❶ 大數據重要的意義
什麼是大數據,大數據的意義是什麼?
大數據的意思就是數據要在線,這樣你的數據才能有價值,用於分析或者處理。大量的數據在線後的分析才有意義。可能得到你想要的數據,電影里好多這種素材,比如人臉的搜索,人員的定位,人流的分析,運行的狀態等等都有使用。現在做這些應用的也很多,只是落地的還稍微少一點。還是為了創造價值。
什麼是大數據,大數據為什麼重要,如何應用大數據
空談數據沒有太大意義,要看數據的主要方向是什麼。1、從技術應用方向來說,我們的數據主要做傳播指導;2、數據研究過程中我們的數據主要來自互聯網的公共數據(媒體數據、自媒體數據、企業自營的媒體數據),通過數據解決用戶洞察問題、傳播效果問題、競爭情報獲取的問題,3、我們主要是在大數據的維度上的研究上,我們的維度更多更寬廣,維度的多少決定了效果。
大數據的意義
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。 阿里巴巴創辦人馬雲來台演講中就提到,未來的時代將不是IT時代,而是DT的時代,DT就是Data Technology數據科技,顯示大數據對於阿里巴巴集團來說舉足輕重。 有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。 大數據的價值體現在以下幾個方面:1)對大量消費者提 *** 品或服務的企業可以利用大數據進行精準營銷2) 做小而美模式的中長尾企業可以利用大數據做服務轉型3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值不過,「大數據」在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:「就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。」這確實是需要警惕的。在這個快速發展的智能硬體時代,困擾應用開發者的一個重要問題就是如何在功率、覆蓋范圍、傳輸速率和成本之間找到那個微妙的平衡點。企業組織利用相關數據和分析可以幫助它們降低成本、提高效率、開發新產品、做出更明智的業務決策等等。例如,通過結合大數據和高性能的分析,下面這些對企業有益的情況都可能會發生:1)及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。2)為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。3)分析所有SKU,以利潤最大化為目標來定價和清理庫存。4)根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。5)從大量客戶中快速識別出金牌客戶。6)使用點擊流分析和數據挖掘來規避欺詐行為。
什麼是大數據,大數據為什麼重要,如何應用大數據
讀讀這本書吧。。
駕馭大數據 駕馭未來
大數據的流行,也引發了圖書業大數據出版題材的升溫。去年出版的《大數據》(塗子沛著)是從數據治國的角度,深入淺出的敘述了美國 *** 的管理之道,細密入微的闡釋了黃仁宇先生」資本主義數目式管理「的精髓。最近人民郵電出版社又組織翻譯出版了美國Bill Franks的《駕馭大數據》一書。
該書的整體思路,簡單來說,就是敘述了一個」數據收集-知識形成-智慧行動「的過程,不僅回答了」what「,也指明了」how「,提供了具體的技術、流程、方法,甚至團隊建設,文化創新。作者首先在第一章分析了大數據的興起,介紹了大數據的概念、內容,價值,並分析了大數據的來源,也探討了在汽車保險、電力、零售行業的應用場景;在第二章介紹了駕馭大數據的技術、流程、方法,第三部分則介紹了駕馭大數據的能力框架,包括了如何進行優質分析,如何成為優秀的分析師,如何打造高績效團隊,最後則提出了企業創新文化的重要意義。整本書高屋建瓴、內容恣意汪洋、酣暢淋漓,結構上百川歸海,一氣呵成,總的來說,體系完備、內容繁豐、見識獨具、實用性強,非常值得推薦,是不可多得的好書!
大數據重要以及不重要的一面
與大多數人的想當然的看法不同,作者認為「大數據」中的」大」和「數據」都不重要,重要的是數據能帶來的價值以及如何駕馭這些大數據,甚至與傳統的結構化數據和教科書上的認知不同,「大數據可能是凌亂而醜陋的」並且大數據也會帶來「被大數據壓得不看重負,從而停止不前」和大數據處理「成本增長速度會讓企業措手不及」的風險,所以,作者才認為駕馭大數據,做到游刃有餘、從容自若、實現「被管理的創新」最為重要。在處理數據時,作者指出「很多大數據其實並不重要」,企業要做好大數據工作,關鍵是能做到如何沙裡淘金,並與各種數據進行結合或混搭,進而發現其中的價值。這也是作者一再強調的「新數據每一次都會勝過新的工具和方法」的原因所在。
網路數據與電子商務
對顧客行為的挖掘早已不是什麼熱門概念,然而作者認為從更深層次的角度看,下一步客戶意圖和決策過程的分析才是具有價值的金礦,即「關於購買商品的想法以及影響他們購買決策的關鍵因素是什麼」。針對電子商務這一顧客行為的數據挖掘,作者不是泛泛而談,而是獨具慧眼的從購買路徑、偏好、行為、反饋、流失模型、響應模型、顧客分類、評估廣告效果等方面提供了非常有吸引力的建議。我認為,《駕馭大數據》的作者提出的網路數據作為大數據的「原始數據」其實也蘊含著另外一重意蘊,即只有電子商務才具備與顧客進行深入的互動,也才具有了收集這些數據的條件,從這點看,直接面向終端的企業如果不電子商務化,談論大數據不是一件很可笑的事?當然這種用戶購買路徑的行為分析,也不是新鮮的事,在昂德希爾《顧客為什麼購買:新時代的零售業聖經》一書中披露了商場僱傭大量顧問,暗中尾隨顧客,用攝影機或充滿密語的卡片,完整真實的記錄顧客從進入到離開商場的每一個動作,並進行深入的總結和分析,進而改進貨物的陳列位置、廣告的用詞和放置場所等,都與電子商務時代的客戶行為挖掘具有異曲同工之妙,當然電子商務時代,數據分析的成本更加低廉,也更加容易獲取那些非直接觀察可以收集的數據(如信用記錄)。
一些有價值的應用場景
大數據的價值需要藉助於一些具體的應用模式和場景才能得到集中體現,電子商務是一個案例,同時,作者也提到了車載信息「最初作為一種工具出現的,它可以幫助車主和公司獲得更好的、更有效的車輛保險」,然而它所能夠提供的時速、路段、開始和結束時間等信息,對改善城市交通擁堵具有意料之外的價值。基於GPS技術和手......
大數據的到來對我國經濟發展有什麼意義
大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
有人把數據比喻為蘊 藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的價值體現在以下幾個方面:
1)對大量消費者提 *** 品或服務的企業可以利用大數據進行精準營銷;
2) 做小而美模式的中長尾企業可以利用大數據做服務轉型;
3) 面臨互聯網壓力之下必須轉型的傳統企業需要與時俱進充分利用大數據的價值。
互聯網大數據有哪些好處多
大數據是什麼?為什麼要使用大數據?大數據有哪些流行的工具?本文將為您解答。
現在,大數據是一個被濫用的流行詞,但是它真正的價值甚至是一個小企業都可以實現。
通過整合不同來源的數據,比如:網站分析、社交數據、用戶、本地數據,大數據可以幫助你了解的全面的情況。大數據分析正在變的越來越容易,成本越來越低,而且相比以前能更容易的加速對業務的理解。
大數據通常與企業商業智能(BI)和數據倉庫有共同的特點:高成本、高難度、高風險。
以前的商業智能和數據倉庫的舉措是失敗的,因為他們需要花費數月甚至是數年的時間才能讓股東得到可以量化的收益。然而事實並非如此,實際上你可以在當天就獲得真實的意圖,至少是在數周內。
為什麼使用大數據?
數據在呈爆炸式的速度增長。其中一個顯著的例子來自於我們的客戶,他們大多使用谷歌分析。當他們分析一個長時間段數據或者使用高級細分時,谷歌分析的數據開始進行抽樣,這會使得數據的真正價值被隱藏。
現在我們的工具Clickstreamr可以收集點擊級的巨量的數據,因此你可以追蹤用戶在他們訪問路徑(或者訪問流)中的每一個點擊行為。另外,如果你加入一些其他的數據源,他就真正的變成了大數據。
更完整的解析
大數據大數據並不僅僅是大量的數據。他的真正意義在於根據相關的數據背景,來完成一個更加完整的報告。舉個例子,如果你把你的CRM數據加入到你網站的數據分析當中,你可能就會找到你早就知道的高價值用戶群。她們是女性,住在西海岸,年齡30至45,花費了大量的時間在Pinterest和Facebook。
現在你已經被這些知識武裝起來了,那就是如何有效的設定和獲取更多高價值的用戶。
類似Tableau和谷歌這樣的公司給用戶帶來了更加強大的數據分析工具(比如:大數據分析)。Tableau提供了一個可視化分析軟體的解決方案,每年的價格是2000美金。谷歌提供了BigQuery工具,他可以允許你在數分鍾內分析你的數據,並且可以滿足任何的預算要求。
大數據是什麼?
由於大數據往往是一個混合結構、半結構化和非結構化的數據,因此大數據變得難以關聯、處理和管理,特別是和傳統的關系型資料庫。當談到大數據的時候,高德納公司(Gartner Group,成立於1979年,它是第一家信息技術研究和分析的公司)的分析師把它分成個3個V加以區分:
量級(Volume):大量的數據
速率(Velocity):高速的數據產出
多樣性(Variety):多種類型和來源的數據。
正如我們所說,大部分的企業每一天在不同的領域都在產出大量的數據。這里給出一組樣本數據的來源及類型,他們都是企業在做大數據分析時潛在的收集和聚合數據的方式:
網站分析
移動分析
設備/感測器數據
用戶數據(CRM)
統一的企業數據(ERP)
社交數據
會計系統
銷售點系統
銷售體系
消費者數據(例如益佰利的數據、鄧氏商聯的數據或者普查數據)
公司內部電子表格
公司內部資料庫
位置數據(空間位置、GPS定位的位置)
天氣數據
但是針對無限的數據來源,不要去做太多事情。把焦點放在相關的數據上,並且從小的數據開始。通常以2-3種數據源開始是一個好的建議,比如網站數據、消費者數據和CRM,這些會讓你得到一些有價值的見解。在你最初進入大數據分析之後,你可以開始添加數據源來促進你的分析,並且公布更多的分析結果。
想要獲得更多關於大數據細節的知識,可以去查閱 *** 的大數據詞條。
大數據的好處
大數據提供了一種識別和利用高價值機會的前瞻性方法。如果你想,那麼大數據可以提供如......
什麼是「大數據」的真正含義
大講台大數據 在線培訓為你解答:大數據(bigdata),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** ,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。
最小的基本單位是bit,按順序給出所有單位:bit、Byte、KB、MB、GB、TB、PB、EB、ZB、YB、BB、NB、DB。
大數據給人們帶來的好處
對一般用戶來說意義不大,對於葯店、葯廠有必要了解用戶的需求,但是如果真的利用起來能給用戶帶來選葯的便利還是很有用的。比如當你生病不知道選哪種葯好的時候,根據循證醫學原理能幫你找到合適的葯這樣也算是帶來了好處。
工業大數據對中國有什麼意義
工業大數據可以推動大數據在工業研發設計、生產製造、經營管理、市場營銷、售後服務等產品全生命周期、產業鏈全流程各環節的應用,分析感知用戶需求,提升產品附加價值,打造智能工廠,推動製造模式變革和工業轉型升級。
國家下一步將利用大數據推動信息化和工業化深度融合,研究推動大數據在研發設計、生產製造、經營管理、市場營銷、售後服務等產業鏈各環節的應用,研發面向不同行業、不同環節的大數據分析應用平台,選擇典型企業、重點行業、重點地區開展工業企業大數據應用項目試點,積極推動製造業網路化和智能化。在應用項目試點過程中,需要開展應用示範安全可靠性方面的測評,利用大數據測試技術、工業電子系統測試技術和工業雲測試技術,保障工業企業大數據應用項目試點的穩步推進,中國軟體評測中心在相關方面有較深厚的技術積累和案例積累,可以為我國工業大數據發展保駕護航。
大數據的特點主要有什麼?
大數據(big data),是指在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據 *** 。
大數據的特點:
1、容量(Volume):數據的大小決定所考慮的數據的價值的和潛在的信息;
2、種類(Variety):數據類型的多樣性;
3、速度(Velocity):指獲得數據的速度;
4、可變性(Variability):妨礙了處理和有效地管理數據的過程。
5、真實性(Veracity):數據的質量
6、復雜性(plexity):數據量巨大,來源多渠道
大數據的意義:
現在的社會是一個高速發展的社會,科技發達,信息流通,人們之間的交流越來越密切,生活也越來越方便,大數據就是這個高科技時代的產物。
有人把數據比喻為蘊藏能量的煤礦。煤炭按照性質有焦煤、無煙煤、肥煤、貧煤等分類,而露天煤礦、深山煤礦的挖掘成本又不一樣。與此類似,大數據並不在「大」,而在於「有用」。價值含量、挖掘成本比數量更為重要。對於很多行業而言,如何利用這些大規模數據是成為贏得競爭的關鍵。
大數據的缺陷:
不過,「大數據」在經濟發展中的巨大意義並不代表其能取代一切對於社會問題的理性思考,科學發展的邏輯不能被湮沒在海量數據中。著名經濟學家路德維希·馮·米塞斯曾提醒過:「就今日言,有很多人忙碌於資料之無益累積,以致對問題之說明與解決,喪失了其對特殊的經濟意義的了解。」 這確實是需要警惕的。
❷ 大數據時代催生思維變革
大數據時代催生思維變革
英國教授維克托·邁爾—舍恩伯格的《大數據時代:生活、工作與思維的大變革》一書的問世,讓大數據引發全球熱議。當許多人還沒徹底弄明白IT是什麼的時候,DT時代已經來了。「DT時代」方興未艾,各行各業都在往這塊寶藏進軍,卻沒有一個有力的組織,沒有規范行為的游戲規則,因「大數據」理論引發的激辯和質疑也不絕絡繹:數據交易規則如何制定、數據安全如何保障、數據倫理底線在哪兒?產業發展離不開理論支撐,當別人還在思索「大數據是什麼」,貴陽已經在探索「大數據怎麼做」。對於大數據時代的貴陽探索,互聯網行業的大佬們有自己的看法。阿里巴巴集團董事局主席馬雲表示,雲計算、大數據現在已成為科技發展的代名詞,數據是驅動商業向前發展的核心。在數據戰略重點實驗室主任連玉明教授看來,貴陽首家大數據戰略重點實驗室的建立對於大數據產業發展意義重大。「很多地方都在談數據經濟、雲計算產業,但貴州下如此大的決心,跟阿里巴巴集團一起干、堅持干、務實干,一起探索未來的勇氣和魄力值得敬佩。」馬雲說。馬雲認為,數據是驅動商業向前發展的核心,更是人類社會的未來。以控制為出發點的IT時代正在走向以激活生產力為目的的DT(數據技術)時代已經成為一種趨勢。從組織內部角度來看,DT會改變一個組織的溝通、生產、消費方式,驅動它的架構、文化的變革;從跨組織角度來看,由於DT時代的「利他」思維取代IT時代的「利我」思維,組織與組織的合作將遠大於競爭,跨組織的協同會頻繁發生,而且將變得越來越敏捷,越來越高效。這不僅僅是技術的升級,更是思想意識的巨大變革。阿里巴巴集團於2014年4月17日與貴州省政府簽訂全面戰略合作協議,項目之一「雲上貴州」已取得一些成績,成為政府運營雲計算和大數據的最佳實踐。政府作為一個組織,生來就是一個極為重要的數據生產和交換平台。數據本身並不能創造價值,只有讓更多的人對其進行分析和運用,才能成倍地創造價值。受摩爾定律驅動的信息技術不斷廉價化、互聯網的普及以及其延伸所帶來的信息技術無處不在的應用,催生大數據時代到來,進而使信息化進入以數據廣泛關聯、跨域融合和深度應用為特徵的智慧化階段。在當前的大數據熱潮中,相關書籍、文章可謂車載斗量,共識與爭鳴共存。《塊數據——大數據時代真正到來的標志》一書卻從塊數據這個新穎的視角來看待大數據及其未來的發展,頗有創意,發人思考。梅宏認為,「條數據」和「塊數據」的劃分,師法自然,抓住了數據的本質。從其定義和靜態角度看,「條」是一個領域或行業內縱深數據的集合,可以反映本領域或行業的規律,無疑具有很大價值。「塊」是一個物理區域或行政區劃內眾多「條數據」的集合,更能反映現實世界和社會的極度復雜性,其綜合應用無疑會帶來數據價值的顯著提升。從動態的視角看,重視「塊數據」是為了避免僅僅關注「條數據」而可能帶來的新的數據孤島現象,更是體現了一種對信息化建設的發展性思維。「摩爾定律是指數社會的基因,大數據是指數社會的蛋白質。」對於這句話,吳甘沙認為,基因決定生命特徵,是初始點,而蛋白質是生命的物質基礎,是生命活動的主要承擔者。而大數據就像生命體質中的蛋白質一樣,是當前社會生命活動的主要承擔者。對於數據開放,吳甘沙認為,不涉及個體的公共數據和科研數據都可以開放。涉及個體的數據要明確數據權屬、隱私界定,獲得擁有者授權,採用技術匿名化,而後再考慮開放。而目前英美開放的主要特點是原始數據(而非提煉數據)。在吳甘沙眼裡,貴陽全城Wifi覆蓋採集數據的優點就是有數據發生所在地點的信息,而這是語境的一個重要因素。他同時指出,在為用戶提交免費Wifi服務時,需要明確獲得用戶對數據授權。對於大數據、雲計算、移動互聯網、物聯網,吳甘沙認為,這些都是不可獨立分割的。正如金融數據跟電商數據碰撞在一起,就產生了像小微貸款那樣的互聯網金融;電信數據跟政府數據碰在一起,可以產生人口統計學方面的價值,幫助城市規劃人們居住、工作、娛樂的場所;物流數據和電商數據湊一塊,可以了解各個經濟子領域的運行情況;物流數據跟金融數據放在一起,就產生了供應鏈金融等等。連玉明認為,發展大數據是人類文明發展和全球化進程的必然趨勢,也是貴陽堅守發展和生態「兩條底線」,探索「雙贏之路」的戰略選擇,為西部欠發達地區實現後發趕超找到一條新路徑,這是認識、適應和引領新常態的思維變革。面對新機遇、新挑戰、新任務,貴陽發展大數據需要洞察先機,搶占制高點,更需要研究先行和戰略引領。在這樣的背景下,大數據戰略重點實驗室的出現是必要的。連玉明指出,大數據戰略重點實驗室是一個跨學科、專業性、國際化、開放型的研究平台。實驗室將聚集國內外大數據相關專業研究者、管理者和決策者,立足全球大數據發展趨勢和中國大數據發展實踐,以大數據發展的重大理論和現實問題為主攻方向,加強大數據發展全局性、戰略性、前瞻性研究和咨詢。連玉明表示,大數據戰略重點實驗室未來的研究方向是通過對大數據發展進行全局性、戰略性、前瞻性的研究和咨詢,主要包括大數據發展趨勢研究、構建「塊數據」理論模型和應用模型、建立DT空間、研究編制和發布「大數據指數」和籌建一個「中國DT產業50人論壇」五項重點工作。數據孤島是大數據行業發展面臨的最大問題。一方面,各行業、企業和政府都在竭盡所能地採集數據、佔有數據和利用數據。另一方面,大部分數據被各個行業、企業、機構和政府封鎖起來,形成一個個「數據孤島」,無法自由流通,數據之間缺少連接。「而塊數據理論對於打通『數據孤島』意義重大。」傅志華認為,塊數據的提出,最大意義在於有了一個完整的數據源,能夠全方位地了解用戶。「如同炒菜一樣,對於廚師而言,如果菜的料不夠豐富,通過搭配不同的原料來做出好的菜品是有挑戰的。」談到數據開放,傅志華認為,數據開放與「數據孤島」是息息相關的。為解決「數據孤島」必須促進數據開放,數據開放能夠最大程度地促進數據行業的發展。「數據開放很多時候並不是技術問題,從國家層面推動數據開放意義重大。目前我國的政策法規不完善,大數據挖掘缺乏相應的立法,無法既保證共享又防止濫用,數據開放與隱私如何平衡是亟待解決的問題,要在推動數據全面開放、應用和共享的同時有效地保護公民、企業的隱私。以上是小編為大家分享的關於大數據時代催生思維變革的相關內容,更多信息可以關注環球青藤分享更多干貨
❸ 馬雲說大數據時代最重要的是做最好的自己,為什麼
最早提出「大數據」時代到來的是全球知名咨詢公司麥肯錫,麥肯錫稱:「數據,已經滲透到當今每一個行業和業務職能領域,成為重要的生產因素。人們對於海量數據的挖掘和運用,預示著新一波生產率增長和消費者盈餘浪潮的到來。」 「大數據」在物理學、生物學、環境生態學等領域以及軍事、金融、通訊等行業存在已有時日,卻因為近年來互聯網和信息行業的發展而引起人們關注。大數據作為雲計算、物聯網之後IT行業又一大顛覆性的技術革命。雲計算主要為數據資產提供了保管、訪問的場所和渠道,而數據才是真正有價值的資產。企業內部的經營交易信息、互聯網世界中的商品物流信息,互聯網世界中的人與人交互信息、位置信息等,其數量將遠遠超越現有企業IT架構和基礎設施的承載能力,實時性要求也將大大超越現有的計算能力。如何盤活這些數據資產,使其為國家治理、企業決策乃至個人生活服務,是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向
大數據搭著信息時代的快車來到了我們的面前,數據的價值逐漸為人們所重視,同時也讓數據分析師的身價倍增。而隨著大數據分析工具等大數據應用技術的出現,未來的數據分析師又將遇到怎樣的挑戰和機遇呢?
工具搶了人的飯碗?
很多大數據分析工具的設計起點非常高,定位了數據分析過程中所需要的大部分功能。很多工具的功能涵蓋了從數據前期整合、收集到挖掘、分析乃至末端的數據可視化的整個數據分析過程,功能不可謂不強大。
但如果僅憑這些就認定大數據分析工具能取代數據分析師,未免有些杞人憂天了。恰恰相反,大數據分析工具不是數據分析師的競爭者,而是協助者。工具本來就是為人服務的,數據分析師的專業素養讓其能很好的發揮大數據分析工具的性能,二者相輔相成,是友非敵。
企業的支持
雖然大數據的概念已經普及,但是很多企業還是留存有一些傳統的觀念。很多企業雖然重金聘用了數據分析師甚至是組建了數據分析師團隊,但是卻並沒有建立完善的數據價值體系。對數據分析工作缺乏理解與支持。
相對於數據管理,數據分析工的工作重心還應該放在「挖掘數據價值」上。企業與數據分析師直接缺少職能的溝通,將直接影響企業對數據分析師工作性質的定位;同時,企業應該建立資料庫並部署大數據分析工具,為了能更好地對接用戶,也為企業和數據分析師留有足夠的空間。
從幕後到台前的轉變
以往的業務人員經常要磨破嘴皮才能得到別人的認同,而現在許多企業正在考慮讓數據分析師帶著數據分析結果去談業務。打算以「讓數據說話,以數據服人」去贏得客戶的信任。而主要的實施過程,是靠數據可視化技術來實現的。
數據可視化技術讓數據能以圖表和視頻的方式直觀地展示在人們面前,而數據分析師作為數據的管理者和挖掘者,是最適合不過的講解人了。這樣就要求數據分析師不僅要有扎實的數據分析能力,還要能提取數據精髓,並將之演講出來以獲得他人的認同。從幕後轉到台前,這裡面會需要許多技能,數據分析師的工作性質也將發生改變。
在大數據時代,數據分析師所扮演的角色不可能是一成不變的。而只有順應時代的潮流,響應時代的需要,數據分析師這個行業才能繼續生存並發展。其實,大數據分析工具,數據可視化這些技術的出現固然使行業受到了影響與挑戰,但對於數據分析師來說,未嘗不是一次擺脫傳統束縛的機遇!
❹ 大數據時代什麼最重要
隨著雲時代的來臨,大數據(Big data)也吸引了越來越多的關注。《著雲台》的分析師團隊認為,大數據(Big data)通常用來形容一個公司創造的大量非結構化和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
簡言之,從各種各樣類型的數據中,快速獲得有價值信息的能力,就是大數據技術。明白這一點至關重要,也正是這一點促使該技術具備走向眾多企業的潛力。 大數據的4個「V」,或者說特點有四個層面:第一,數據體量巨大。從TB級別,躍升到PB級別;第二,數據類型繁多。前文提到的網路日誌、視頻、圖片、地理位置信息等等。第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質
的不同。業界將其歸納為4個「V」——Volume,Variety,Value,Velocity。 物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式 著雲台
例子包括網路日誌,RFID,感測器網路,社會網路,社會數據(由於數據革命的社會),互聯網文本和文件;互聯網搜索索引;呼叫詳細記錄,天文學,大氣科學,基因組學,生物地球化學,生物,和其他復雜和/或跨學科的科研,軍事偵察,醫療記錄;攝影檔案館視頻檔案;和大規模的電子商務。
大的數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫,數據挖掘電網,分布式文件系統,分布式資料庫,雲計算平台,互聯網,和可擴展的存儲系統。
一些但不是所有的MPP的關系資料庫的PB的數據存儲和管理的能力。隱含的負載,監控,備份和優化大型數據表的使用在RDBMS的。
斯隆數字巡天收集在其最初的幾個星期,比在天文學的歷史,早在2000年的整個數據收集更多的數據。自那時以來,它已經積累了140兆兆 位元組的信息。這個望遠鏡的繼任者,大天氣巡天望遠鏡,將於2016年在網上和將獲得的數據,每5天沃爾瑪處理超過100萬客戶的交易每隔一小時,反過來進口量資料庫估計超過2.5 PB的是相當於167次,在美國國會圖書館的書籍 。
FACEBOOK處理400億張照片,從它的用戶群。解碼最初的人類基因組花了10年來處理時,現在可以在一個星期內實現。
「大數據」的影響,增加了對信息管理專家的需求,甲骨文,IBM,微軟和SAP花了超過15億美元的在軟體智能數據管理和分析的專業公司。這個行業自身價值超過1000億美元,增長近10%,每年兩次,這大概是作為一個整體的軟體業務的快速。 大數據已經出現,因為我們生活在一個社會中有更多的東西。有46億全球行動電話用戶有1億美元和20億人訪問互聯網。
基本上,人們比以往任何時候都與數據或信息交互。 1990年至2005年,全球超過1億人進入中產階級,這意味著越來越多的人,誰收益的這筆錢將成為反過來導致更多的識字信息的增長。思科公司預計,到2013年,在互聯網上流動的交通量將達到每年667艾位元組。
最早提出「大數據」時代已經到來的機構是全球知名咨詢公司麥肯錫。麥肯錫在研究報告中指出,數據已經滲透到每一個行業和業務職能領域,逐漸成為重要的生產因素;而人們對於海量數據的運用將預示著新一波生產率增長和消費者盈餘浪潮的到來。
「麥肯錫的報告發布後,大數據迅速成為了計算機行業爭相傳誦的熱門概念,也引起了金融界的高度關注。」隨著互聯網技術的不斷發展,數據本身是資產,這一點在業界已經形成共識。「如果說雲計算為數據資產提供了保管、訪問的場所和渠道,那麼如何盤活數據資產,使其為國家治理、企業決策乃至個人生活服務,則是大數據的核心議題,也是雲計算內在的靈魂和必然的升級方向。」
事實上,全球互聯網巨頭都已意識到了「大數據」時代,數據的重要意義。包括EMC、惠普(微博)、IBM、微軟(微博)在內的全球IT 巨頭紛紛通過收購「大數據」相關廠商來實現技術整合,亦可見其對「大數據」的重視。
「大數據」作為一個較新的概念,目前尚未直接以專有名詞被我國政府提出來給予政策支持。不過,在12月8日工信部發布的物聯網「十二五」規劃上,把信息處理技術作為4項關鍵技術創新工程之一被提出來,其中包括了海量數據存儲、數據挖掘、圖像視頻智能分析,這都是大數據的重要組成部分。而另外3項關鍵技術創新工程,包括信息感知技術、信息傳輸技術、信息安全技術,也都與「大數據」密切相關。
❺ 大數據時代:馬雲說的大數據DT時代究竟是個啥
dt
(data
technology)數據技術,與it(information
technology)相對應,由馬雲在世界互聯網大會中演講時正式提出版。馬雲提出,人類已經從權it時代走向dt時代,it時代是以自我控制、自我管理為主,而dt(datatechnology)時代,它是以服務大眾、激發生產力為主的技術。it技術和data技術是有巨大的差異,data技術的核心,也就是互聯網這一世紀最了不起的東西,利他主義。it時代到dt時代,最小的標志是你的思想,如何幫助別人成功
❻ 大數據:大變革、大機遇
大數據:大變革、大機遇
從來沒有哪一次技術變革能像大數據革命一樣,在短短的數年之內,從少數科學家的主張,轉變為全球領軍公司的戰略實踐,繼而上升為大國的競爭戰略,形成一股無法忽視、無法迴避的歷史潮流。互聯網、物聯網、雲計算、智慧城市、智慧地球正在使數據沿著「摩爾定律」飛速增長,一個與物理空間平行的數字空間正在形成。在新的數字世界當中,數據成為最寶貴的生產要素,順應趨勢、積極謀變的國家和企業將乘勢崛起,成為新的領軍者;無動於衷、墨守成規的組織將逐漸被邊緣化,失去競爭的活力和動力。毫無疑問,大數據正在開啟一個嶄新時代。
大數據時代有什麼本質特徵?大數據的來源是什麼?大數據又將流向哪裡?大數據在提升政府治理、改善經濟治理、再造公共服務模式、激發商業創新方面有哪些卓越案例?中國需要怎麼樣的戰略反應才能抓住大數據帶來的寶貴機遇?一系列問題亟待研究者給出深入解析。
「數據驅動發展」成為時代主題
如今,大數據已經被賦予多重戰略含義。從資源的角度,數據被視為「未來的石油」,作為戰略性資產進行管理;從國家治理角度,大數據被用來提升治理效率、重構治理模式、破解治理難題,它將掀起一場國家治理革命;從經濟增長角度,大數據是全球經濟低迷環境下的產業亮點,是戰略新興產業的最活躍部分;從國家安全形度,全球數據空間沒有國界邊疆,大數據能力成為大國之間博弈和較量的利器。總之,國家競爭焦點將從資本、土地、人口、資源轉向數據空間,全球競爭版圖將分成新的兩大陣營:數據強國與數據弱國。
宏觀上看,由於大數據革命的系統性影響和深遠意義,主要大國快速做出戰略響應,將大數據置於非常核心的位置,推出國家級創新戰略計劃。美國2012年發布《大數據研究和發展計劃》,並成立「大數據高級指導小組」,2013年又推出「數據—知識—行動」計劃,2014年進一步發布《大數據:把握機遇,維護價值》政策報告,啟動「公開數據行動」,陸續公開50個門類的政府數據,鼓勵商業部門進行開發和創新。歐盟正在力推《數據價值鏈戰略計劃》,英國發布《英國數據能力發展戰略規劃》,日本發布《創建最尖端IT國家宣言》,韓國提出「大數據中心戰略」。中國多個省市發布了大數據發展戰略,國家層面的《關於促進大數據發展的行動綱要》也於2015年8月19日正式通過。
微觀上看,大數據重塑了企業的發展戰略和轉型方向。美國的企業以GE提出的「工業互聯網」為代表,提出智能機器、智能生產系統、智能決策系統,將逐漸取代原有的生產體系,構成一個「以數據為核心」智能化產業生態系統。德國企業以「工業4.0」為代表,要通過信息物理系統(CPS——cyber physical system),把一切機器、物品、人、服務、建築統統連接起來,形成一個高度整合的生產系統。中國的企業以阿里巴巴董事局主席馬雲提出的「DT時代」(data technology)為代表,認為未來驅動發展的不再是石油、鋼鐵,而是數據。這三種新的發展理念可謂異曲同工、如出一轍,共同宣告了「數據驅動發展」成為時代主題。
與此同時,大數據也是促進國家治理變革的基礎性力量。正如《大數據時代》作者舍恩伯格在定義中所強調的,「大數據是人們在大規模數據的基礎上可以做到的事情,而這些事情在小規模數據的基礎上是無法完成的」。在國家治理領域,陽光政府、責任政府、智慧政府建設,大數據為解決以往的「頑疾」和「痛點」提供了強大支撐;精準醫療、個性化教育、社會監管、輿情監測預警,大數據使以往無法實現的環節變得簡單、可操作;大數據也使一些新的主題成為國家治理的重點,比如維護數據主權、開放數據資產、保持在數字空間的國家競爭力等。
從哲學意義上來看,大數據不僅僅是一場技術革命,也不僅僅是一場管理革命或者治理革命,它給人類的認知能力帶來深刻變化,可謂是認識論的一次升華。具體而言,大數據可以為決策者解決「四個問題」,提升「兩種能力」。一是解決「坐井觀天」的問題,以往人們決策只能基於視野之內極為有限的局部信息,和井底之蛙無異,大數據則可以實現整個蒼穹盡收眼底;二是解決「一葉障目」的問題,以往不具備全樣本數據分析能力,只能用小樣本分析近似推理,猶如從「泰山」中取來「一葉」,而真理可能存在於全樣本的海量數據之中,藉助大數據則可完全克服;三是解決「瞎子摸象」的問題,七個瞎子根本無法根據各自的認識加總出完整的大象,因為他們的信息是相互離散的,無法有效關聯起來,而大數據的基本優點是在深入關聯中還原事物的原貌;四是解決「城門失火,殃及池魚」的問題,人們習慣於因果分析,遇到這種「稀奇古怪」的因果鏈則很難前瞻和推理,但大數據注重相關關系,可以准確地發掘出規律。提升兩種能力,一個是「一葉知秋」的能力,體現大數據敏銳的洞察能力,另一個是「運籌帷幄,決勝千里」的能力;體現大數據對時空約束的突破。這些足以說明,大數據是人類認識世界和改造世界能力的一次升華。
中國成為數據強國的優勢、挑戰與路徑
值得振奮的是,中國具備成為數據強國的優勢條件。從2013年至2020年,全球數據規模將增長十倍,每年產生的數據量由當前的4.4萬億GB,增長至44萬億GB,每兩年翻一番。從全球佔比來看,中國成為數據強國的潛力極為突出,2010年中國數據佔全球比例為10%,2013年佔比為13%,2020年佔比將達到18%,屆時,中國的數據規模將超過美國的數據規模,位居世界第一。中國成為數據大國並不奇怪,因為我們是人口大國、製造業大國、互聯網大國、物聯網大國,這都是最活躍的數據生產主體,未來幾年成為數據大國也是邏輯上必然的結果。
盡管存在成為數據強國的潛力,但在目前的政策環境之下,我國推進大數據戰略仍存在以下幾個清晰的挑戰。第一,頂層設計方面,全球大國之間圍繞大數據的競爭頗為激烈,中國作為一個後發國家,想要實現彎道超車,後來居上並非易事。如何能夠緊扣創新前沿,把准未來趨勢,超前戰略部署,對政策設計來說是一個非常現實的挑戰。第二,數據開放方面,「數據孤島」廣泛存在,雖然政府掌握著80%的數據,但現實中卻相互割裂,自成體系,「部門牆」「行業牆」「地區牆」阻礙了數據的流動共享,數據被視為部門的利益和隱私,這與大數據時代的基本理念准則相悖。第三,大數據相關的法律、法規、標准缺位,導致能夠開放的數據不開放,需要保護的隱私不保護,企業由於標准模糊而無法大膽創新。第四,「數據主權」容易受到侵蝕,由於數據空間是國家新的戰略維度,尚沒有完備的安全保障體系,再加上電腦、手機、晶元、伺服器、搜索引擎、操作系統、軟體等核心的數據「基礎設施」大量依賴進口,數據資產極易流失,數據主權極易受到侵蝕。
把握優勢,克服挑戰,抓住大數據革命帶來的「機會窗口」,建設數據強國,是實現中華民族偉大復興的一個有力支撐。然而,我們需要怎樣做才能更好地擁抱大數據時代,確保在數字化趨勢中立於不敗之地呢?首先,需要在國家頂層設計上有一個清晰的行動框架,包括由什麼部門主導、哪些部門參與、什麼樣的協作機制、沿著什麼優先次序、克服哪些既有的障礙、達到什麼戰略目標,只有這樣,各部門、各地區、企業界、學術界才能形成合力,在一個共同的路線圖上協作推進。其次,盤活數據資產,在數據開放上取得實質性突破。一些基本的建議包括:加快G2G(政府與政府之間)、G2B(政府與企業之間)、G2C(政府與公民之間)大數據開放與共享;推動基礎性、戰略性大數據資源庫整合;加強大數據基礎設施建設,編制國家大數據檔案。最後,把強大的「國家企業」和活躍的「萬眾創新」結合起來。一方面,要培育可以和國際「八大金剛」並駕齊驅的巨型企業作為大數據環境中競爭的中堅力量,同時,鼓勵和引導大眾創業、萬眾創新成為數據生態系統中的活躍力量。
以上是小編為大家分享的關於大數據:大變革、大機遇的相關內容,更多信息可以關注環球青藤分享更多干貨
❼ 馬雲 互聯網大會 這是一個什麼時代
事實上,這已經不是馬雲第一次推出DT的概念了,在去年的首屆世界互聯網大會和馬雲赴台灣的演講中,他都有不同程度地提及DT。那麼,問題來了:DT時代究竟是怎樣的一個時代?1、DT時代以服務大眾、激發生產力為主。
DT是數據處理技術(Data Technology)的英文縮寫。馬雲提出,IT時代是以自我控制、自我管理為主,而DT時代,它是以服務大眾、激發生產力為主的技術。簡而言之,IT是以我為中心,DT是以別人為中心。這兩者之間看起來似乎是一種技術的差異,但實際上是思想觀念層面的差異。
2、DT讓別人愈來愈強大。
馬雲表示,IT能讓自己愈來愈強大,而DT能讓別人愈來愈強大,"DT是讓你的消費者、讓你的客戶、讓你的員工更具能力。"
3、DT更講究開放、透明、分享及合作。
馬雲還表示,DT更講究開放、透明、分享及合作,"IT時代誕生無數劇透"。未來,大數據的雲端計算處理,將消除商業社會的邊界,讓一切商業主體相互自由連通。而這些都是建立在全世界數據信息完全"透明"的基礎之上。
4、從IT時代到DT時代,小企業是關鍵。
在馬雲看來,IT時代到DT時代,小企業變成關鍵。他認為互聯網一定是做昨天做不到的事情。那麼什麼事情昨天做不到?其實就是幫助那些小企業,解放那些小企業的生產力,能夠讓這些小企業具有IT的能力。
馬雲說,"小企業的需求是很多的,需要物流、誠信、信息、數據和支付,這整個體系,我們是沒有辦法全做完,所以必須引進各種各樣的合作夥伴,大家一起來干,每個人在這裡面拿到一點點,你才可能有機會成功。"
5、DT時代重體驗,女性越來越"厲害"。
馬雲指出DT時代一個非常重要的特徵是體驗。對於體驗,馬雲提出了一個比較新穎的觀點,他認為體驗時代會出現女人越來越厲害的現象,因為她們身上有著獨特的東西,懂得怎麼服務別人、怎麼理解別人、怎麼支持別人。所以,未來的DT時代,可千萬不要小看了女人。
6、DT時代最大的機遇和挑戰:能否把IT行業和傳統行業進行完美融合。
馬雲認為在未來的20年,那些不能和傳統行業進行完美結合的互聯網公司將會被淘汰,同樣那些不能與互聯網技術、思想進行融合的傳統行業也將活不長久。能否把IT行業和傳統行業進行完美融合,這是未來DT時代最大的機遇也是最大的挑戰,也是關乎能否把互聯網經濟做起來的關鍵。馬雲指出,當前最好的辦法是建立一個良好的互聯網生態環境,搭好一個很好的基礎設施,同時培養出一批DT時代的人才。