導航:首頁 > 數據分析 > 銷售soi數據是什麼意思

銷售soi數據是什麼意思

發布時間:2023-02-18 01:17:23

❶ SOI參考模型將計算機網路通訊劃分為幾個層次

7個層次

物理層,數據鏈路層,網路層,傳輸層,會話層,表示層,應用層

❷ R中如何使用boston數據

spdep.pdf
boston Corrected Boston Housing Data
就是含:

boston.c : data frame has 506 rows and 20 columns
boston.utm : a matrix of tract point coordinates projected to UTM zone 19
506 x 2 matrix
boston.soi : a sphere of influence neighbours list
nb2listw(boston.soi)
> data(boston)
> boston.c
> boston.utm
> nb2listw(boston.soi)

###########
x=c(1,2,3,4,5,6,7,8,9,10);
y=c(6,7,8,4,9,11,12,14,15,19);
lm=lm(y~x)
lm
#(Intercept) x
# 2.867 1.388
lmfitted.values
# 1 2 3 4 5 6 7 8 9 10
# 4.254545 5.642424 7.030303 8.418182 9.806061 11.193939 12.581818 13.969697 15.357576 16.745455
lmfitted.values # 1 2 3 4 5 6 7 8 9 10 # 4.254545 5.642424 7.030303 8.418182 9.806061 11.193939 12.581818 13.969697 15.357576 16.745455 lmcoefficients[2]*x+lm$coefficients[1]
#[1] 4.254545 5.642424 7.030303 8.418182 9.806061 11.193939 12.581818 13.969697 15.357576 16.745455

❸ SOI參考模型將計算機網路通訊劃分為幾個層次,各層次的作用是什麼急急急!

七層協議

7應用層 6表示層 5會話層 4運輸層 3網路層 2數據鏈層 1物理層
自上而下(從1到7)。也把2數據兩層和1物理層稱之為網路介面層

❹ 單晶矽片詳細資料大全

單晶矽片:矽的單晶體,是一種具有基本完整的點陣結構的晶體。不同的方向具有不同的性質,是一種良好的半導材料。純度要求達到99.9999%,甚至達到99.9999999%以上。用於製造半導體器件、太陽能電池等。用高純度的多晶矽在單晶爐內拉制而成。

基本介紹

基本概念,結構,用途,市場前景,發展趨勢,大直徑化趨勢明顯,國際化,集團化,工業發展方向,製造技術升級,相關區別,單晶矽和多晶矽的區別,單晶矽,多晶矽及非晶矽太陽能電池的區別,加工工藝,

基本概念

單晶矽是一種比較活潑的非金屬元素,是晶體材料的重要組成部分,處於新材料發展的前沿。其主要用途是用作半導體材料和利用太陽能光伏發電、供熱等。由於太陽能具有清潔、環保、方便等諸多優勢,近三十年來,太陽能利用技術在研究開發、商業化生產、市場開拓方面都獲得了長足發展,成為世界快速、穩定發展的新興產業之一。 單晶矽可以用於二極體級、整流器件級、電路級以及太陽能電池級單晶產品的生產和深加工製造,其後續產品積體電路和半導體分離器件已廣泛套用於各個領域,在軍事電子設備中也佔有重要地位。 在光伏技術和微小型半導體逆變器技術飛速發展的今天,利用矽單晶所生產的太陽能電池可以直接把太陽能轉化為光能,實現了邁向綠色能源革命的開始。北京2008年奧運會將把"綠色奧運"做為重要展示面向全世界展現,單晶矽的利用在其中將是非常重要的一環。現在,國外的太陽能光伏電站已經到了理論成熟階段,正在向實際套用階段過渡,太陽能矽單晶的利用將是普及到全世界范圍,市場需求量不言而喻。

結構

熔融的單質矽在凝固時矽原子以金剛石晶格排列成三維空間長程有序的形式成為單晶矽。 單晶矽具有準金屬的物理性質,有較弱的導電性,其電導率隨溫度的升高而增加,有顯著的半導電性。超純的單晶矽是本徵半導體。在超純單晶矽中摻入微量的ⅢA 族元素,如硼可提高其導電的程度,而形成p型矽半導體;如摻入微量的ⅤA族元素,如磷或砷也可提高導電程度,形成n型矽半導體。 單晶矽的製法通常是先製得多晶矽或無定形矽,然後用直拉法或懸浮區熔法從熔體中生長出棒狀單晶矽。單晶矽主要用於製作半導體元件。 矽 結晶型的矽是暗黑藍色的,很脆,是典型的半導體。化學性質非常穩定。在常溫下,除氟化氫以外,很難與其他物質發生反應。

用途

單晶矽片主要用於製作半導體元件。 單晶矽片太陽能組件 用途: 是製造半導體矽器件的原料,用於制大功率整流器、大功率電晶體、二極體、開關器件等 現在,我們的生活中處處可見「矽」的身影和作用,晶體矽太陽能電池是近15年來形成產業化最快的。 熔融的單質矽在凝固時矽原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則這些晶粒平行結合起來便結晶成單晶矽。 單晶矽片的製法通常是先製得多晶矽或無定形矽,然後用直拉法或懸浮區熔法從熔體中生長出棒狀單晶矽。 單晶矽棒是生產單晶矽片的原材料,隨著國內和國際市場對單晶矽片需求量的快速增加,單晶矽棒的市場需求也呈快速增長的趨勢。 單晶矽棒 單晶矽圓片按其直徑分為6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直徑越大的圓片,所能刻制的積體電路越多,晶片的成本也就越低。但大尺寸晶片對材料和技術的要求也越高。單晶矽按晶體生長方法的不同,分為直拉法(CZ)、區熔法(FZ)和外延法。直拉法、區熔法生長單晶矽棒材,外延法生長單晶矽薄膜。直拉法生長的單晶矽主要用於半導體積體電路、二極體、外延片襯底、太陽能電池。目前晶體直徑可控制在Φ3~8英寸。區熔法單晶主要用於高壓大功率可控整流器件領域,廣泛用於大功率輸變電、電力機車、整流、變頻、機電一體化、節能燈、電視機等系列產品,目前直徑可控制在Φ3~6英寸。外延片主要用於積體電路領域。 單晶矽圓片

市場前景

近年來,中國單晶矽產量明顯穩步增長,增長的原因是一方面來自國際上對低檔和廉價矽材料需求的增加。另一方面是近年來中國裝備製造發展迅速,各類信息家電和通信產品需求旺盛,因此半導體器件和矽材料的市場需求量都很大。 2007年,中國市場上有各類矽單晶生長設備1500餘台,分布在70餘家生產企業。2007年5月24日,國家「863」計畫超大規模積體電路(IC)配套材料重大專項總體組在北京組織專家對西安理工大學和北京有色金屬研究總院承擔的「TDR-150型單晶爐(12英寸MCZ綜合系統)」完成了驗收。這標志著擁有自主智慧財產權的大尺寸積體電路與太陽能用矽單晶生長設備,在我國首次研製成功。這項產品使中國能夠開發具有自主智慧財產權的關鍵製造技術與單晶爐生產設備,填補了國內空白,初步改變了在晶體生長設備領域研發製造受制於人的局面。 矽材料市場前景廣闊,中國矽單晶的產量、銷售收入近幾年遞增較快,以中小尺寸為主的矽片生產已成為國際公認的事實,為世界和中國積體電路、半導體分立器件和光伏太陽能電池產業的發展做出了較大的貢獻。

發展趨勢

矽片直徑越大,技術要求越高,越有市場前景,價值也就越高。日本、美國和德國是主要的矽材料生產國。國矽材料工業與日本同時起步,但總體而言,生產技術水平仍然相對較低,而且大部分為2.5、3、4、5英寸矽錠和小直徑矽片。國消耗的大部分積體電路及其矽片仍然依賴進口。但我國科技人員正迎頭趕上,於1998年成功地製造出了12英寸單晶矽,標志著我國單晶矽生產進入了新的發展時期。目前,全世界單晶矽的產能為1萬噸/年,年消耗量約為6000噸~7000噸。未來幾年,世界單晶矽材料發展將呈現以下發展趨勢:

大直徑化趨勢明顯

隨著半導體材料技術的發展,對矽片的規格和質量也提出更高的要求,適合微細加工的大直徑矽片在市場的需求比例將日益加大。目前,矽片主流產品是200mm,逐漸向300mm過渡,研製水平達到400mm~450mm。據統計,200mm矽片的全球用量佔60%左右,150mm佔20%左右,其餘佔20%左右。Gartner發布的對矽片需求的5年預測表明,全球300mm矽片將從2000年的1.3%增加到2006年的21.1%。日、美、韓等國家都已經在1999年開始逐步擴大300mm矽片產量。據不完全統計,全球目前已建、在建和計畫建的300mm矽器件生產線約有40餘條,主要分布在美國和我國台灣等,僅我國台灣就有20多條生產線,其次是日、韓、新及歐洲。%P 世界半導體設備及材料協會(SEMI)的調查顯示,2004年和2005年,在所有的矽片生產設備,投資在300mm生產線上的比例將分別為55%和62%,投資額也分別達到130.3億美元和184.1億美元,發展十分迅猛。而在1996年時,這一比重還僅僅是零。

國際化,集團化

研發及建廠成本的日漸增高,加上現有行銷與品牌的優勢,使得矽材料產業形成「大者恆大」的局面,少數集約化的大型集團公司壟斷材料市場。上世紀90年代末,日本、德國和韓國(主要是日、德兩國)資本控制的8大矽片公司的銷量佔世界矽片銷量的90%以上。根據SEMI提供的2002年世界矽材料生產商的市場份額顯示,Shisu、SUMCO、Wacker、MEMC、Komatsu等5家公司占市場總額的比重達到89%,壟斷地位已經形成。

工業發展方向

隨著光電子和通信產業的發展,矽基材料成為矽材料工業發展的重要方向。矽基材料是在常規矽材料上製作的,是常規矽材料的發展和延續,其器件工藝與矽工藝相容。主要的矽基材料包括SOI(絕緣體上矽)、GeSi和應力矽。目前SOI技術已開始在世界上被廣泛使用,SOI材料約占整個半導體材料市場的30%左右,預計到2010年將佔到50%左右的市場。Soitec公司(世界最大的SOI生產商)的2000年~2010年SOI市場預測以及2005年各尺寸SOI矽片比重預測了產業的發展前景。

製造技術升級

半導體,晶片,積體電路,設計,版圖,晶片,製造,工藝目前世界普遍採用先進的切、磨、拋和潔凈封裝工藝,使製片技術取得明顯進展。在日本,Φ200mm矽片已有50%採用線切割機進行切片,不但能提高矽片質量,而且可使切割損失減少10%。日本大型半導體廠家已經向300mm矽片轉型,並向0.13μm以下的微細化發展。另外,最新尖端技術的導入,SOI等高功能晶片的試制開發也進入批量生產階段。對此,矽片生產廠家也增加了對300mm矽片的設備投資,針對設計規則的進一步微細化,還開發了高平坦度矽片和無缺陷矽片等,並對設備進行了改進。 矽是地殼賦存最高的固態元素,其含量為地殼的四分之一,但在自然界不存在單體矽,多呈氧化物或矽酸鹽狀態。矽的原子價主要為4價,其次為2價;在常溫下它的化學性質穩定,不溶於單一的強酸,易溶於鹼;在高溫下化學性質活潑,能與許多元素化合。 矽材料資源豐富,又是無毒的單質半導體材料,較易製作大直徑無位錯低微缺陷單晶。晶體力學性能優越,易於實現產業化,仍將成為半導體的主體材料。

相關區別

單晶矽和多晶矽的區別

單晶矽和多晶矽的區別是,當熔融的單質矽凝固時,矽原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則形成單晶矽。如果這些晶核長成晶面取向不同的晶粒,則形成多晶矽。多晶矽與單晶矽的差異主要表現在物理性質方面。例如在力學性質、電學性質等方面,多晶矽均不如單晶矽。多晶矽可作為拉制單晶矽的原料。單晶矽可算得上是世界上最純凈的物質了,一般的半導體器件要求矽的純度六個9以上。大規模積體電路的要求更高,矽的純度必須達到九個9。人們已經能製造出純度為十二個9的單晶矽。單晶矽是電子計算機、自動控制系統等現代科學技術中不可缺少的基本材料。 高純度矽在石英中提取,以單晶矽為例,提煉要經過以下過程:石英砂一冶金級矽一提純和精煉一沉積多晶矽錠一單晶矽一矽片切割。 冶金級矽的提煉並不難。它的制備主要是在電弧爐中用碳還原石英砂而成。這樣被還原出來的矽的純度約98-99%,但半導體工業用矽還必須進行高度提純(電子級多晶矽純度要求11個9,太陽能電池級只要求6個9)。而在提純過程中,有一項「三氯氫矽還原法(西門子法)」的關鍵技術我國還沒有掌握,由於沒有這項技術,我國在提煉過程中70%以上的多晶矽都通過氯氣排放了,不僅提煉成本高,而且環境污染非常嚴重。我國每年都從石英石中提取大量的工業矽,以1美元/公斤的價格出口到德國、美國和日本等國,而這些國家把工業矽加工成高純度的晶體矽材料,以46-80美元/公斤的價格賣給我國的太陽能企業。 得到高純度的多晶矽後,還要在單晶爐中熔煉成單晶矽,以後切片後供積體電路製造等用。

單晶矽,多晶矽及非晶矽太陽能電池的區別

單晶矽太陽電池: 單晶矽太陽電池是當前開發得最快的一種太陽電池,它的構成和生產工藝已定型,產品已廣泛用於宇宙空間和地面設施。這種太陽電池以高純的單晶矽棒為原料,純度要求99.999%。為了降低生產成本,現在地面套用的太陽電池等採用太陽能級的單晶矽棒,材料性能指標有所放寬。有的也可使用半導體器件加工的頭尾料和廢次單晶矽材料,經過復拉製成太陽電池專用的單晶矽棒。將單晶矽棒切成片,一般片厚約0.3毫米。矽片經過成形、拋磨、清洗等工序,製成待加工的原料矽片。加工太陽電池片,首先要在矽片上摻雜和擴散,一般摻雜物為微量的硼、磷、銻等。擴散是在石英管製成的高溫擴散爐中進行。這樣就在矽片上形成P/FONT>N結。然後採用絲網印刷法,將配好的銀漿印在矽片上做成柵線,經過燒結,同時製成背電極,並在有柵線的面塗復減反射源,以防大量的光子被光滑的矽片表面反射掉,至此,單晶矽太陽電池的單體片就製成了。單體片經過抽查檢驗,即可按所需要的規格組裝成太陽電池組件(太陽電池板),用串聯和並聯的方法構成一定的輸出電壓和電流,最後用框架和封裝材料進行封裝。用戶根據系統設計,可將太陽電池組件組成各種大小不同的太陽電池方陣,亦稱太陽電池陣列。目前單晶矽太陽電池的光電轉換效率為15%左右,實驗室成果也有20%以上的。用於宇宙空間站的還有高達50%以上的太陽能電池板 。 多晶矽太陽電池: 單晶矽太陽電池的生產需要消耗大量的高純矽材料,而製造這些材料工藝復雜,電耗很大,在太陽電池生產總成本中己超二分之一,加之拉制的單晶矽棒呈圓柱狀,切片製作太陽電池也是圓片,組成太陽能組件平面利用率低。因此,80年代以來,歐美一些國家投入了多晶矽太陽電池的研製。目前太陽電池使用的多晶矽材料,多半是含有大量單晶顆粒的集合體,或用廢次單晶矽料和冶金級矽材料熔化澆鑄而成。其工藝過程是選擇電阻率為100~300歐姆·厘米的多晶塊料或單晶矽頭尾料,經破碎,用1:5的氫氟酸和硝酸混合液進行適當的腐蝕,然後用去離子水沖洗呈中性,並烘乾。用石英坩堝裝好多晶矽料,加人適量硼矽,放人澆鑄爐,在真空狀態中加熱熔化。熔化後應保溫約20分鍾,然後注入石墨鑄模中,待慢慢凝固冷卻後,即得多晶矽錠。這種矽錠可鑄成立方體,以便切片加工成方形太陽電池片,可提高材質利用率和方便組裝。多晶矽太陽電池的製作工藝與單晶矽太陽電池差不多,其光電轉換效率約12%左右,稍低於單晶矽太陽電池,但是材料製造簡便,節約電耗,總的生產成本較低,因此得到大量發展。隨著技術得提高,目前多晶矽的轉換效率也可以達到14%左右 。 非晶矽太陽電池: 非晶矽太陽電池是1976年有出現的新型薄膜式太陽電池,它與單晶矽和多晶矽太陽電池的製作方法完全不同,矽材料消耗很少,電耗更低,非常吸引人。製造非晶矽太陽電池的方法有多種,最常見的是輝光放電法,還有反應濺射法、化學氣相沉積法、電子束蒸發法和熱分解矽烷法等。輝光放電法是將一石英容器抽成真空,充入氫氣或氬氣稀釋的矽烷,用射頻電源加熱,使矽烷電離,形成電漿。非晶矽膜就沉積在被加熱的襯底上。若矽烷中摻人適量的氫化磷或氫化硼,即可得到N型或P型的非晶矽膜。襯底材料一般用玻璃或不銹鋼板。這種制備非晶矽薄膜的工藝,主要取決於嚴格控制氣壓、流速和射頻功率,對襯底的溫度也很重要。非晶矽太陽電池的結構有各種不同,其中有一種較好的結構叫PiN電池,它是在襯底上先沉積一層摻磷的N型非晶矽,再沉積一層未摻雜的i層,然後再沉積一層摻硼的P型非晶矽,最後用電子束蒸發一層減反射膜,並蒸鍍銀電極。此種製作工藝,可以採用一連串沉積室,在生產中構成連續程式,以實現大批量生產。同時,非晶矽太陽電池很薄,可以製成疊層式,或採用積體電路的方法製造,在一個平面上,用適當的掩模工藝,一次製作多個串聯電池,以獲得較高的電壓。因為普通晶體矽太陽電池單個只有0.5伏左右的電壓,現在日本生產的非晶矽串聯太陽電池可達2.4伏。目前非晶矽太陽電池存在的問題是光電轉換效率偏低,國際先進水平為10%左右,且不夠穩定,常有轉換效率衰降的現象,所以尚未大量用於作大型太陽能電源,而多半用於弱光電源,如袖珍式電子計算器、電子鍾表及復印機等方面。估計效率衰降問題克服後,非晶矽太陽電池將促進太陽能利用的大發展,因為它成本低,重量輕,套用更為方便,它可以與房屋的屋面結合構成住戶的獨立電源。 在猛烈陽光下,單晶體式太陽能電池板較非晶體式能夠轉化多一倍以上的太陽能為電能,但可惜單晶體式的價格比非晶體式的昂貴兩三倍以上,而且在陰天的情況下非晶體式反而與晶體式能夠收集到差不多一樣多的太陽能。

加工工藝

加料—→熔化—→縮頸生長—→放肩生長—→等徑生長—→尾部生長 (1)加料:將多晶矽原料及雜質放入石英坩堝內,雜質的種類依電阻的N或P型而定。雜質種類有硼,磷,銻,砷。 (2)熔化:加完多晶矽原料於石英堝內後,長晶爐必須關閉並抽成真空後充入高純氬氣使之維持一定壓力范圍內,然後打開石墨加熱器電源,加熱至熔化溫度(1420℃)以上,將多晶矽原料熔化。 (3)縮頸生長:當矽熔體的溫度穩定之後,將籽晶慢慢浸入矽熔體中。由於籽晶與矽熔體場接觸時的熱應力,會使籽晶產生位錯,這些位錯必須利用縮頸生長使之消失掉。縮頸生長是將籽晶快速向上提升,使長出的籽晶的直徑縮小到一定大小(4-6mm)由於位錯線與生長軸成一個交角,只要縮頸夠長,位錯便能長出晶體表面,產生零位錯的晶體。 (4)放肩生長:長完細頸之後,須降低溫度與拉速,使得晶體的直徑漸漸增大到所需的大小。 (5)等徑生長:長完細頸和肩部之後,借著拉速與溫度的不斷調整,可使晶棒直徑維持在正負2mm之間,這段直徑固定的部分即稱為等徑部分。單晶矽片取自於等徑部分。 (6)尾部生長:在長完等徑部分之後,如果立刻將晶棒與液面分開,那麼熱應力將使得晶棒出現位錯與滑移線。於是為了避免此問題的發生,必須將晶棒的直徑慢慢縮小,直到成一尖點而與液面分開。這一過程稱之為尾部生長。長完的晶棒被升至上爐室冷卻一段時間後取出,即完成一次生長周期。

❺ 單晶矽詳細資料大全

矽的單晶體。具有基本完整的點陣結構的晶體。不同的方向具有不同的性質,是一種良好的半導材料。純度要求達到99.9999%,甚至達到99.9999999%以上。用於製造半導體器件、太陽能電池等。用高純度的多晶矽在單晶爐內拉制而成。

基本介紹

基本概念,具體介紹,發展現狀,半導體,物理特性,主要用途,研究趨勢,概述,微型化,國際化,集團化,矽基材料,製造技術升級,加工工藝,市場發展,相關區別,單晶矽制備與模擬,

基本概念

單晶矽是一種比較活潑的非金屬元素,是晶體材料的重要組成部分,處於新材料發展的前沿。其主要用途是用作半導體材料和利用太陽能光伏發電、供熱等。由於太陽能具有清潔、環保、方便等諸多優勢,近三十年來,太陽能利用技術在研究開發、商業化生產、市場開拓方面都獲得了長足發展,成為世界快速、穩定發展的新興產業之一。 單晶矽可以用於二極體級、整流器件級、電路級以及太陽能電池級單晶產品的生產和深加工製造,其後續產品積體電路和半導體分離器件已廣泛套用於各個領域,在軍事電子設備中也佔有重要地位。 在光伏技術和微小型半導體逆變器技術飛速發展的今天,利用矽單晶所生產的太陽能電池可以直接把太陽能轉化為光能,實現了邁向綠色能源革命的開始。北京2008年奧運會將把「綠色奧運」做為重要展示面向全世界展現,單晶矽的利用在其中將是非常重要的一環。現在,國外的太陽能光伏電站已經到了理論成熟階段,正在向實際套用階段過渡,太陽能矽單晶的利用將是普及到全世界范圍,市場需求量不言而喻。

具體介紹

我們的生活中處處可見「矽」的身影和作用,晶體矽太陽能電池是近15年來形成產業化最快的。 單晶矽,英文,Monocrystallinesilicon。是矽的單晶體。具有基本完整的點陣結構的晶體。不同的方向具有不同的性質,是一種良好的半導材料。純度要求達到99.9999%,甚至達到99.9999999%以上。用於製造半導體器件、太陽能電池等。用高純度的多晶矽在單晶爐內拉制而成。 用途:單晶矽具有金剛石晶格,晶體硬而脆,具有金屬光澤,能導電,但導電率不及金屬,且隨著溫度升高而增加,具有半導體性質。單晶矽是重要的半導體材料。在單晶矽中摻入微量的第IIIA族元素,形成P型半導體,摻入微量的第VA族元素,形成N型,N型和P型半導體結合在一起,就可做成太陽能電池,將輻射能轉變為電能。 單晶矽是製造半導體矽器件的原料,用於制大功率整流器、大功率電晶體、二極體、開關器件等。在開發能源方面是一種很有前途的材料。 單晶矽按晶體生長方法的不同,分為直拉法(CZ)、區熔法(FZ)和外延法。直拉法、區熔法生長單晶矽棒材,外延法生長單晶矽薄膜。直拉法生長的單晶矽主要用於半導體積體電路、二極體、外延片襯底、太陽能電池。

發展現狀

單晶矽建設項目具有巨大的市場和廣闊的發展空間。在地殼中含量達25.8%的矽元素,為單晶矽的生產提供了取之不盡的源泉。 各種晶體材料,特別是以單晶矽為代表的高科技附加值材料及其相關高技術產業的發展,成為當代信息技術產業的支柱,並使信息產業成為全球經濟發展中增長最快的先導產業。單晶矽作為一種極具潛能,亟待開發利用的高科技資源,正引起越來越多的關注和重視。 與此同時,鑒於常規能源供給的有限性和環保壓力的增加,世界上許多國家正掀起開發利用太陽能的熱潮並成為各國制定可持續發展戰略的重要內容。 在跨入21世紀門檻後,世界大多數國家踴躍參與以至在全球范圍掀起了太陽能開發利用的「綠色能源熱」,各國相繼研發太陽能光伏系統,把太陽能發電終端,所產生的電能輸送到電網,用電網使用。一個廣泛的大規模的利用太陽能的時代正在來臨,太陽能級單晶矽產品也將因此受世人矚目。

半導體

非晶矽是一種直接能帶半導體,它的結構內部有許多所謂的「懸鍵」,也就是沒有和周圍的矽原子成鍵的電子,這些電子在電場作用下就可以產生電流,並不需要聲子的幫助,因而非晶矽可以做得很薄,還有製作成本低的優點.

物理特性

矽是地球上儲藏最豐富的材料之一,從19世紀科學家們發現了晶體矽的半導體特性後,它幾乎改變了一切,甚至人類的思維。直到上世紀60年代開始,矽材料就取代了原有鍺材料。矽材料――因其具有耐高溫和抗輻射性能較好,特別適宜製作大功率器件的特性而成為套用最多的一種半導體材料,積體電路半導體器件大多數是用矽材料製造的。 熔融的單質矽在凝固時矽原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則這些晶粒平行結合起來便結晶成單晶矽。單晶矽具有準金屬的物理性質,有較弱的導電性,其電導率隨溫度的升高而增加,有顯著的半導電性。超純的單晶矽是本徵半導體。在超純單晶矽中摻入微量的ⅢA族元素,如硼可提高其導電的程度,而形成p型矽半導體;如摻入微量的ⅤA族元素,如磷或砷也可提高導電程度,形成n型矽半導體。 單晶矽

主要用途

單晶矽主要用於製作半導體元件。 用途: 是製造半導體矽器件的原料,用於制大功率整流器、大功率電晶體、二極體、開關器件等 熔融的單質矽在凝固時矽原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則這些晶粒平行結合起來便結晶成單晶矽。 單晶矽的製法通常是先製得多晶矽或無定形矽,然後用直拉法或懸浮區熔法從熔體中生長出棒狀單晶矽。 單晶矽棒是生產單晶矽片的原材料,隨著國內和國際市場對單晶矽片需求量的快速增加,單晶矽棒的市場需求也呈快速增長的趨勢。 單晶矽圓片按其直徑分為6英寸、8英寸、12英寸(300毫米)及18英寸(450毫米)等。直徑越大的圓片,所能刻制的積體電路越多,晶片的成本也就越低。但大尺寸晶片對材料和技術的要求也越高。單晶矽按晶體伸長方法的不同,分為直拉法(CZ)、區熔法(FZ)和外延法。直拉法、區熔法伸長單晶矽棒材,外延法伸長單晶矽薄膜。直拉法伸長的單晶矽主要用於半導體積體電路、二極體、外延片襯底、太陽能電池。晶體直徑可控制在Φ3~8英寸。區熔法單晶主要用於高壓大功率可控整流器件領域,廣泛用於大功率輸變電、電力機車、整流、變頻、機電一體化、節能燈、電視機等系列產品。晶體直徑可控制在Φ3~6英寸。外延片主要用於積體電路領域。 由於成本和性能的原因,直拉法(CZ)單晶矽材料套用最廣。在IC工業中所用的材料主要是CZ拋光片和外延片。存儲器電路通常使用CZ拋光片,因成本較低。邏輯電路一般使用價格較高的外延片,因其在IC製造中有更好的適用性並具有消除Latch-up的能力。 矽片直徑越大,技術要求越高,越有市場前景,價值也就越高。

研究趨勢

概述

日本、美國和德國是主要的矽材料生產國。中國矽材料工業與日本同時起步,但總體而言,生產技術水平仍然相對較低,而且大部分為2.5.3.4.5英寸矽錠和小直徑矽片。中國消耗的大部分積體電路及其矽片仍然依賴進口。但我國科技人員正迎頭趕上,於1998年成功地製造出了12英寸單晶矽,標志著我國單晶矽生產進入了新的發展時期。全世界單晶矽的產能為1萬噸/年,年消耗量約為6000噸~7000噸。未來幾年中,世界單晶矽材料發展將呈現以下發展趨勢:

微型化

隨著半導體材料技術的發展,對矽片的規格和質量也提出更高的要求,適合微細加工的大直徑矽片在市場中的需求比例將日益加大。矽片主流產品是200mm,逐漸向300mm過渡,研製水平達到400mm~450mm。據統計,200mm矽片的全球用量佔60%左右,150mm佔20%左右,其餘佔20%左右。Gartner發布的對矽片需求的5年預測表明,全球300mm矽片將從2000年的1.3%增加到2006年的21.1%。日、美、韓等國家都已經在1999年開始逐步擴大300mm矽片產量。據不完全統計,全球已建、在建和計畫建的300mm矽器件生產線約有40餘條,主要分布在美國和我國台灣等,僅我國台灣就有20多條生產線,其次是日、韓、新及歐洲。%P 世界半導體設備及材料協會(SEMI)的調查顯示,2004年和2005年,在所有的矽片生產設備中,投資在300mm生產線上的比例將分別為55%和62%,投資額也分別達到130.3億美元和184.1億美元,發展十分迅猛。而在1996年時,這一比重還僅僅是零。

國際化,集團化

研發及建廠成本的日漸增高,加上現有行銷與品牌的優勢,使得矽材料產業形成「大者恆大」的局面,少數集約化的大型集團公司壟斷材料市場。上世紀90年代末,日本、德國和韓國(主要是日、德兩國)資本控制的8大矽片公司的銷量佔世界矽片銷量的90%以上。根據SEMI提供的2002年世界矽材料生產商的市場份額顯示,Shisu、SUMCO、Wacker、MEMC、Komatsu等5家公司占市場總額的比重達到89%,壟斷地位已經形成。

矽基材料

隨著光電子和通信產業的發展,矽基材料成為矽材料工業發展的重要方向。矽基材料是在常規矽材料上製作的,是常規矽材料的發展和延續,其器件工藝與矽工藝相容。主要的矽基材料包括SOI(絕緣體上矽)、GeSi和應力矽。SOI技術已開始在世界上被廣泛使用,SOI材料約占整個半導體材料市場的30%左右,預計到2010年將佔到50%左右的市場。Soitec公司(世界最大的SOI生產商)的2000年~2010年SOI市場預測以及2005年各尺寸SOI矽片比重預測了產業的發展前景。

製造技術升級

半導體,晶片積體電路,設計版圖,晶片製造,工藝世界普遍採用先進的切、磨、拋和潔凈封裝工藝,使製片技術取得明顯進展。在日本,Φ200mm矽片已有50%採用線切割機進行切片,不但能提高矽片質量,而且可使切割損失減少10%。日本大型半導體廠家已經向300mm矽片轉型,並向0.13μm以下的微細化發展。另外,最新尖端技術的導入,SOI等高功能晶片的試制開發也進入批量生產階段。對此,矽片生產廠家也增加了對300mm矽片的設備投資,針對設計規則的進一步微細化,還開發了高平坦度矽片和無缺陷矽片等,並對設備進行了改進。 矽是地殼中賦存最高的固態元素,其含量為地殼的四分之一,但在自然界不存在單體矽,多呈氧化物或矽酸鹽狀態。矽的原子價主要為4價,其次為2價;在常溫下它的化學性質穩定,不溶於單一的強酸,易溶於鹼;在高溫下化學性質活潑,能與許多元素化合。 矽材料資源豐富,又是無毒的單質半導體材料,較易製作大直徑無位錯低微缺陷單晶。晶體力學性能優越,易於實現產業化,仍將成為半導體的主體材料。 多晶矽材料是以工業矽為原料經一系列的物理化學反應提純後達到一定純度的電子材料,是矽產品產業鏈中的一個極為重要的中間產品,是製造矽拋光片、太陽能電池及高純矽製品的主要原料,是信息產業和新能源產業最基礎的原材料。

加工工藝

加料—→熔化—→縮頸生長—→放肩生長—→等徑生長—→尾部生長 (1)加料:將多晶矽原料及雜質放入石英坩堝內,雜質的種類依電阻的N或P型而定。雜質種類有硼,磷,銻,砷。 (2)熔化:加完多晶矽原料於石英堝內後,長晶爐必須關閉並抽成真空後充入高純氬氣使之維持一定壓力范圍內,然後打開石墨加熱器電源,加熱至熔化溫度(1420℃)以上,將多晶矽原料熔化。 (3)縮頸生長:當矽熔體的溫度穩定之後,將籽晶慢慢浸入矽熔體中。由於籽晶與矽熔體場接觸時的熱應力,會使籽晶產生位錯,這些位錯必須利用縮頸生長使之消失掉。縮頸生長是將籽晶快速向上提升,使長出的籽晶的直徑縮小到一定大小(4-6mm)由於位錯線與生長軸成一個交角,只要縮頸夠長,位錯便能長出晶體表面,產生零位錯的晶體。 (4)放肩生長:長完細頸之後,須降低溫度與拉速,使得晶體的直徑漸漸增大到所需的大小。 (5)等徑生長:長完細頸和肩部之後,借著拉速與溫度的不斷調整,可使晶棒直徑維持在正負2mm之間,這段直徑固定的部分即稱為等徑部分。單晶矽片取自於等徑部分。 (6)尾部生長:在長完等徑部分之後,如果立刻將晶棒與液面分開,那麼熱應力將使得晶棒出現位錯與滑移線。於是為了避免此問題的發生,必須將晶棒的直徑慢慢縮小,直到成一尖點而與液面分開。這一過程稱之為尾部生長。長完的晶棒被升至上爐室冷卻一段時間後取出,即完成一次生長周期。

市場發展

2007年,中國市場上有各類矽單晶生產設備1500餘台,分布在70餘家生產企業。2007年5月24日,國家「863」計畫超大規模積體電路(IC)配套材料重大專項總體組在北京組織專家對西安理工大學和北京有色金屬研究總院承擔的「TDR-150型單晶爐(12英寸MCZ綜合系統)」完成了驗收。這標志著擁有自主智慧財產權的大尺寸積體電路與太陽能用矽單晶生長設備,在我國首次研製成功。這項產品使中國能夠開發具有自主智慧財產權的關鍵製造技術與單晶爐生產設備,填補了國內空白,初步改變了在晶體生長設備領域研發製造受制於人的局面。 矽材料市場前景廣闊,中國矽單晶的產量、銷售收入近幾年遞增較快,以中小尺寸為主的矽片生產已成為國際公認的事實,為世界和中國積體電路、半導體分立器件和光伏太陽能電池產業的發展做出了較大的貢獻。

相關區別

單晶矽和多晶矽的區別 單晶矽和多晶矽的區別是,當熔融的單質矽凝固時,矽原子以金剛石晶格排列成許多晶核,如果這些晶核長成晶面取向相同的晶粒,則形成單晶矽。如果這些晶核長成晶面取向不同的晶粒,則形成多晶矽。多晶矽與單晶矽的差異主要表現在物理性質方面。例如在力學性質、電學性質等方面,多晶矽均不如單晶矽。多晶矽可作為拉制單晶矽的原料。單晶矽可算得上是世界上最純凈的物質了,一般的半導體器件要求矽的純度六個9以上。大規模積體電路的要求更高,矽的純度必須達到九個9。人們已經能製造出純度為十二個9的單晶矽。單晶矽是電子計算機、自動控制系統等現代科學技術中不可缺少的基本材料。 高純度矽在石英中提取,以單晶矽為例,提煉要經過以下過程:石英砂一冶金級矽一提純和精煉一沉積多晶矽錠一單晶矽一矽片切割。 冶金級矽的提煉並不難。它的制備主要是在電弧爐中用碳還原石英砂而成。這樣被還原出來的矽的純度約98-99%,但半導體工業用矽還必須進行高度提純(電子級多晶矽純度要求11個9,太陽能電池級只要求6個9)。而在提純過程中,有一項「三氯氫矽還原法(西門子法)」的關鍵技術我國還沒有掌握,由於沒有這項技術,我國在提煉過程中70%以上的多晶矽都通過氯氣排放了,不僅提煉成本高,而且環境污染非常嚴重。我國每年都從石英石中提取大量的工業矽,以1美元/公斤的價格出口到德國、美國和日本等國,而這些國家把工業矽加工成高純度的晶體矽材料,以46-80美元/公斤的價格賣給我國的太陽能企業。 得到高純度的多晶矽後,還要在單晶爐中熔煉成單晶矽,以後切片後供積體電路製造等用。 單晶矽 , 多晶矽及非晶矽太陽能電池的區別 單晶矽太陽電池: 單晶矽太陽電池是當前開發得最快的一種太陽電池,它的構成和生產工藝已定型,產品已廣泛用於宇宙空間和地面設施。這種太陽電池以高純的單晶矽棒為原料,純度要求99.999%。為了降低生產成本,現在地面套用的太陽電池等採用太陽能級的單晶矽棒,材料性能指標有所放寬。有的也可使用半導體器件加工的頭尾料和廢次單晶矽材料,經過復拉製成太陽電池專用的單晶矽棒。將單晶矽棒切成片,一般片厚約0.3毫米。矽片經過成形、拋磨、清洗等工序,製成待加工的原料矽片。加工太陽電池片,首先要在矽片上摻雜和擴散,一般摻雜物為微量的硼、磷、銻等。擴散是在石英管製成的高溫擴散爐中進行。這樣就在矽片上形成P/FONT>N結。然後採用絲網印刷法,將配好的銀漿印在矽片上做成柵線,經過燒結,同時製成背電極,並在有柵線的面塗覆減反射源,以防大量的光子被光滑的矽片表面反射掉,至此,單晶矽太陽電池的單體片就製成了。單體片經過抽查檢驗,即可按所需要的規格組裝成太陽電池組件(太陽電池板),用串聯和並聯的方法構成一定的輸出電壓和電流,最後用框架和封裝材料進行封裝。用戶根據系統設計,可將太陽電池組件組成各種大小不同的太陽電池方陣,亦稱太陽電池陣列。目前單晶矽太陽電池的光電轉換效率為15%左右,實驗室成果也有20%以上的。用於宇宙空間站的還有高達50%以上的太陽能電池板。 多晶矽太陽電池: 單晶矽太陽電池的生產需要消耗大量的高純矽材料,而製造這些材料工藝復雜,電耗很大,在太陽電池生產總成本中己超二分之一,加之拉制的單晶矽棒呈圓柱狀,切片製作太陽電池也是圓片,組成太陽能組件平面利用率低。因此,80年代以來,歐美一些國家投入了多晶矽太陽電池的研製。目前太陽電池使用的多晶矽材料,多半是含有大量單晶顆粒的集合體,或用廢次單晶矽料和冶金級矽材料熔化澆鑄而成。其工藝過程是選擇電阻率為100~300歐姆·厘米的多晶塊料或單晶矽頭尾料,經破碎,用1:5的氫氟酸和硝酸混合液進行適當的腐蝕,然後用去離子水沖洗呈中性,並烘乾。用石英坩堝裝好多晶矽料,加人適量硼矽,放人澆鑄爐,在真空狀態中加熱熔化。熔化後應保溫約20分鍾,然後注入石墨鑄模中,待慢慢凝固冷卻後,即得多晶矽錠。這種矽錠可鑄成立方體,以便切片加工成方形太陽電池片,可提高材質利用率和方便組裝。多晶矽太陽電池的製作工藝與單晶矽太陽電池差不多,其光電轉換效率約12%左右,稍低於單晶矽太陽電池,但是材料製造簡便,節約電耗,總的生產成本較低,因此得到大量發展。隨著技術得提高,目前多晶矽的轉換效率也可以達到14%左右。 非晶矽太陽電池: 非晶矽太陽電池是1976年有出現的新型薄膜式太陽電池,它與單晶矽和多晶矽太陽電池的製作方法完全不同,矽材料消耗很少,電耗更低,非常吸引人。製造非晶矽太陽電池的方法有多種,最常見的是輝光放電法,還有反應濺射法、化學氣相沉積法、電子束蒸發法和熱分解矽烷法等。輝光放電法是將一石英容器抽成真空,充入氫氣或氬氣稀釋的矽烷,用射頻電源加熱,使矽烷電離,形成電漿。非晶矽膜就沉積在被加熱的襯底上。若矽烷中摻人適量的氫化磷或氫化硼,即可得到N型或P型的非晶矽膜。襯底材料一般用玻璃或不銹鋼板。這種制備非晶矽薄膜的工藝,主要取決於嚴格控制氣壓、流速和射頻功率,對襯底的溫度也很重要。非晶矽太陽電池的結構有各種不同,其中有一種較好的結構叫PiN電池,它是在襯底上先沉積一層摻磷的N型非晶矽,再沉積一層未摻雜的i層,然後再沉積一層摻硼的P型非晶矽,最後用電子束蒸發一層減反射膜,並蒸鍍銀電極。此種製作工藝,可以採用一連串沉積室,在生產中構成連續程式,以實現大批量生產。同時,非晶矽太陽電池很薄,可以製成疊層式,或採用積體電路的方法製造,在一個平面上,用適當的掩模工藝,一次製作多個串聯電池,以獲得較高的電壓。因為普通晶體矽太陽電池單個只有0.5伏左右的電壓,現在日本生產的非晶矽串聯太陽電池可達2.4伏。目前非晶矽太陽電池存在的問題是光電轉換效率偏低,國際先進水平為10%左右,且不夠穩定,常有轉換效率衰降的現象,所以尚未大量用於作大型太陽能電源,而多半用於弱光電源,如袖珍式電子計算器、電子鍾表及復印機等方面。估計效率衰降問題克服後,非晶矽太陽電池將促進太陽能利用的大發展,因為它成本低,重量輕,套用更為方便,它可以與房屋的屋面結合構成住戶的獨立電源。 在猛烈陽光下,單晶體式太陽能電池板較非晶體式能夠轉化多一倍以上的太陽能為電能,但可惜單晶體式的價格比非晶體式的昂貴兩三倍以上,而且在陰天的情況下非晶體式反而與晶體式能夠收集到差不多一樣多的太陽能。

單晶矽制備與模擬

主要有兩種方法:直拉法(Cz法)、區熔法(FZ法); 1)直拉法 其優點是晶體被拉出液面不與器壁接觸,不受容器限制,因此晶體中應力小,同時又能防止器壁沾污或接觸所可能引起的雜亂晶核而形成多晶。此法製成的單晶完整性好,直徑和長度都可以很大,生長速率也高。所用坩堝必須由不污染熔體的材料製成。因此,一些化學性活潑或熔點極高的材料,由於沒有合適的坩堝,而不能用此法制備單晶體,而要改用區熔法晶體生長或其他方法。 2)區熔法 區熔法可用於制備單晶和提純材料,還可得到均勻的雜質分布。這種技術可用於生產純度很高的半導體、金屬、合金、無機和有機化合物晶體。在區熔法制備矽單晶中,往往是將區熔提純與制備單晶結合在一起,能生長出質量較好的中高阻矽單晶。區熔單晶爐主要包括:雙層水冷爐室、長方形鋼化玻璃觀察窗、上軸(夾多晶棒)、下軸(安放籽晶)、導軌、機械傳送裝置、基座、高頻發生器和高頻加熱線圈、系統控制櫃真空系統及氣體供給控制系統等組成。 可以看出,制備單晶矽的工藝要求非常苛刻,包括設備、溫度控制、轉速等各種影響因素。因此在前期必須做好設備設計如單晶爐和溫控包括爐內的熱場、流場,以及缺陷預測。一般來說,前期的設計、最佳化和預測並不能完全依靠高成本的實驗來實現。可以通過專業的計算機數值模擬工具來實現晶體生長數值模擬,如FEMAG的FEMAG/CZ模組能能對直拉法(Cz法)進行模擬、FEMAG/FZ模組能對區熔法(FZ法)模擬,還有CGSIM等,以達到對單晶矽制備工藝的預測。

❻ [串口通訊]關於發送指令時的 CHECKSUM,幫忙解析下通訊協議。

我的最初理解:
雙位元組求和就是把49 48看成一個雙字,49是高8位,48是低8位。值應該是49*256 + 48 = 12592.
這樣的和是144402。但是最後取摸再取反的結果還是對不上。

但是我仔細看了一下你的計算結果。每個位元組直接相加,和是1092,取摸後1092,取反按位取反,或者這么算也可以:65536-1092=64444. 即FB BC.

你已經對了。呵呵

===============================================================
幾個容易混淆的運算:
取反:所有位按位取反。比如:0000 0101 取反變成 1111 1010。
取補碼:符號位不變,其餘位取反加一。比如-5的原碼1000 0101 取補碼變成 1111 1011。
取補(有的書上叫「取相反數」):連同符號位在內,取反加一。比如-5的補碼1111 1011取相反數,得到0000 0101,即5。

「取補碼」和「取補」一定是針對帶符號數的。「取補碼」是不改變數值,用補碼形式表示這個數;而「取補」是數值改變了,就是取原數相反數的補碼。

其實,「取補」就相當於「取反」後加1。

❼ 什麼是 soa,soc,sod,soe,soi 和 sose

1-5.EDCAD;6-10.ADDBB;11-14.D,C,C,ABD;2.SOA:(面向服務體系結構)是一個分布式軟體;SOD:(面向服務開發)是基於SOA概念和SOC;SOE:(面向服務企業)是一個通過SOA系統實現;SOI:(面向服務的基礎設施)①支持SOC的硬體;SOSE:(面向服務的系統工程)是系統工程、軟體;3.OOC范型和SOC范型在需求分析

1-5.EDCAD
6-10.ADDBB
11-14.D, C, C, ABD
2.SOA:(面向服務體系結構)是一個分布式軟體體系結構,它是通過鬆散耦合的服務構建的系統軟體這些服務通過標准介面,例如WSDL(Web服務描述語言)介面,以及標準的消息交換協議,例如SOAP(簡單對象訪問協議)互相通信。這些服務是自治和獨立於平台的。它們駐留在不同的計算機上並且為了實現期望的目標和最終結果使用彼此的服務。 SOC: (面向服務計算)是基於SOA模型的計算范型。它包括三個並發進程中表示的計算概念、原理以及方法。這三個並發進程是服務開發、服務發布以及使用發開出的服務進行應用組合。
SOD:(面向服務開發)是基於SOA概念和SOC范型的整個軟體開發周期,包括需求、問題定義、概念模型、規格說明、體系結構設計、組合、服務發現、服務實現、測試、評估、部署和維護,這些活動將實現可運行的軟體。
SOE:(面向服務企業)是一個通過SOA系統實現的一個並能外向展示業務過程的一系列技術。SOE為管理採用SOA技術的業務過程提供了一個框架。
SOI:(面向服務的基礎設施)①支持SOC的硬體和軟體。②一個硬體系統可以像軟體系統那樣按面向服務的方式組織起來。
SOSE:(面向服務的系統工程)是系統工程、軟體工程和面向服務計算的一個組合,它建議在系統工程原則下開發面向服務的軟體和硬體,這些原則包括需求、建模、規格說明、驗證、設計、實現、確認、運行以及維護。
3.OOC范型和SOC范型在需求分析上有什麼區別。
面向對象的需求分析基於面向對象的思想,以用例模型為基礎。開發人員在獲取需求的基礎上,建立目標系統的用例模型。所謂用例是指系統中的一個功能單元,可以描述為操作者與系統之間的一次交互。用例常被用來收集用戶的需求。
(P5)
(1) SOC強調的是分布式服務(包含可能的服務數據)而不是分布式對象。
(2) SOC明確區分開發責任、軟體提供服務、服務中介,通過服務消費者構建應用。
(3) SOC支持庫(公共和私有)中重用服務的匹配、發現和調用(遠程或本地)
(4) 在SOC中,服務通過獨立於平台和供應商的開發標准和協議通信。
4.把服務提供者和應用構建者分開的主要優點是什麼?
SOC這種范型把開發者分成獨立但相互協作的三方:應用構建者、服務中介、服務提供者。服務提供者的職責是開發具有標准介面的軟體服務。
服務中介發布或市場化可用服務。
應用構建者通過服務中介發現可用的服務並使用服務開發新的應用,通過發現和組合而不是傳統的設計和編碼來開發應用。
換言之,應用開發是三方協作的結果。服務和平台無關並且鬆散耦合,因此在組合服務時,可以使用不同提供者開發的服務。
因此,把服務提供者和應用構建者分開的主要優點是:這種面向服務的體系機構給應用構建者最大的靈活性去選擇最好的服務中介以及服務。
5.SOSE的主要技術是什麼?對於每一項技術,用一兩句話描述它的目的。

6.比較傳統軟體開發過程和面向服務軟體開發過程。描述開發過程中的每一步的目的、職責和功能。
在傳統的軟體開發過程中,整個過程往往由開發者所在組織管理。面向服務軟體的開發分為三個平行的過程:服務開發,服務發布到服務中介,應用構建(組合)。

①一個面向對象(OOC)應用由同一個團隊使用相同的語言開發,而一個面向服務(SOC)應用是通過已開發好的服務創建,這些開發好的服務由獨立的服務供應商開發。應用構建者通過服務目錄和服務庫,查詢所需服務。如果服務無法找到,應用者可以發布需求或自己開發。服務提供者則根據自己的需求分析或查詢目錄中發布的需求來開發服務。

閱讀全文

與銷售soi數據是什麼意思相關的資料

熱點內容
excel表格插入圖片後文件很大 瀏覽:208
找不到手雷文件夾 瀏覽:26
dnf劇情視頻在哪個文件夾 瀏覽:252
遠程桌面可以復制文件 瀏覽:752
win10星際爭霸聯網嗎 瀏覽:212
windowsgit配置文件 瀏覽:508
c編程跟c編程有什麼區別 瀏覽:119
6M網路怎麼樣 瀏覽:473
word文檔如何另外保存文件 瀏覽:176
creo20國標配置文件下載 瀏覽:172
win10自動散熱 瀏覽:664
xp系統用戶桌面文件交換 瀏覽:858
把蘋果密碼改了怎麼辦 瀏覽:209
護照用微信怎麼繳費 瀏覽:526
matlab生成dll文件 瀏覽:836
小米平板2win10恢復出廠設置 瀏覽:6
東方財富app怎麼增加指標 瀏覽:985
ajax獲取資料庫 瀏覽:855
中國移動adsl上網賬號密碼 瀏覽:198
win10怎麼添加畫圖3d文件 瀏覽:921

友情鏈接