『壹』 學習大數據需要哪些基礎
第一:計算機基礎知識。計算機基礎知識涉及到三大塊內容,包括操作系統、編程語言和計算機網路,其中操作系統要重點學習一下Linux操作系統,編程語言可以選擇java或者Python。如果要從事大數據開發,應該重點關注一下Java語言,而如果要從事大數據分析,可以重點關注一下Python語言。計算機網路知識對於大數據從業者來說也比較重要,要了解基本的網路通信過程,涉及到網路通信層次結構和安全的相關內容。
第二:資料庫知識。資料庫知識是學習大數據相關技術的重要基礎,大數據的技術體系有兩大基礎,一部分是分布式存儲,另一部分是分布式計算,所以存儲對於大數據技術體系有重要的意義。初學者可以從Sql語言開始學起,掌握關系型資料庫知識對於學習大數據存儲依然有比較重要的意義。另外,在大數據時代,關系型資料庫依然有大量的應用場景。
第三:數學和統計學知識。從學科的角度來看,大數據涉及到三大學科基礎,分別是數學、統計學和計算機,所以數學和統計學知識對於大數據從業者還是比較重要的。從大數據崗位的要求來看,大數據分析崗位(演算法)對於數學和統計學知識的要求程度比較高,大數據開發和大數據運維則稍微差一些,所以對於數學基礎比較薄弱的初學者來說,可以考慮向大數據開發和大數據運維方向發展。
『貳』 小白怎麼入門大數據行業數據要學哪些知識
【導讀】在大數據學習當中,關於打基礎的部分,一直以來都是大家非常重視的,基礎打好了,才能真正在後續的發展當中受益,更快地成長起來。那麼,小白怎麼入門大數據行業?數據要學哪些知識呢?今天就跟隨小編一起來了解下吧!
學大數據,在前期主要是打基礎,包括java基礎和Linux基礎,而後才會正式進入大數據技術的階段性學習。
Linux學習主要是為了搭建大數據集群環境做准備,所以以Linux系統命令和shell編程為主要需要掌握的內容。
而Java,主要是Java
SE,涉及到比較多需要掌握的內容,包括掌握java語言中變數,控制結構,循環,面向對象封裝等內容;掌握面向對象,IO流,數據結構等內容;掌握反射,xml解析,socket,線程以及資料庫等內容。
Java EE,需要掌握的內容不多,掌握html,css,js,http協議,Servlet等內容;掌握Maven,spring,spring
mvc,mybatis等內容基本上就夠用了。
具備以上的基礎之後,進入大數據技術框架的學習,利用Linux系統搭建Hadoop分布式集群、使用Hadoop開發分布式程序、利用Zookeeper搭建Hadoop
HA高可用、Shell腳本調用等對大數據技術框架有初步的了解。
對於Hadoop,涉及到相關系統組件,都需要逐步學習掌握,包括理解和掌握Maprece框架原理,使用Maprece對離線數據分析,使用Hive對海量數據存儲和分析,使用MySQL資料庫存儲元數據信息使用正則表達式,使用Shell腳本,使用Maprece和Hive完成微博項目部分功能開發,學會使用flume等。
要能夠對hbase資料庫不同場景進行數據的crud、kafka的安裝和集群常用命令及java
api的使用、能夠用scala語言為之後spark項目開發奠定基礎,學會使用sqoop;
要掌握spark核心編程進行離線批處理,sparkSQL做互動式查詢,sparkStreaming做實時流式運算,spark原理的深入理解,spark參數調優與運維相關的知識。
以上就是小編今天給大家整理發送的關於「小白怎麼入門大數據行業?數據要學哪些知識?」的全部內容,希望對大家有所幫助。所謂不做不打無准備之仗,總的來說隨著大數據在眾多行業中的應用,大數據技術工作能力的工程師和開發人員是很吃香的。希望各位大家在學習之前做好准備,下足功夫不要憑空想像的想要取得優異的成績。
『叄』 大數據開發需要學習哪些內容
【導讀】大數據場景是現在大數據的重要運用,這些場景包括許多領域,比如金融大數據、交通大數據、教育大數據、餐飲大數據等等,這些場景運用的背面也需要對行業常識有必定的了解。那麼,大數據開發需要學習哪些內容呢?
大數據開發需要學習的內容包括三大部分,分別是:大數據根底常識、大數據渠道常識、大數據場景運用。大數據根底常識有三個主要部分:數學、統計學和計算機;大數據渠道常識:是大數據開發的根底,往往以搭建Hadoop、Spark渠道為主。
大數據方面有許多的技能:
一是大數據渠道自身,一般是根據某些Hadoop產品如CDH的產品布置後供給服務。布置的產品裡面有許多的組件,如HIVE、HBASE、SPARK、ZOOKEEPER等。
二是ETL,即數據抽取進程,大數據渠道中的原始數據一般是來源於公司內的其它事務體系,如銀行裡面的信貸、中心等,這些事務體系的數據每天會從事務體系抽取到大數據渠道中,然後進行一系列的標准化、整理等操作,再然後經過一些建模生成一些模型給下流體系運用。
三是數據剖析,在數據收集完成後根據這些數據要做一些什麼樣的處理,典型的如報表運用,那每天或許就是寫SQL開發報表了;還有一些如風險監測等渠道,都要根據大數據渠道收集的數據來進行處理。
以上就是小編今天給大家整理分享關於「大數據開發需要學習哪些內容?」的相關內容希望對大家有所幫助。小編認為要想在大數據行業有所建樹,需要考取部分含金量高的數據分析師證書,這樣更有核心競爭力與競爭資本。
『肆』 大數據需要學什麼
隨著大數據的發展,越來越多的人想要進入大數據行業,大數據技術體系巨大,包含的常識非常多。
對於零基礎想要學習大數據的人,一開始入門可能不會太簡單。學習大數據至少需要掌握一門計算機編程語言,計算機編程語言有很多,Java是目前使用的比較廣泛的編程語言之一。所以,學習大數據,掌握好Java是必不可少的。
另外學習大數據必須要學習大數據中心常識,大數據技術體系很復雜,與物聯網、移動互聯網、人工智慧、雲核算等都有著精密的關系。所以,Hadoop生態體系;HDFS技術;HBASE技術;Sqoop運用流程;數據倉庫東西HIVE;大數據離線剖析Spark、Python言語;數據實時剖析Storm等都是學習大數據需要了解和掌握的。
從事大數據工作,免不了要分析數據。如果從事數據剖析師,就需要了解一定的數學常識。需要有一定的公式核算能力,了解常用計算模型演算法。而如果從事數據發掘工程師,就需要能夠熟練運用各類演算法,對數學的要求是很高的。
『伍』 大數據分析需要學習什麼知識呀
1、學習大數據首先要學習Java基礎
怎樣進行大數據學習的快速入門?學大數據課程之前要先學習一種計算機編程語言。Java是大數據學習需要的編程語言基礎,因為大數據的開發基於常用的高級語言。而且不論是學習hadoop,還是數據挖掘,都需要有編程語言作為基礎。因此,如果想學習大數據開發,掌握Java基礎是必不可少的。
2、學習大數據必須學習大數據核心知識
Hadoop生態系統;HDFS技術;HBASE技術;Sqoop使用流程;數據倉庫工具HIVE;大數據離線分析Spark、Python語言;數據實時分析Storm;消息訂閱分發系統Kafka等。
如果把大數據比作容器,那麼這個容器的容量無限大,什麼都能往裡裝,大數據離不開物聯網,移動互聯網,大數據還和人工智慧、雲計算和機器學習有著千絲萬縷的關系,大數據海量數據存儲要高擴展就離不開雲計算,大數據計算分析採用傳統的機器學習、數據挖掘技術會比較慢,需要做並行計算和分布式計算擴展。
3數學知識,數學知識是數據分析師的基礎知識。對於數據分析師,了解一些描述統計相關的內容,需要有一定公式計算能力,了解常用統計模型演算法。而對於數據挖掘工程師來說,各類演算法也需要熟練使用,對數學的要求是最高的。
編程語言,對於想學大數據的同學,至少需要具備一門編程語言,比如SQL、hadoop、hive查詢、Python等均可。
4、學習大數據可以應用的領域
大數據技術可以應用在各個領域,比如公安大數據、交通大數據、醫療大數據、就業大數據、環境大數據、圖像大數據、視頻大數據等等,應用范圍非常廣泛,大數據技術已經像空氣一樣滲透在生活的方方面面。大數據技術的出現將社會帶入了一個高速發展的時代,這不僅是信息技術的終極目標,也是人類社會發展管理智能化的核心技術驅動力。
『陸』 大數據初學者應該怎麼學
記住學到這里可以作為你學大數據的一個節點。
Zookeeper:這是個萬金油,安裝Hadoop的HA的時候就會用到它,以後的Hbase也會用到它。它一般用來存放一些相互協作的信息,這些信息比較小一般不會超過1M,都是使用它的軟體對它有依賴,對於我們個人來講只需要把它安裝正確,讓它正常的run起來就可以了。
Mysql:我們學習完大數據的處理了,接下來學習學習小數據的處理工具mysql資料庫,因為一會裝hive的時候要用到,mysql需要掌握到什麼層度那?你能在Linux上把它安裝好,運行起來,會配置簡單的許可權,修改root的密碼,創建資料庫。這里主要的是學習SQL的語法,因為hive的語法和這個非常相似。
Sqoop:這個是用於把Mysql里的數據導入到Hadoop里的。當然你也可以不用這個,直接把Mysql數據表導出成文件再放到HDFS上也是一樣的,當然生產環境中使用要注意Mysql的壓力。
Hive:這個東西對於會SQL語法的來說就是神器,它能讓你處理大數據變的很簡單,不會再費勁的編寫MapRece程序。有的人說Pig那?它和Pig差不多掌握一個就可以了。
Oozie:既然學會Hive了,我相信你一定需要這個東西,它可以幫你管理你的Hive或者MapRece、Spark腳本,還能檢查你的程序是否執行正確,出錯了給你發報警並能幫你重試程序,最重要的是還能幫你配置任務的依賴關系。我相信你一定會喜歡上它的,不然你看著那一大堆腳本,和密密麻麻的crond是不是有種想屎的感覺。
Hbase:這是Hadoop生態體系中的NOSQL資料庫,他的數據是按照key和value的形式存儲的並且key是唯一的,所以它能用來做數據的排重,它與MYSQL相比能存儲的數據量大很多。所以他常被用於大數據處理完成之後的存儲目的地。
Kafka:這是個比較好用的隊列工具,隊列是干嗎的?排隊買票你知道不?數據多了同樣也需要排隊處理,這樣與你協作的其它同學不會叫起來,你干嗎給我這么多的數據(比如好幾百G的文件)我怎麼處理得過來,你別怪他因為他不是搞大數據的,你可以跟他講我把數據放在隊列里你使用的時候一個個拿,這樣他就不在抱怨了馬上灰流流的去優化他的程序去了,因為處理不過來就是他的事情。而不是你給的問題。當然我們也可以利用這個工具來做線上實時數據的入庫或入HDFS,這時你可以與一個叫Flume的工具配合使用,它是專門用來提供對數據進行簡單處理,並寫到各種數據接受方(比如Kafka)的。
Spark:它是用來彌補基於MapRece處理數據速度上的缺點,它的特點是把數據裝載到內存中計算而不是去讀慢的要死進化還特別慢的硬碟。特別適合做迭代運算,所以演算法流們特別稀飯它。它是用scala編寫的。Java語言或者Scala都可以操作它,因為它們都是用JVM的。
『柒』 大數據專業主要學什麼
大數據專業
全稱:數據科學與大數據技術,強調交叉學科特點,以大數據分析為核心,以統計學、計算機科學和數學為三大基礎支撐性學科,培養面向多層次應用需求的復合型人才。
開設課程:
數學分析、高等代數、普通物理數學與信息科學概論、數據結構、數據科學導論、程序設計導論、程序設計實踐、離散數學、概率與統計、演算法分析與設計、數據計算智能、資料庫系統概論、計算機系統基礎、並行體系結構與編程、非結構化大數據分析等。
『捌』 怎樣學習大數據
學習大數據的方法:
1、關注一些大數據領域的動態,讓自己融入大數據這樣一個大的環境中。然後找一些編程語言的資料(大數據的基礎必備技能)和大數據入門的視頻和書籍,基本的技術知識還是要了解的。
2、對於有一定編程基礎的同學,相對於零基礎的小白來說,情況會略好一些,畢竟深處互聯網大環境下很長時間了。唯一欠缺的是對大數據技術知識的匱乏,所以先吃透自己所修的編程語言,然後從Hadoop、spark入手對大數據的技術進行了解。
『玖』 大數據需要學習哪些內容
大數抄據(big data),指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性),平台有hadoop
『拾』 學大數據需要具備什麼基礎
說到大數據,肯定少不了分析軟體,這應該是大數據工作的根基,但市面上很多各種分析軟體,如果不是過來人,真的很難找到適合自己或符合企業要求的。小編通過各大企業對大數據相關行業的崗位要求,總結了以下幾點:
(1)SQL資料庫的基本操作,會基本的數據管理
(2)會用Excel/SQL做基本的數據分析和展示
(3)會用腳本語言進行數據分析,Python or R
(4)有獲取外部數據的能力,如爬蟲
(5)會基本的數據可視化技能,能撰寫數據報告
(6)熟悉常用的數據挖掘演算法:回歸分析、決策樹、隨機森林、支持向量機等
對於學習大數據,總體來說,先學基礎,再學理論,最後是工具。基本上,每一門語言的學習都是要按照這個順序來的。
1、學習數據分析基礎知識,包括概率論、數理統計。基礎這種東西還是要掌握好的啊,基礎都還沒扎實,知識大廈是很容易倒的哈。
2、你的目標行業的相關理論知識。比如金融類的,要學習證券、銀行、財務等各種知識,不然到了公司就一臉懵逼啦。
3、學習數據分析工具,軟體結合案列的實際應用,關於數據分析主流軟體有(從上手度從易到難):Excel,SPSS,stata,R,Python,SAS等。
4、學會怎樣操作這些軟體,然後是利用軟體從數據的清洗開始一步步進行處理,分析,最後輸出結果,檢驗及解讀數據。
當然,學習數學與應用數學、統計學、計算機科學與技術等理工科專業的人確實比文科生有著客觀的優勢,但能力大於專業,興趣才會決定你走得有多遠。畢竟數據分析不像編程那樣,需要你天天敲代碼,要學習好多的編程語言,數據分析更注重的是你的實操和業務能力。如今的軟體學習都是非常簡單便捷的,我們真正需要提升的是自己的邏輯思維能力,以及敏銳的洞察能力,還得有良好的溝通表述能力。這些都是和自身的努力有關,而不是單純憑借理工科背景就可以啃得下來的。相反這些能力更加傾向於文科生,畢竟好奇心、創造力也是一個人不可或缺的。