗放式到精細化的轉型;二是促進了政府治理模式從單一性到協同共享性的轉型;三是促進了政府治理模式從被動性到主動性的轉型。
大數據時代的到來提升了政府決策工作的科學性。近年來,政府各項公共事務變得越來越復雜,僅僅依靠工作人員的個人感知是無法對所有事務做出科學、准確的判斷的,要想從根本上提升政府決策工作的科學性,就需要合理應用大數據思維模式,收集數據,分析現階段經濟社會運行過程中的規律,採取合理的數據挖掘來開展決策工作。從本質上而言,大數據給政府決策部門帶來了如下的改變:首先,在制定決策時,政府的決定已經不是個別領導的決策,而是必須要使用數據說話,根據數據來制定出決策,與傳統的決策模式相比,該種決策模式更加的科學、精準;其次,在決策實施跟蹤階段,政府可以充分利用社交網路與物聯網來分析決策的實施情況,利用數據對實施成果進行監控,這可以幫助政府及時地調整決策方向和決策模式。
大數據為政府服務效能的提升帶來新的機遇。要提升政府的綜合治理能力,必須採取科學有效的措施提升政府的服務效能,這也是大數據背景下建設服務型政府的關鍵性因素。在政府治理的背景下,要提升政府的服務效能,不僅需要提升政府行政部門的審批效率,還要採取相應的措施提升政府公共服務產品的質量。一是在提升行政審批效率方面,憑借大數據能夠幫助政府打破不同部門之間的信息孤島,構建出完善的行政審批服務雲平台,利用大數據能真正的為老百姓辦實事,為老百姓節約時間,這既有效提升了政府開展行政工作的效率,還可以大范圍的節約政府開支。二是在提升公共產品的服務質量方面,政府工作人員可以利用大數據對公共服務產品的數據進行深入的分析與挖掘,讓公共服務產品供給走向個性化、分層化以及精準化發展道路。還可以利用大數據的兼容性和開放性,鼓勵越來越多的社會大眾參與到政府決策活動中,讓他們對政府決策工作進行科學的監督,不斷提升公共服務產品的綜合質量。
④ 如何進行大數據分析及處理
聚雲化雨的處理方式
聚雲:探碼科技全面覆蓋各類數據的處理應用。以數據為原料,通過網路數據採集、生產設備數據採集的方式將各種原始數據凝結成雲,為客戶打造強大的數據存儲庫;
化雨:利用模型演算法和人工智慧等技術對存儲的數據進行計算整合讓數據與演算法產生質變反應化雲為雨,讓真正有價值的數據流動起來;
開渠引流,潤物無聲:將落下「雨水」匯合成數據湖泊,對數據進行標注與處理根據行業需求開渠引流,將一條一條的數據支流匯合集成數據應用中,為行業用戶帶來價值,做到春風化雨,潤物無聲。
⑤ 如何實現大數據時代的政府治理創新
1、在政府系統進一步確立大數據的理念,研究制定大數據施政發展規劃
2、夯實大數據產業基礎,提供大數據施政平台技術支撐。
3、打通各部門各層級之間信息孤島,實現大數據信息資源互聯共享。
4、發揮第三方力量的作用,政府積極購買大數據相關技術服務
⑥ 大數據研究與應用協會市場推廣面試問題
傳統的用戶研究包括品牌研究、客戶滿意度研究、商圈研究、市場細分、渠道研究、產品定價研究以及產品測試,這些研究大多數用市場調研的方法來實現。市場調研由於調研方法帶來的諸多問題,導致結果的代表性、准確性以及研究的效率都存在不同程度的挑戰。我們相信,隨著大數據的發展,大數據將對市場與用戶研究方法將帶來革命性的變化。本文將介紹大數據目前在市場與用戶研究方面的應用與探索。
一、大數據用於品牌研究
品牌認知度、品牌形象和品牌滿意度研究是品牌研究的三大重要部分。
1)品牌認知度是品牌資產的重要組成部分,品牌認知度是衡量消費者對品牌內涵及價值的認識和理解度的標准,同時也是公司競爭力的一種體現。
2)而品牌形象是品牌在公眾心中所表現出的個性特徵,它體現公眾特別是消費者對品牌的評價與認知,以及對品牌所具有的一切聯想。品牌形象分為三個層級的形象:產品或服務本身的形象、使用者的形象、產品或提供者的形象。
3)品牌滿意度是消費者通過對一個品牌產品或服務的可感知效果與對比預期相比較後,所形成的愉悅或失望的狀態,可以不滿意、滿意、滿足、愉悅等四種情緒,一個擁有高滿意度的品牌,其顧客的購買率及重復購買率也在相應提升,因此品牌滿意度的研究也非常重要。
在傳統的市場研究中,品牌認知、品牌形象和品牌滿意度研究是通過市場調查的手段來實現。在大數據時代,我們可以利用互聯網大數據輔助品牌認知度、品牌形象和品牌滿意度研究。我們可以通過網路爬蟲技術,對新聞媒體、社會化媒體等網站實時全網監測,實時掌握網民對品牌和競品的品牌提及量、產品提及量以及提及量的趨勢,掌握自己品牌和競爭的品牌形象評價;通過品牌和產品的正負面評論的監測,及時了解對品牌消費者對品牌的滿意度情況,及時發現問題。過去,進行品牌認知度、品牌形象以及品牌滿意度的市場調研,從調查開始到報告產生,至少需要半個月到一個月,而且由於成本和操作性的限制,只能選取一些代表性的人群和地點做代表性的抽樣不夠全面。利用大數據手段,我們可以實現更快更全面以及更真實的統計,這對我們及時的了解品牌認知度、品牌形象以及品牌滿意度的現狀和趨勢非常有幫助。
專欄:企業實施大數據的五大關鍵
專欄:大數據應用於企業運營
大數據在電信行業的應用
二、大數據用於忠誠度研究
凈推薦值研究方法是客戶忠誠度研究中的重要方法。凈推薦值(NPS)研究方法由國際知名咨詢公司貝恩咨詢客戶忠誠度業務的創始人佛瑞德·賴克霍徳(Fred Reichheld)在2003《哈佛大學商業評論》文章「你需要致力於增長的一個數字」的文章中首次提到。該方法通過調查客戶問題「您有多大可能向您的朋友或同事推薦我們公司的產品或服務?(0-10分)」 來獲得,根據客戶的回答分數分成三組:
第一組給公司9分或10分,稱之為「推薦者」(promoters);他們是對公司產品或服務滿意度和忠誠度非常高的客戶,在當今社會化媒體營銷時代,他們是公司產品或服務免費營銷人員,他們會推薦朋友和親人來購買。
第二組給公司7分或8分,為「被動滿意者」(passively satisfied);他們對公司產品或服務既無不滿意,也無滿意的客戶,較易被其他競爭者吸引。
第三組給0至6分,是「貶損者」(detractors)。他們對公司的產品或服務非常不滿意,不僅僅停止購買公司的產品或服務,他們會盡一切可能勸周圍的人不要買,同時會轉向其他競爭者。
NPS值即為推薦者所佔百分比與貶低者所佔百分比的差值(如下圖)。NPS的業務邏輯是:推薦者會繼續購買並且推薦給其他人來加速你的成長,而貶損者則能破壞你的名聲,不僅僅停止購買,而且勸說周圍朋友購買,讓你在負面的口碑中阻止成長,NPS則是反映了這兩股力量較量的結果。Fred Reichheld實證研究證明NPS和長期利潤成長有正相關性,NPS表現越好,未來企業利潤的成長就會越好。
圖:NPS計算方法
大家可能會問,NPS分數在多少為比較理想的狀態。實證研究表明,NPS分數在NPS的得分值在50%以上被認為是表現不錯,得分值在70-80%之間則證明公司擁有一批高忠誠度的好客戶(如蘋果、Google等互聯網公司的NPS超過70%),大部分公司的NPS值在5-10%之間,更差的公司NPS還可能是負值。當然,我們僅了解NPS是不夠的,NPS本身不能提供具體的改進意見,我們還需要結合影響滿意度的原因深入研究,尤其是對貶損者指標進行深入的滿意度研究,挖掘「貶損」背後的原因。
大數據技術革新傳統NPS研究方式。大部分NPS的研究其數據獲取方式都採用調查問卷的方式,這種方式很容易受到抽樣方式、客戶心態甚至活動禮品等多方面的影響,導致數據失真。在大數據時代,NPS的數據可以來源於客服系統的語音數據和評價文本數據、電商平台購物用戶的打分及用戶評論文本數據以及社會化媒體如微博、論壇等的評論文本數據,這些數據我們都稱之為「用戶反饋數據」。我們可以利用語音分析技術、文本分析技術將這些非結構化的「用戶反饋數據」結構化,從而更好的進行數據挖掘,識別「貶損者」和「推薦者」,全面和快速的計算NPS,並可以利用這些大數據,了解「貶損者」的「貶損」的原因。如果還能夠把業務系統和運營系統的「用戶行為數據」關聯整合進來,我們不僅僅通過「用戶反饋數據」了解用戶「貶損」原因,還可以了解「貶損者」的歷史「用戶行為數據,將更有利於我們更好的洞察用戶,更全面、更及時優化「貶損者」的用戶體驗和改進方向;同時可以定向為「推薦者」展開更多的優惠促銷或者附加增值服務。通過大數據手段可以更好的實時掌握NPS,還可以洞察NPS「推薦」或「貶損」的原因,為市場推廣、客戶服務、業務運營等部門的關鍵應用場景提供決策支撐,有利於進一步提升用戶親密度和忠誠度。
三、大數據用於市場細分
市場細分是按照消費者在市場需求、購買動機、購買行為和購買能力方面的差異,運用系統方法將整體市場即全部顧客和潛在顧客劃分為數個不同的消費者群(子市場),以便選擇確定自己的目標市場。市場細分的基礎是購買者對產品需求的差異性。但是,這種差異性一般很難直接度量,故常用其它比較容易度量以及和需求密切相關的變數來對市場進行細分。這些變數包括地理、人口統計學屬性、行為以及消費心態等變數:地理細分是將市場劃分為不同的區域市場,例如可按下列地理特徵將市場細分:行政區劃、城市規模、資源狀況和氣候;人口統計學細分人口統計變數來細分市場,常用來細分市場的人口學變數有年齡、性別、民族、居住地、家庭規模與生命周期等;行為和態度細分是根據消費者對產品的購買動機、購買行為和使用情況來細分;心理細分是按消費者的社會階層、生活方式、人格特徵劃分為不同的群體。市場細分既可以按照以上單維度細分,也可以組合以上維度進行多重標准細分,同時按照多重標准可以將消費者分為比較小的、同質性更高的群體。
區別於傳統的市場細分,大數據應用於市場細分在以下方面起到更為重要的作用:
1)數據採集的維度更為全面,數據採集更為實時,尤其是在行為數據的採集更為及時、細膩和全方位;
2)用大數據演算法進行細分模型建模,可以吸納更多的細分維度,從而可以細分出更小、同質性更高的細分群體;
3)數據更新更快,計算速度更快,市場細分模型更新速度更快,更能及時反映用戶需求的變化,從而可以做出更准確、及時細分;
4)市場細分可以和營銷渠道、營銷活動進行實時關聯和調優,通過大數據演算法判定的細分群體可以實時的進行最有效營銷活動推薦,並可以用大數據計算最為有效推廣渠道觸達這些細分群體。
四、大數據用於產品測試
產品測試指的是企業運用專業的技術手段和研究方法進行以獲得目標消費者(或用戶)對相關產品的認知或評價,以測試新產品的接受度或改進現有產品。產品測試在產品的各生命周期均有應用:
在產品的開發期,產品處於研發和概念階段,此時可以對已有產品進行測試,以了解消費者認為需要改進的方面;或者對尚未成型的產品進行概念性的測試,指導產品經理對正在開放的產品做調整和改進;
在產品介紹期,產品准備投放市場以及剛剛投放市場不久,企業可以通過產品測試以了解最有效的銷售渠道和促銷方式,以及對產品的包裝、價格進行測試;
在產品的成長期和成熟期,企業可以通過自身產品和競爭產品進行對比測試,及時掌握消費者(或用戶)對產品的評價和態度;
在產品的衰退期,為了延長產品生命周期,企業會進行產品的改進或者產品新方向的測試。
以上不同階段的產品測試,傳統的實施方法一般是通過市場調查方式來實現,通常是對消費者(或用戶)進行調查或者訪問,利用多種訪問或調查工具來實現。在大數據和互聯網時代,我們可以用更快和更為准確的方式來進行產品測試:
在產品的開發期,我們可以通過電商平台或者微博、論壇等社會化媒體對現有產品的網上評論進行收集,通過自然語言處理和數據挖掘手段,以了解消費者的不滿和產品改進方向;或者灰度測試來了解新版本的效果,即讓一部分用戶繼續用老版本,一部分用戶開始用新版本,如果用戶對新版本沒有什麼反對意見,那麼逐步擴大范圍,把所有用戶都遷移到新版本上面來。灰度測試和發布可以保證整體產品系統的穩定,在初始灰度的時候就可以發現、調整問題。
在產品的介紹期,產品的包裝、外觀設計和價格等也可以通過灰度測試和發布的方式來掌握消費者的反饋以進行相關的調優。
在產品的成長期和成熟期,我們同樣可以通過大數據手段對電商平台和社會化媒體收集消費者對自身產品和競爭產品的評論,通過自然語言處理和數據挖掘掌握消費者對產品的不滿,以改進我們自己的產品。像寶潔這種對傳統市場調查非常重視的企業,目前已經逐漸開始利用大數據方式進行產品測試,尤其是通過電商平台對每一個產品都能收集評價和反饋,幫助產品的改進和創新。
五、大數據與商圈研究以及空間商業智能
商圈是指商店以其所在地點為中心沿著一定的方向和距離擴展所能吸引顧客的范圍。按照離商店的距離,商圈分為三層,包括核心商圈,次級商圈和邊緣商圈。核心商圈是離商店最近,顧客密度最高,約占商店顧客的55%-70%;次級商圈是指位於核心商圈外圍的商圈,顧客分布較為分散,約占商店顧客的15-20%;邊緣商圈是於商圈的最外緣,包含商圈剩下的客戶,此商圈顧客最為分散,數量最少。
按照商圈的性質,商圈可以分為六大類,包括:
(1)商業區,商業集中的地區;
(2)住宅區,住宅區住戶數量至少1000戶以上;
(3)文教區,其附近有一所或以上的學校;
(4)辦公區,辦公大樓較多的地區;
(5)工業區,即工廠較多的地區;
(6)混合區,以上5類的混合,如住商混合、住教混合、工商混合等。
影響商圈的因素可以分為內部因素和外部因素。內部因素包括:
店鋪經營商品的種類。經營傳統商品、日常用品的店鋪吸引顧客的區域范圍較小,商圈范圍小;經營非常用品,吸引顧客的能力強,商圈范圍廣。
店鋪的經營規模。隨著店鋪經營規模的擴大,其商圈也在隨之擴大,但增大到一定規模時,商圈范圍也不會擴大;
店鋪的經營特徵。經營同類商品的兩個店鋪即便同處一地的同一條街道,其對顧客的吸引力也會有所不同,相應的商圈規模也不一樣。經營靈活、商品齊全、服務周到,在顧客中留有良好形象的店鋪,顧客競爭力強,自然商圈規模相對也會較其他同行業店鋪大;
店鋪的主體設計,包括店鋪所在樓層構成及配置,吸引顧客的設施狀況,如停車場停車位的多少以及其所處位置等。
影響商圈的外部因素包括:
店鋪的促銷手段。利用人員推銷與營業推廣活動等可以吸引更多的次級以及邊緣商圈的顧客,可以更好擴張商圈范圍;
競爭店鋪的位置。相互競爭的兩店之間距離越大,它們各自的商圈也越大。如潛在顧客居於兩家同行業店鋪之間,各自店鋪分別會吸引一部分潛在顧客,造成客流分散,商圈都會因此而縮小。但有些相互競爭的店鋪毗鄰而設,顧客因有較多的比較、選擇機會而被吸引過來,則商圈反而會因競爭而擴大;
人口流動性。人口流動是指在交通要道、繁華商業區、公共場所過往的人口。一個地區的流動人口越多,在這一地區經營的店鋪的潛在顧客就越多。
交通地理狀況。交通地理條件與商圈規模密切相關。在商業繁華地帶,交通條件發達,人口流動性強,有大量的潛在顧客,因而商圈范圍也就越大;反之,店鋪設在交通偏僻地區,顧客主要是分布在店鋪附近的居住人口,其商圈范圍一般較小。
人口統計學特徵和消費特徵。包括商圈的客戶性別、年齡、收入、家庭規模、消費支出能力等。
基於商圈的地理信息和數據挖掘可以應用於商鋪選址、銷售區域分配、物流配送路徑優化、潛在消費者空間分布、線下廣告投放優化、城市規劃等數據可以通過大數據的手段進行獲取。在這些應用中,商鋪選址應用最多,尤其是應用於銀行、快消、電信、醫葯、傢具等行業。
傳統的商圈相關信息獲取是通過市場調查的手段獲得。在大數據時代,商圈相關的位置、客流和消費者信息是可以通過大數據獲取的,尤其是通過電信運營商或具有地圖服務能力的互聯網企業。如中國聯通推出的商鋪選址大數據應用服務,中國聯通可以把城市區域進行柵格化處理,分析每個柵格(不同位置)的用戶群信息、客流信息等,為零售商進行店鋪選址的決策依據,並且已經成功的應用到煙草直營零售終端的分析和選址優化中。而國內的一些城市的相關企業也在啟動智慧商圈的基礎服務。他們藉助為公眾提供免費WiFi服務的同時,把商圈人流數據收集成為城市大數據,建立智慧商圈大數據分析平台和應用服務,通過智慧商圈服務數據分析平台的應用服務於城市管理,比如了解商圈人流、客流,為城市規劃和交通線路設計提供依據和參考,也可以為商家選址和廣告促銷提供依據。在國外,一家名為PiinPoint的企業,他們提供基於網路的分析工具,可以幫助企業和商鋪選址進行優化,它能夠收集各種數據,包括人口、稅率、交通信息和房產信息等,對不同的待選地址進行深度分析,並吸引了許多有擴張計劃的美國零售商。
對於大數據與商圈信息的結合研究,無論是工業界還是學術界都在積極探索,甚至這些研究發展已經逐步發展為空間商業智能的探索。美國密西根大學中國信息研究中心主任鮑曙明是這樣界定的空間商業智能:空間商業智能是商業智能服務的一種擴展,涉及到空間和網點的分布,周邊的人口、環境、地理等等之間的關系。大數據、移動技術以及雲計算是未來發展趨勢,如何將這些新技術和空間商業智能有機整合,提升應用的能力,並將地理智慧普及到更廣泛的商業領域,目前還處於探索階段,還需要業界同仁共同努力。
近兩年興起的室內定位技術ibeacon將會對空間商業智能的發展有著更為積極的促進作用。iBeacon是蘋果公司2013年9月發布的移動設備用OS(iOS7)上配備的新功能,通過軟體和硬體的結合,從而大大提高室內精度,從原來的幾百米或者幾十米的定位精度提高到一米以內的定位精度。這種能力將極大的強化購物體驗,如當客戶走到某個商品前,手機應用自動跳出商品的介紹和促銷信息。對於商家,也可以更加精準的判別潛在消費者,及時的向消費者進行精準營銷。隨著iBeacon的發展,商家位置信息將更為精準,線下商品信息更為豐富,尤其是極大彌補室內定位的數據源,這對空間商業智能的發展是極大的利好。
總之,大數據應用於市場和用戶研究仍仍處於探索階段,依然面臨著諸多的挑戰,尤其是數據採集的不全面的問題、數據質量的問題以及數據處理和分析技術有待加強尤其是非結構化數據的處理和分析技術。但我們不可否認的是,大數據應用與市場和用戶研究將帶來研究速度和效率的極大提升。隨著大數據相關技術的發展和成熟,我們有理由相信,利用大數據進行更好的市場洞察和用戶洞察洞察。市場與用戶研究的同仁,我們一起擁抱大數據吧。
⑦ 為什麼想要加入大數據協會
因為大數據協會是以學習專業知識為核心,以大數據專業學生為科教主體,致力於提高成員大數據領域認知水平的學術科技類協會。
1、第一開發部,培養方向:大數據相關的運維方向,第一開發部會注重軟體編程能力和應用開發能力,也就是我們所說的基礎。因為這些能力是計算機能力的基石,讓大家學好這些能力,能在日後使用大數據相關的開源庫、框架進行開發更加方便。比如說spark、hadoop、flink等,這些開源框架應用的開發都離不開扎實的編程基礎。
2、第二開發部,培養方向:大數據相關的分析方向,第二開發部則注重數據分析各種工具的使用。如excel,sql,ppt這些分析數據的工具,同時第二開發部還注重思維的培養,避免掌握各種工具面對問題卻無從下手的情況。鍛煉好的思維方式是至關重要的,一些讓普通人棘手幾天解決不了的問題,分析大家有時只需要幾分鍾就能搞定,這就是思維的作用。
⑧ 大數據協會宣傳部部門職責是什麼
大數據協會宣傳部部門職責是對外進行宣傳。大數據是這個高科技時代的產物,時時刻刻都在與海量的數據進行交互,這也是大數據協會在以後發展過程中的優勢所在,其中宣傳部,對外進行宣傳的部門,同時是協會發布通知及組織和開展活動的窗口之一。
⑨ 盤點政府推動大數據應用及發展的舉措
盤點政府推動大數據應用及發展的舉措
一、政府:推動大數據應用的最關鍵力量
(一)政府掌握大量最具應用價值的核心數據,是推動大數據應用的最關鍵力量
根據麥肯錫大數據研究報告指出, 各個行業利用大數據價值的難易度以及發展潛力 對比下,政府利用大數據難度最低而潛力最大。
大數據
另一方面政府開放大數據運用已經是大勢所趨:
1、 政府掌握了大量最具應用價值的核心數據。 過去十多年來政府投資進行了大量電子政務或者稱為政府信息化的工作,後台積累了大量的數據,而這些數據和公眾的生產生活息息相關。有研究表明政府所掌握的數據使政府成為了一個國家最重要的信息保有者,有百分之七十到八十的核心數據存在於政府的後台 。
2、 開放數據本身就是政府在大數據時代提供的一項公共服務。 政府數據本質上是國家機關在履行職責時所獲取的數據,採集這些數據的經費來自於公共財政,因而這些數據是公共產品,歸全社會所有,應取之於民,用之於民。
3、 政府開放數據供社會進行增值開放和創新應用,推動經濟增長乃至整個經濟增長方式的轉型。 數據是互聯網創新的重要基礎,如果政府不開放這一部分數據,很多創新應用沒有數據作為支持,數據開發者能利用政府開放的數據,提供更好的服務,創造更多的價值, 這個過程能夠提高整個國家在大數據時代的競爭力。
4、 政府開放數據推動經濟增長獲得的稅收高於單純賣數據獲得的收入。 201 年世界經合組織在關於開放政府數據的報告中提到政府通過開放數據推動經濟增長,從而獲得的稅收收入遠高於單賣數據所能獲得收入。開放數據激發經濟活力從而得到稅收提升,這是一個良 性循環,更是一個能創造巨大公共價值的全局性的戰略。
(二) 國內外政府開放數據的情況
在 2009 年奧巴馬簽署開放政府數據的行政命令後,這些年來開放政府數據已成為了世界性的一個趨勢。美國聯邦數據平台 Data.gov 上線後,在美洲、歐洲、亞洲等地,開放政府數據已成為了政府的一項重要工作。美國聯邦政府的開放政府數據平台開放了來自多個領 域的 13 萬個數據集的數據。這些領域包括圖中所列的農業、商業、氣候、生態、教育、能源、金融、衛生、科研等十多個主題。這些主題下的數據都是美國聯邦政府的各個部委所開放的。英國、加拿大、紐西蘭等國在 2009 年之後都建立起了政府數據開放平台,成為 了國際信息化和大數據領域的一個重要趨勢。
大數據
在我國, 2011 年香港特區政府上線了 data.gov.hk,稱為香港政府資料一線通。上海在 2012年 6 月推出了中國大陸第一個數據開放平台。之後,北京、武漢、無錫、佛山南海等城市也都上線了自己的數據平台。
大數據
(三)、 大數據對於政府治理具有極大的價值
大數據其實對政府的治理帶來了全新的價值,無論是對宏觀經濟的決策能力、產業聚集能力、協同治理能力、社會管理能力、公眾服務能力、快速響應能力的提升,大數據都可以在有很大層面上幫助政府治理。
大數據大數據
(四)、大數據上升至國家戰略成為共識。
大數據時代,對大數據的開發、利用與保護的爭奪日趨激烈,制信權成為繼制陸權、制海權、制空權之後的新制權,大數據處理能力成為強國弱國區分的又一重要指標。國際上以美國為代表的發達國家紛紛布局大數據產業,相繼推出大數據相關政策,大力支持大數據產 業在本國的發展。以美國為例,美國從開展關鍵技術研究、推動大數據應用和開放政府數據三方面布局大數據產業,尤其在開放政府數據方面非常積極,通過 Data.gov開放 37 萬個數據集,並開放網站的 API 和源代碼,提供上千個數據應用。我們認為,大數據未來將 引發新一輪大國競爭,大數據對整個世界的影響力會呈現爆發性增長趨勢,因此包括我國在內的國家會在政策支持力度上不斷提升,大數據戰略將上升至國家戰略已毋庸臵疑。
大數據
(五)、 我國 高度重視大數據未來發展
自去年 3 月「大數據」首次出現在《政府工作報告》中以來,國務院常務會議一年內 6次提及大數據運用。近期在 6 月 17 日的國務院常務會議上,李克強總理再次強調「我們正在推進簡政放權,放管結合、優化服務,而大數據手段的運用十分重要。」 7 月 1 日, 國務院辦公廳印發了《關於運用大數據加強對市場主體服務和監管的若干意見》。
大數據
大數據大數據
(六). 各部委行動時間表已經確,我國大數據發展面臨歷史性機遇
值得注意的是,近期國務院出台文件對各個部委推進大數據任務制定了明確的時間表,很多推進工作任務要求在 2015 年 12 月底前出台政策並實施,近期將是我國大數據發展政策出台的密集期。
表 3: 各部委推進大數據應用時間表
序號工作任務負責單位時間進度1加快建立公民、法人和其他組織統一社會信用代碼制度。發展改革委、中央編辦、公安部、民政部、人民銀行、稅務總局、工商總局、質檢總局2015 年 12 月底前出台並實施2全面實行工商營業執照、組織機構代碼證和稅務登記證「三證合一」、 「一照一碼」登記制度改革。工商總局、中央編辦、發展改革委、質檢總局、稅務總局2015 年 12 月底前實施3建立多部門網上項目並聯審批平台,實現跨部門、跨層級項目審批、核准、備案的「統一受理、同步審查、信息共享、透明公開」。發展改革委會同有關部門2015 年 12 月底前完成4推動政府部門整合相關信息,緊密結合企業需求,利用網站和微博、微信等新興媒體為企業提供服務。網信辦、工業和信息化部持續實施5研究制定在財政資金補助、政府采購、政府購買服務、政府投資工程建設招投標過程中使用信用信息和信用報告的政策措施。財政部、發展改革委2015 年 12 月底前出台並實施6充分運用大數據技術,改進經濟運行監測預測和風險預警,並及時向社會發布相關信息,合理引導市場預期。發展改革委、統計局持續實施7支持銀行、證券、信託、融資租賃、擔保、保險等專業服務機構和行業協會、商會運用大數據為企業提供服務。人民銀行、銀監會、證監會、保監會、民政部持續實施8健全事中事後監管機制,匯總整合和關聯分析有關數據,構建大數據監管模型,提升政府科學決策和風險預判能力。各市場監管部門2015 年 12 月底前取得階段性成果9在辦理行政許可等環節全面建立市場主體准入前信用承諾制度。 信用承諾向社會公開,並納入市場主體信用記錄。各行業主管部門2015 年廣泛開展試點, 2017 年 12 月底前完成10加快建設地方信用信息共享交換平台、部門和行業信用信息系統,通過國家統一的信用信息共享交換平台實現互聯共享。各省級人民政府,各有關部門2016 年 12 月底前完成11建立健全失信聯合懲戒機制,將使用信用信息和信用報告嵌入行政管理和公共服務的各領域、各環節,作為必要條件或重要參考依據。在各領域建立跨部門聯動響應和失信約束機制。建立各行業「黑名單」制度和市場退出機制。推動將申請人良好的信用狀況作為各類行政許可的必備條件。各有關部門,各省級人民政府2015 年 12 月底前取得階段性成果12建立產品信息溯源制度,加強對食品、葯品、農產品、日用消費品、特種設備、地理標志保護產品等重要產品的監督管理,利用物聯網、射頻識別等信息技術,建立產品質量追溯體系,形成來源可查、去向可追、責任可究的信息鏈條。商務部、網信辦會同食品葯品監管總局、農業部、質檢總局、工業和信息化部2015 年 12 月底前出台並實施13加強對電子商務平台的監督管理,加強電子商務信息採集和分析,指導開展電子商務網站可信認證服務,推廣應用網站可信標識,推進電子商務可信交易環境建設。健全權益保護和爭議調處機制。工商總局、商務部、網信辦、工業和信息化部持續實施14進一步加大政府信息公開和數據開放力度。除法律法規另有規定外,將行政許可、行政處罰等信息自作出行政決定之日起 7 個工作日內上網公開。各有關部門,各省級人民政府持續實施15加快實施經營異常名錄制度和嚴重違法失信企業名單制度。建設國家企業信用信息公示系統,依法對企業注冊登記、行政許可、行政處罰等基本信用信息以及企業年度報告、經營異常名錄和嚴重違法失信企業名單進行公示,並與國家統一的信用信息共享交換平台實現有機對接和信息共享。工商總局、其他有關部門,各省級人民政府持續實施16支持探索開展社會化的信用信息公示服務。建設「信用中國 」網站,歸集整合各地區、各部門掌握的應向社會公開的信用信息,實現信用信息一站式查詢,方便社會了解市場主體信用狀況。各級政府及其部門網站要與 「信用中國 」網站連接,並將本單位政務公開信息和相關市場主體違法違規信息在「信用中國 」網站公開。發展改革委、人民銀行、其他有關部門,地方各級人民政府2015 年 12 月底前完成17推動各地區、各部門已建、在建信息系統互聯互通和信息交換共享。在部門信息系統項目審批和驗收環節,進一步強化對信息共享的要求。發展改革委、其他有關部門持續實施18健全國家電子政務網路,加快推進國家政務信息化工程建設,統籌建立人口、法人單位、自然資源和空間地理、宏觀經濟等國家信息資源庫,加快建設完善國家重要信息系統。發展改革委、其他有關部門分年度推進實施, 2020 年前基本建成19加強對市場主體相關信息的記錄,形成信用檔案。對嚴重違法失信的市場主體,按照有關規定列入「黑名單」,並將相關信息納入企業信用信息公示系統和國家統一的信用信息共享交換平台。各有關部門2015 年 12 月底前實施20探索建立政府信息資源目錄。各有關部門2016 年 12 月底前出台目錄編制指南21引導徵信機構根據市場需求,大力加強信用服務產品創新,進一步擴大信用報告在行政管理和公共服務及銀行、證券、保險等領域的應用。發展改革委、人民銀行、銀監會、證監會、保監會2017 年 12 月底前取得階段性成果22落實和完善支持大數據產業發展的財稅、金融、產業、人才等政策,推動大數據產業加快發展。發展改革委、工業和信息化部、財政部、人力資源社會保障部、人民銀行、網信辦、銀監會、證監會、保監會2017 年 12 月底前取得階段性成果23加快研究完善規范電子政務,監管信息跨境流動,保護國家經濟安全、信息安全,以及保護企業商業秘密、個人隱私方面的管理制度,加快制定出台相關法律法規。網信辦、公安部、工商總局、工業和信息化部、發展改革委等部門會同法制辦2017 年 12 月底前出台(涉及法律、行政法規的,按照立法程序推進)24推動出台相關法規,對政府部門在行政管理、公共服務中使用信用信息和信用報告作出規定,為聯合懲戒市場主體違法失信行為提供依據。發展改革委、人民銀行、法制辦2017 年 12 月底前出台(涉及法律、行政法規的,按照立法程序推進)25建立大數據標准體系,研究制定有關大數據的基礎標准、技術標准、應用標准和管理標准等。加快建立政府信息採集、存儲、公開、共享、使用、質量保障和安全管理的技術標准。引導建立企業間信息共享交換的標准規范。工業和信息化部、國家標准委、發展改革委、質檢總局、網信辦、統計局2020 年前分步出台並實施26推動實施大數據示範應用工程,在工商登記、統計調查、質量監管、競爭執法、消費維權等領域率先開展示範應用工程,實現大數據匯聚整合。在宏觀管理、稅收征繳、資源利用與環境保護、食品葯品安全、安全生產、信用體系建設、健康醫療、勞動保障、教育文化、交通旅遊、金融服務、中小企業服務、工業製造、現代農業、商貿物流、社會綜合治理、收入分配調節等領域實施大數據示範應用工程。