導航:首頁 > 數據分析 > 大數據如何彌補傳統信貸的不足

大數據如何彌補傳統信貸的不足

發布時間:2023-02-04 00:44:08

1. 大數據徵信與銀行風險控制創新

大數據徵信與銀行風險控制創新

數據將是未來銀行的核心競爭力之一,這已成為銀行業界的共識。在大數據時代,銀行所面臨的競爭不僅僅來自於同行業內部,外部的挑戰也日益嚴峻,互聯網、電子商務等新興企業在產品創新能力、市場敏感度和大數據處理經驗等方面都擁有明顯的優勢。在此形勢下,利用大數據徵信創新和提高銀行的風險把控也逐漸成為業界關注與探討的重要話題。

銀行業在風險控制中的不足之處

普華永道發布的《2015年中國金融及銀行業展望》指出,截至2014年第三季度末中國的商業銀行不良貸款總額上升36%,達到7670億元人民幣,是四年來的高點。預計2015年不良貸款上升的趨勢將持續。上述數據的背後,除了經濟下行導致的逾期風險上升的原因之外,銀行在風險控制中存在漏洞與缺陷也是重要原因。

信息不對稱與貸款欺詐

隨著P2P、小貸等民間借貸的興起,借款人越來越容易通過非銀行途徑獲得貸款。而民間借貸機構無須向人民銀行上報數據,非銀行體系的貸款申請情況、負債情況和逾期情況等信息不清晰、不透明、無法提前預知的矛盾愈發突出,往往到了借款人逾期甚至失聯,銀行才被動了解到借款人在民間借貸領域的部分歷史逾期借貸情況或負債過高等不良行為信息。

貸款欺詐問題也是銀行面臨的另一個問題,尤其是在信用卡領域和部分運用信貸工廠模式運作的貸款產品。銀行固化的發卡審核流程以及信貸工廠運作模式已經不再是秘密。目前信用卡、貸款的包裝、組團欺詐騙貸的情況屢見不鮮,尤其是在信用貸款領域,約有60%的信用貸款來自於欺詐,這其中有一半以上是由於身份造假和資料包裝。在數據維度不全面的情況下,銀行等放貸機構由於沒有第三方大數據支持,缺乏充分和有效的交叉核驗手段,容易被組團騙貸者鑽空子。

信息不及時與貸後風險防範

信息獲取的不及時也給銀行在貸後風險管理中帶來了不同程度上的麻煩。例如,銀行往往希望第一時間知道一家企業客戶在獲得貸款後是否面臨新的法律訴訟,但是大多數銀行使用的方式僅僅是依靠信貸經理不定期手動查詢當地法院網站的方式獲取信息,這當中存在著巨大的不確定性,一旦信貸經理忘記查詢或者操作失誤,貸後司法訴訟監控工作將形同虛設。這還不包括持續監控該客戶在民間借貸中的申請情況、負債情況和逾期情況等風險點。銀行在貸後風險防範過程中的手段和效率都極大地制約了銀行風險控制的效果。

成本和效率的矛盾

為了解決信息不對稱的問題和信息獲取不及時的問題,銀行往往需要採集大量的數據來輔助判斷。但是數據採集的過程中通常運用的方法是要求借款人或企業補充提供大量的資料,這個過程中涉及到大量的人工成本和時間成本。而為了提高效率,需要搭建一套能夠實現部分數據的自動採集,同時需要自動化程度較高的後台管理系統,但是這必須組建專門的工程師團隊和進行大量的IT開發工作,對不少中小銀行來說也是一個沉重的負擔。

大數據徵信與貸款風險控制

大數據徵信產業的興起

2015年1月,中國人民銀行發印發了《關於做好個人徵信業務准備工作的通知》,要求芝麻信用管理有限公司、騰訊徵信有限公司、拉卡拉信用管理有限公司等八家機構做好為期六個月的個人徵信業務准備工作。這意味著,這八家機構或將成為我國首批商業個人徵信機構。由此,正式拉開了大數據徵信產業的序幕,個人徵信市場成長空間已經打開。基於美國個人徵信市場達600億美元的規模,考慮到我國人口基數的龐大,未來發展成熟之後我國的個人徵信市場空間很可能達到1000億元規模。

值得注意的是,大數據徵信成為了互聯網巨頭的必爭之地。除了阿里巴巴和騰訊,網路、京東金融、小米金融、360金融等互聯網公司也表示將打造互聯網徵信系統,並有意申請第二批個人徵信牌照,部分機構已經向人民銀行提交了申請。互聯網公司的高調介入表明,一方面互聯網公司的創新特性和快速擴張特性給傳統徵信領域帶來了新的活力和機遇,另一方面互聯網公司各自不同的大數據優勢和應用場景優勢,將使得徵信市場的競爭日趨白熱化。
國內大數據徵信產業發展趨勢

各類大數據公司介入大數據徵信市場,使數據維度和種類相比兩年前有了極大的豐富。特別是伴隨著移動互聯網時代興起,圍繞著移動上網設備信息、地理位置信息、運營商信息的大數據公司和大數據服務層出不窮,並開始運用在P2P的貸款審核和交叉核驗流程中。但是,數據的來源和有效性依然制約著大數據徵信產業的發展,目前行業依然處於早起的探索階段,尚未有成熟的「殺手級」應用工具出現。

信息孤島依然存在。信息孤島是目前制約國內信貸行業發展的重要因素。信息不對稱、不透明,帶來了大量的多頭負債風險和欺詐風險。在國內大數據徵信產業興起時,市場對於消除信息不透明、打破信息孤島寄予極大的期待。從目前行業的發展情況來看,信息孤島在短期內無法完全消失。

首先,公共事業繳費、固定資產、社保、居住等與貸款風險控制息息相關的信息,依然歸屬於相關政府部門。雖然工商、司法等信息已經向社會開放,但是政府信息開放程度依然較低,這將是一個長期而復雜的過程。

其次,掌握大量公民信息的互聯網公司相互之間難以產生信息互通。目前國內社交數據、電商數據、地理位置數據、搜索數據、移動設備使用行為數據等互聯網信息分別集中於阿里、網路、騰訊、京東、360等互聯網巨頭手中,這些公司在跑馬圈地的過程中存在著大量的競爭關系,數據互通、信息共享在目前看來可能性極低。

最後,徵信公司之間的信息也難以互通。徵信公司的核心競爭力在於擁有自己獨有的信息。作為直接競爭對手,徵信公司之間不可能用自己的核心數據去提升競爭對手的競爭力。可以說,一方面徵信公司致力於解決信息不對稱,另一方面徵信公司也在構建數據壁壘。

應用場景逐漸豐富,組合信用評估或成主流。放眼徵信行業較為發達的美國,徵信報告的運用早已不僅限於金融領域,例如招聘、租房、租車、相親等行業和領域都需要使用個人徵信報告。隨著「互聯網+」的推動、大數據概念的提出以及P2P互聯網金融的發展,目前國內的徵信公司也在應用場景的豐富性上進行著探索和嘗試。

從國內大數據徵信行業的發展現狀來看,由於信息孤島、數據不完全共享的現狀將長期存在,當行業發展到一定階段,將會產生組合式的信用評估。譬如要求當事人同時出具多家機構的信用報告,從社交、電商、招聘、瀏覽行為、地理位置等不同角度對當事人做出全息用戶畫像,判斷其綜合情況。這是因為單方面的信用評估已不能全面評價一個人,必須發揮出各家大數據徵信公司的信息優勢才能全面評價。

大數據徵信在貸款風險領域的應用案例

反映電商信用行為的芝麻信用。芝麻信用基於阿里巴巴的電商交易數據和螞蟻金服的互聯網金融數據,並與公安網等公共機構以及合作夥伴建立數據合作,數據涵蓋了信用卡還款、網購、轉賬、理財、水電煤繳費、租房信息、住址搬遷歷史、社交關系等等。芝麻信用以芝麻分來直觀呈現信用水平,主要包含了用戶信用歷史、行為偏好、履約能力、身份特質、人脈關系五個維度,從950~350分劃分為5個等級,分數越高代表信用程度越好,違約可能性越低。芝麻徵信還出具個人信用報告,其主要由央行徵信中心負責提供,記錄了個人基本信息、貸款信息、信用卡信息和信用報告查詢記錄等。

反映互聯網社交行為的騰訊徵信。騰訊徵信的數據更多的是社交數據,其徵信產品有兩大類別:一是反欺詐產品,包括人臉識別和欺詐評測;二是信用評級產品,包括信用評分和信用報告。騰訊徵信反欺詐產品的主要服務對象包括銀行、證券、保險、消費金融、小貸、P2P等商業機構,它能幫助企業識別用戶身份,防範涉黑賬戶或有組織欺詐,發現惡意或者疑似欺詐客戶,避免資金損失。對於之前沒有個人徵信報告的藍領工人、學生、個體戶、自由職業者等用戶,騰訊通過他們使用社交、門戶、游戲、支付等服務,通過海量數據挖掘和分析技術來預測其風險表現和信用價值,為其建立個人信用評分。

反映借款人風險的好貸雲風控。好貸雲風控是好貸網和全球最大的個人信用評分機構FICO(費埃哲)共同打造的大數據風控平台,整合徵信公司、司法數據、工商數據、消費數據等重要數據源頭,構建了金融貸款機構風控所需全行業各領域的風險資料庫,同時包括反欺詐風險名單庫、重大風險識別名單庫、貸款申請記錄名單庫的數據,合計已超過7000萬條。多達6000多個維度的資料庫不僅能有效補足貸款機構本地的資料庫,還能協助其大幅提高反欺詐識別和信用風險識別能力,同時結合FICO的信貸決策引擎為信貸機構提供服務。金融機構不用再投入巨資自建系統,不用花巨大精力和成本尋找各種風控數據。

銀行風險控制與大數據徵信的結合

大數據難以解決所有問題,但可以作為有效的工具。大數據能為信貸行業帶來什麼價值?筆者的判斷是:大數據在未來一段時間,仍無法解決信貸風控中的所有問題;或者說單純依靠大數據進行信貸風控、審批全流程的貸款種類還很有限。

但是,大數據已經可以解決信貸行業的一部分問題,並且將發揮越來越重要的作用。比如,大數據在進行反欺詐識別、風險動態監測、用戶行為分析、用戶畫像等領域,都已經有了越來越多的運用。銀行機構應當擁抱大數據,敢於和善於運用大數據輔助進行風險把控。
通過大數據,將民間借貸信息對銀行透明化。銀行機構通過大數據徵信的數據,可以了解借款人在民間借貸的信息。目前大數據徵信公司提供的民間借貸相關信息主要包含黑名單信息、貸款申請信息和被查詢信息。以好貸雲風控為例,其包含了各家徵信公司的黑名單信息以及好貸雲風控平台整合的數十家P2P平台的黑名單信息,同時也包含了好貸網的1000萬條貸款申請記錄和每個星期增加一倍的被查詢信息。這些信息都從側面反映了借款人的民間借貸情況。通過大數據徵信,將能夠使民間借貸信息對銀行機構越來越透明,識別出更多的民間借貸風險,更好地進行貸款審核和反欺詐識別。

豐富數據維度,提升對信用檔案客群風控能力。2014年,美國政策與經濟研究委員會(PERC)對於非金融信息(也成為替代性信息)在信貸決策中作用的研究表明:諸如水、電、煤、有線電視、手機等非金融信息納入徵信系統,顯著地提高了信用檔案在案人群的信貸獲得能力。

目前不少銀行逐步認識到已經納入銀行傳統資料庫的信息量並不豐富和完整,開始積極與第三方大數據徵信公司頻繁接觸與接洽合作,如客戶信息、銀行擁有客戶的基本身份信息等。但客戶其他的信息,如性格特徵、興趣愛好、生活習慣、行業領域、居住狀況等卻是銀行難以准確掌握的;另一方面對於多種異構數據的分析是難以處理的,如銀行有客戶的資金往來的信息、網頁瀏覽的行為信息、服務通話的語音信息、營業廳、ATM的錄像信息,但除了結構化數據外,其他數據無法進行分析,更談不上對多種信息進行綜合分析,無法打破「信息孤島」的格局。通過與第三方大數據徵信公司的合作,盡力彌補自身在獲取信息維度以及數據挖掘和分析能力方面的不足。

綜上,筆者認為,在互聯網時代和大數據時代的背景下銀行如欲進一步加快轉型的步伐、實現誠信社會與普惠金融的願景、肩負信用風險管理重任,就要在信息使用、貸前調查、貸中監控等風險控制方面藉助互聯網的優勢,擁抱大數據徵信,充分利用內外各種信息做好客戶徵信和增信,進一步提高對風險的控制和管理水平,才能立於不敗之地。

以上是小編為大家分享的關於大數據徵信與銀行風險控制創新的相關內容,更多信息可以關注環球青藤分享更多干貨

2. 如何利用大數據來解決中國的巨大的信貸差距問題

作為銀行的一項主要資產業務,貸款資產的運動是一種以「兩權分離、按期償還」為本質特徵的特殊價值運動。在現實經濟活動中,銀行的信貸活動,會受事先無法預料的不確定性因素影響,例如使銀行貸款資金有可能遭受損失事件發生。主要表現為貸款到期不能按時收回和貸款的貶值等,這樣就產生了貸款風險。從目前國有商業銀行貸款資產質量的現狀看,形勢較為嚴峻。 國有商業銀行信貸風險分析 政府行政干預帶來的風險。按照經濟發展的客觀要求,國有銀行是資金配置的主體,政府職能只限於宏觀調控。然而在現實中,作為國有商業銀行,雖然在人事、行政、業務上不受政府直接管控,但並不等於不受政府影響。作為資金配置的主體,政府並未從實際運作的干預中退出,中心地位並未淡化,往往造成部份項目投資效益不高,形成貸款沉澱。 社會保障機制滯後帶來的風險。由於企業破產失業救濟制度不完善,國有銀行貸款風險無法直接分散和轉移。企業與社會的問題沒有解決,企業把生產所需資金缺口留給銀行貸款解決,形成貸款風險壓力;企業保險制度不健全,使銀行無法保全貸款資產的安全性,增加了損失的概率。 法制不健全帶來的風險。盡管我國陸續出台了銀行法、票據法等許多法律,但是這些法律大多內容比較簡單,有些內容有待於重新修訂,並且有些法律與國家的某些政策相悖,銀行在保全債權方面將會遇到較大的阻力,加大了銀行的信貸經營風險。 缺乏科學經營管理帶來的風險。國有商業銀行缺乏科學規范的經營管理方式主要表現在:在經營上把效益性放在首位,而忽視安全隱患;沒有建立起完善的責權對等的管理機制,一旦貸款出現問題,很難分清責任,更談不上追究責任。 借款人(企業)還貸意願不確定帶來的風險。借款人(企業)還貸意願與其(法定代表)的信用相關,還貸能力強的借款人(企業)還貸意願不一定強;還貸能力弱的借款人(企業)還貸意願不一定差。並且,信用度很難進行比較准確的考查、判斷。所以,借款人還貸意願存在很大的不確定性,這種不確定性必然帶來一定的風險。 國有商業銀行信貸風險的控制對策 為有效防止和化解國有商業銀行信貸風險,避免由此帶來的金融震盪和經濟風險,通過上述對我國商業銀行目前面臨的信貸風險原因的分析,我們可以從如下幾個方面著手治理商業銀行的信貸風險。 進一步加強政府監督職能。政企不分一直嚴重困擾我國企業改革和發展。我國信用的深層次問題很大程度上表現為政府行為和地方保護主義。由於政府尚未完成由市場的參與者向市場的管理者的轉變,為了政績需要而急功近利,期望短期內地方經濟有較大起色,過分干預銀行貸款,削弱了市場功能作用和市場法則權威。因此,必須重新界定政府職能、規范政府行為。政府職能是彌補市場缺陷、維護社會公平,著力為企業經營提供必要的經濟環境,同時支持並配合銀行防範和制止企業逃廢債務,確保金融資產的安全運行。 建立健全社會保障體系。形成全社會信用是提高銀行資產質量的重要保證。惡意逃避銀行債務、惡意欠款的單位必須受經濟和法律制裁。作為政府部門,央行應對企業改制中兼並、重組、破產等跟蹤監督,協助金融機構依法維護金融債權;應健全企業信息披露制度,解決銀、企信息不對稱問題:嚴格規范企業會計信息和信息處理標准化,並提高信息公開程度,以降低銀行系統風險。

3. 大數據在銀行傳統信貸全流程中,有哪些關鍵作用

我來說說吧,以芝麻信用為例,當發生電商交易,信用卡還款;亦或是導入領英賬號信息,錄入車輛信息,導入住房公積金信息。以上種種行為體現在信用分上,都會以提高芝麻信用分的形式體現出來。也即,在芝麻信用的體系中,將以上行為定義為好的,正面的行為。那麼問題就在於,此類行為的好與壞,是由何種標準定義的,是否能經過檢驗。當然,以人們常規的認識,上述行為必然是好的行為。但,是否不符合以上行為的人群,其違約風險一定會高?按照以上的標准將人群進行區分,違約率是否會有顯著差異?其差異是否達到了統計學顯著的標准,從而可以作為結論使用?大數據提供了檢驗的方法,在其背後的所涵蓋的統計學,計量經濟學,以至於神經網路中,有大量的知識和技能用於驗證上述定義是否有其科學依據。如果——不幸的——上述行為只是基於一般認識所得出來的結論,不加驗證的將其納入到大數據的信用評分體系中,那麼最終得到的結果,對於大數據來說是可悲的。因為在這一方法論下,大數據只是作為約定俗稱的慣常思維的眼神,只是相當於海量的信貸專家坐在一起進行討論。我所希望的大數據,應該要像AlphaGo學習圍棋一樣,不管定式,不管手筋。從勝率的角度去評價每一個點位落子的價值,最終找出能夠走向勝利的最優下法。應用在信貸審核中,就是拋掉所有約定俗成的見解,去重新尋找經過大數據驗證的信用風險影響因素,並以此為基礎,重新建立信用風險審核的新體系。

4. 如何利用大數據做金融風控

大數據能夠進行數據變現的商業模式目前就是兩個,一個是精準營銷,典型的場景是商品推薦和精準廣告投放,另外一個是大數據風控,典型的場景是互聯網金融的大數據風控。

金融的本質是風險管理,風控是所有金融業務的核心。典型的金融借貸業務例如抵押貸款、消費貸款、P2P、供應鏈金融、以及票據融資都需要數據風控識別欺詐用戶及評估用戶信用等級。

傳統金融的風控主要利用了信用屬性強大的金融數據,一般採用20個緯度左右的數據,利用評分來識別客戶的還款能力和還款意願。信用相關程度強的數據 緯度為十個左右,包含年齡、職業、收入、學歷、工作單位、借貸情況、房產,汽車、單位、還貸記錄等,金融企業參考用戶提交的數據進行打分,最後得到申請人 的信用評分,依據評分來決定是否貸款以及貸款額度。其他同信用相關的數據還有區域、產品、理財方式、行業、繳款方式、繳款記錄、金額、時間、頻率等。普惠在線

互聯網金融的大數據風控並不是完全改變傳統風控,實際是豐富傳統風控的數據緯度。互聯網風控中,首先還是利用信用屬性強的金融數據,判斷借款人的還 款能力和還款意願,然後在利用信用屬性較弱的行為數據進行補充,一般是利用數據的關聯分析來判斷借款人的信用情況,藉助數據模型來揭示某些行為特徵和信用 風險之間的關系。

互聯網金融公司利用大數據進行風控時,都是利用多維度數據來識別借款人風險。同信用相關的數據越多地被用於借款人風險評估,借款人的信用風險就被揭示的更充分,信用評分就會更加客觀,接近借款人實際風險。

常用的互聯網金融大數據風控方式有以下幾種:

驗證借款人身份
驗證借款人身份的五因素認證是姓名、手機號、身份證號、銀行卡號、家庭地址。企業可以藉助國政通的數據來驗證姓名、身份證號,藉助銀聯數據來驗證銀行卡號和姓名,利用運營商數據來驗證手機號、姓名、身份證號、家庭住址。

如果借款人是欺詐用戶,這五個信息都可以買到。這個時候就需要進行人臉識別了,人臉識別等原理是調用國政通/公安局 API介面,將申請人實時拍攝的照片/視頻同客戶預留在公安的身份證進行識別,通過人臉識別技術驗證申請人是否是借款人本人。

其他的驗證客戶的方式包括讓客戶出示其他銀行的信用卡及刷卡記錄,或者驗證客戶的學歷證書和身份認證。
分析提交的信息來識別欺詐

大部分的貸款申請都從線下移到了線上,特別是在互聯網金融領域,消費貸和學生貸都是以線上申請為主的。
線上申請時,申請人會按照貸款公司的要求填寫多維度信息例如戶籍地址,居住地址,工作單位,單位電話,單位名稱等。如果是欺詐用戶,其填寫的信息往 往會出現一些規律,企業可根據異常填寫記錄來識別欺詐。例如填寫不同城市居住小區名字相同、填寫的不同城市,不同單位的電話相同、不同單位的地址街道相 同、單位名稱相同、甚至居住的樓層和號碼都相同。還有一些填寫假的小區、地址和單位名稱以及電話等。

如果企業發現一些重復的信息和電話號碼,申請人欺詐的可能性就會很高。

分析客戶線上申請行為來識別欺詐

欺詐用戶往往事先准備好用戶基本信息,在申請過程中,快速進行填寫,批量作業,在多家網站進行申請,通過提高申請量來獲得更多的貸款。

企業可以藉助於SDK或JS來採集申請人在各個環節的行為,計算客戶閱讀條款的時間,填寫信息的時間,申請貸款的時間等,如果這些申請時間大大小於 正常客戶申請時間,例如填寫地址信息小於2秒,閱讀條款少於3秒鍾,申請貸款低於20秒等。用戶申請的時間也很關鍵,一般晚上11點以後申請貸款的申請 人,欺詐比例和違約比例較高。

這些異常申請行為可能揭示申請人具有欺詐傾向,企業可以結合其他的信息來判斷客戶是否為欺詐用戶。
利用黑名單和灰名單識別風險

互聯網金融公司面臨的主要風險為惡意欺詐,70%左右的信貸損失來源於申請人的惡意欺詐。客戶逾期或者違約貸款中至少有30%左右可以收回,另外的一些可以通過催收公司進行催收,M2逾期的回收率在20%左右。

市場上有近百家的公司從事個人徵信相關工作,其主要的商業模式是反欺詐識別,灰名單識別,以及客戶徵信評分。反欺詐識別中,重要的一個參考就是黑名單,市場上領先的大數據風控公司擁有將近1000萬左右的黑名單,大部分黑名單是過去十多年積累下來的老賴名單,真正有價值的黑名單在兩百萬左右。

黑名單來源於民間借貸、線上P2P、信用卡公司、小額借貸等公司的歷史違約用戶,其中很大一部分不再有借貸行為,參考價值有限。另外一個主要來源是催收公司,催收的成功率一般小於於30%(M3以上的),會產生很多黑名單。

灰名單是逾期但是還沒有達到違約的客戶(逾期少於3個月的客戶),灰名單也還意味著多頭借貸,申請人在多個貸款平台進行借貸。總借款數目遠遠超過其還款能力。

黑名單和灰名單是很好的風控方式,但是各個徵信公司所擁有的名單僅僅是市場總量的一部分,很多互聯網金融公司不得不接入多個風控公司,來獲得更多的 黑名單來提高查得率。央行和上海經信委正在聯合多家互聯網金融公司建立統一的黑名單平台,但是很多互聯網金融公司都不太願意貢獻自家的黑名單,這些黑名單 是用真金白銀換來的教訓。另外如果讓外界知道了自家平台黑名單的數量,會影響其公司聲譽,降低公司估值,並令投資者質疑其平台的風控水平。

利用移動設備數據識別欺詐
行為數據中一個比較特殊的就是移動設備數據反欺詐,公司可以利用移動設備的位置信息來驗證客戶提交的工作地和生活地是否真實,另外來可以根據設備安裝的應用活躍來識別多頭借貸風險。

欺詐用戶一般會使用模擬器進行貸款申請,移動大數據可以識別出貸款人是否使用模擬器。欺詐用戶也有一些典型特徵,例如很多設備聚集在一個區域,一起 申請貸款。欺詐設備不安裝生活和工具用App,僅僅安裝和貸款有關的App,可能還安裝了一些密碼破譯軟體或者其他的惡意軟體。

欺詐用戶還有可能不停更換SIM卡和手機,利用SIM卡和手機綁定時間和頻次可以識別出部分欺詐用戶。另外欺詐用戶也會購買一些已經淘汰的手機,其機器上面的操作系統已經過時很久,所安裝的App版本都很舊。這些特徵可以識別出一些欺詐用戶。

利用消費記錄來進行評分

大會數據風控除了可以識別出壞人,還可以評估貸款人的還款能力。過去傳統金融依據借款人的收入來判斷其還款能力,但是有些客戶擁有工資以外的收入,例如投資收入、顧問咨詢收入等。另外一些客戶可能從父母、伴侶、朋友那裡獲得其他的財政支持,擁有較高的支付能力。

按照傳統金融的做法,在家不工作照顧家庭的主婦可能還款能力較弱。無法給其提供貸款,但是其丈夫收入很高,家庭日常支出由其太太做主。這種情況,就需要消費數據來證明其還款能力了。

常用的消費記錄由銀行卡消費、電商購物、公共事業費記錄、大宗商品消費等。還可以參考航空記錄、手機話費、特殊會員消費等方式。例如頭等艙乘坐次數,物業費高低、高爾夫球俱樂部消費,遊艇俱樂部會員費用,奢侈品會員,豪車4S店消費記錄等消費數據可以作為其信用評分重要參考。

互聯網金融的主要客戶是屌絲,其電商消費記錄、旅遊消費記錄、以及加油消費記錄都可以作為評估其信用的依據。有的互聯金融公司專門從事個人電商消費數據分析,只要客戶授權其登陸電商網站,其可以藉助於工具將客戶歷史消費數據全部抓取並進行匯總和評分。

參考社會關系來評估信用情況

物以類聚,人與群分。一般情況下,信用好的人,他的朋友信用也很好。信用不好的人,他的朋友的信用分也很低,

參考借款人常聯系的朋友信用評分可以評價借款人的信用情況,一般會採用經常打電話的朋友作為樣本,評估經常聯系的幾個人(不超過6六個人)的信用評分,去掉一個最高分,去掉一個最低分,取其中的平均值來判斷借款人的信用。這種方式挑戰很大,只是依靠手機號碼來判斷個人信用可信度不高。一般僅僅用於反欺詐識別,利用其經常通話的手機號在黑名單庫裡面進行匹配,如果命中,則此申請人的風險較高,需要進一步進行調查。

參考借款人社會屬性和行為來評估信用

參考過去互聯網金融風控的經驗發現,擁有伴侶和子女的借款人,其貸款違約率較低;年齡大的人比年齡低的人貸款違約率要高,其中50歲左右的貸款人違 約率最高,30歲左右的人違約率最低。貸款用於家庭消費和教育的貸款人,其貸款違約率低;聲明月收入超過3萬的人比聲明月收入低於1萬5千的人貸款違約率 高;貸款次數多的人,其貸款違約率低於第一次貸款的人。

經常不交公共事業費和物業費的人,其貸款違約率較高。經常換工作,收入不穩定的人貸款違約率較高。經常參加社會公益活動的人,成為各種組織會員的人,其貸款違約率低。經常更換手機號碼的人貸款違約率比一直使用一個電話號碼的人高很多。

午夜經常上網,很晚發微博,生活不規律,經常在各個城市跑的申請人,其帶貸款違約率比其他人高30%。刻意隱瞞自己過去經歷和聯系方式,填寫簡單信 息的人,比信息填寫豐富的人違約概率高20%。借款時間長的人比借款時間短短人,逾期和違約概率高20%左右。擁有汽車的貸款人比沒有汽車的貸款人,貸款 違約率低10%左右。

利用司法信息評估風險

涉毒涉賭以及涉嫌治安處罰的人,其信用情況不是太好,特別是涉賭和涉毒人員,這些人是高風險人群,一旦獲得貸款,其貸款用途不可控,貸款有可能不會得到償還。

尋找這些涉毒涉賭的嫌疑人,可以利用當地的公安數據,但是難度較大。也可以採用移動設備的位置信息來進行一定程度的識別。如果設備經常在半夜出現在 賭博場所或賭博區域例如澳門,其申請人涉賭的風險就較高。另外中國有些特定的地區,當地的有一部分人群從事涉賭或涉賭行業,一旦申請人填寫的居住地址或者 移動設備位置信息涉及這些區域,也要引起重視。涉賭和涉毒的人員工作一般也不太穩定或者沒有固定工作收入,如果申請人經常換工作或者經常在某一個階段沒有 收入,這種情況需要引起重視。涉賭和涉毒的人活動規律比較特殊,經常半夜在外面活動,另外也經常住本地賓館,這些信息都可以參考移動大數據進行識別。

總之,互聯網金融的大數據風控採用了用戶社會行為和社會屬性數據,在一定程度上補充了傳統風控數據維度不足的缺點,能夠更加全面識別出欺詐客戶,評價客戶的風險水平。互聯網金融企業通過分析申請人的社會行為數據來控制信用風險,將資金借給合格貸款人,保證資金的安全。

5. 當傳統金融模式遇到了大數據後會有哪些轉變

  1. 大數據對金融最重要的影響,在於其能使一部分長尾需求得到滿足。

  2. 金融行業是很有專互聯網機會的行業,屬更是很有大數據潛力的行業。

  3. 大數據時代,互聯網創新、平等、普惠的精神,將慢慢融入金融。這種二八定律會慢慢改變。

  4. 二八定律:在當前利率非完全市場化與小微企業抵押擔保品欠缺的情況下,採用傳統信貸技術從事小微金融,需付出的邊際成本與服務大企業相差不大,在信貸供給資源仍顯稀缺的情形之下,銀行具有提高授信門檻以迫使高風險客戶退出信貸市場的動機,銀行服務 80% 低端客戶所帶來的利潤微乎其微,還不如將這部分客戶趕出市場,全力支持 20% 的高端客戶。

  5. 大數據(big data),是指無法在可承受的時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合。

6. 大數據助推個人信貸「線上化」

大數據助推個人信貸「線上化」
現代信息技術的不斷進步,讓大量銀行業務得以通過電腦或手機完成。而在大數據的助力下,以往周期冗長、手續繁瑣的信貸業務也開始嘗試「線上化」。
中國平安旗下平安普惠今年8月17日上線了房屋抵押貸款新品種「宅e貸」。藉助這一產品,貸款從申請到審批都可以在線上完成。客戶提交申請後,貸款資金最快4個小時就能到賬。
據中國平安信用保證保險事業部總經理助理秦福榮介紹,目前「宅e貸」試點城市超過40個,短短幾個月其新增貸款規模在平安普惠旗下所有貸款品種中佔比已超過一成。
秦福榮表示,「宅e貸」之所以能實現從申請到審批的「線上化」,得益於強大數據的支撐。目前「宅e貸」與5家第三方機構達成合作,加上平安集團 內部的大數據系統,構成了便捷高效的評估體系。秦福榮透露,「宅e貸」正在探索租用平台、全流程代理等多種模式,與合作夥伴分享線上房屋抵押貸款市場機 會。
「宅e貸」進軍個人房屋抵押貸款,只是大數據助力傳統信貸業務「線上化」的眾多案例之一。
去年末,建設銀行率先推出個人網上自助貸款產品「快貸」,依託的便是建行客戶資產、負債和信用等海量金融信息。浦發銀行與中國移動聯手正式上線「和利貸」系統,藉助後者的交易往來記錄,為客戶提供標准化小額信用貸款。
在金融界人士看來,未來要讓更多信貸產品實現「線上化」,仍有賴補上徵信體系這一「短板」。
曾在銀行業從業數十年的秦福榮坦言,最怕就是碰到沒有任何信用記錄、無從評估信用水平的「小白」。一些銀行界人士也表示,央行建立了較為完善的徵信系統,銀行內部也有大量的信用數據,但仍難以滿足開發更多線上貸款品種的需求。
本月初在上海舉行的「2015互聯網金融與徵信體系建設高峰論壇」上,中國人民大學法學院副院長楊東表示,在「互聯網+」時代,大數據金融使得 個體在網路上的微觀行為可以得到綜合分析及有效利用。每個老百姓、每家企業的交易行為都被納入金融大數據的收集范圍,這也奠定了大數據金融徵信的基礎。
在楊東看來,完善互聯網金融徵信體系不僅需要建立徵信資料庫之間的信息共享機制,還要完善互聯網徵信監管機制,並加大對失信行為的懲戒力度。徵信行業本身,也需要實現從官方主導向民間發展的轉變。
秦福榮也表示,藉助網路購物、第三方支付等途徑,消費信息、行為模式、家庭狀況等大數據正在幫助互聯網金融打造一個「不一樣的信用體系」。這也有助於包括信貸在內的更多傳統銀行業務走向「線上」。

7. 什麼是大數據徵信與傳統徵信有何區別

如今大數據概念已經廣為傳播,什麼都能夠和大數據扯上關系,似乎有大數據才更可靠。就能貸款的徵信系統也開始用上大數據了。那麼什麼是大數據徵信呢?其實支付寶花唄,京東白條,p2p網路借貸等都是建立在大數據基礎上的信用貸款模式。
一般來說,的我國的徵信系統數據主要從各種國家及或是金融機構外加例如公共機構的數據為判斷。而大數據徵信是什麼呢?對大數據無公認的定義,一般認為大數據是指所涉及的資料量規模巨大到無法通過主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為服務於經營決策的資訊。簡單的說,例如電商行業比如淘寶網、京東電商做出判斷的消費數據信息就是大數據徵信,他們和一些第三方的互聯網金融機構都有屬於自己的可靠大數據徵信來源。而這些依靠大數據為信用依據所給出的網路虛擬信用貸款服務,似乎已經成為了互聯網金融未來的發展趨勢。
大數據徵信與傳統徵信的區別
從類型上看,傳統徵信公司採用的是同業信息分享模式,即客戶查詢一條信息需要先共享一條相應的信息;而互聯網公司則是利用自身的海量數據優勢和用戶信息,從財富、安全、守約、消費、社交等幾個緯度來評判,為用戶建立信用報告,形成以大數據為基礎的海量資料庫。
值得一提的是,傳統徵信模式面臨的難題是徵信數據不全、平台上傳數據積極性低、更新不及時、接入門檻高等問題。而大數據徵信模式,其優點在於數據來源廣泛,彌補傳統徵信覆蓋面不足的缺陷;數據類型多樣化,不局限於信貸數據,更能全面反映個人信用情況。其難點在於:信息過多引起的數據雜亂,整合多方數據困難,且數據相關性分析需要較長時間和實踐來檢驗,短期內信用評價數據精準性較低。此外,大數據徵信也面臨著法律風險,在個人隱私保護上較難把控。

閱讀全文

與大數據如何彌補傳統信貸的不足相關的資料

熱點內容
maya粒子表達式教程 瀏覽:84
抖音小視頻如何掛app 瀏覽:283
cad怎麼設置替補文件 瀏覽:790
win10啟動文件是空的 瀏覽:397
jk網站有哪些 瀏覽:134
學編程和3d哪個更好 瀏覽:932
win10移動硬碟文件無法打開 瀏覽:385
文件名是亂碼還刪不掉 瀏覽:643
蘋果鍵盤怎麼打開任務管理器 瀏覽:437
手機桌面文件名字大全 瀏覽:334
tplink默認無線密碼是多少 瀏覽:33
ipaddgm文件 瀏覽:99
lua語言編程用哪個平台 瀏覽:272
政采雲如何導出pdf投標文件 瀏覽:529
php獲取postjson數據 瀏覽:551
javatimetask 瀏覽:16
編程的話要什麼證件 瀏覽:94
錢脈通微信多開 瀏覽:878
中學生學編程哪個培訓機構好 瀏覽:852
榮耀路由TV設置文件共享錯誤 瀏覽:525

友情鏈接