❶ 建立數學模型流程
1)建模准備
數學建模是一項創新活動,它所面臨的課題是人們在生產和科研中為了使認識和實踐進一步發展必須解決的問題。「什麼是問題?問題就是事物的矛盾,哪裡有沒解決的矛盾,哪裡就有問題」。因此發現課題的過程就是分析矛盾的過程貫穿生產和科技中的根本矛盾是認識和實踐的矛盾,我們分析這些矛盾,從中發現尚未解決的矛盾,就是找到了需要解決的實際問題,如果這些實際問題需要給出定量的分析和解答,那麼就可以把這些實際問題確立為數學建模的課題,建模准備就是要了解問題的實際背景,明確建模的目的,掌握對象的各種信息,弄清實際對象的特徵,情況明才能方法對。
(2)建模假設
作為課題的原型都是復雜的、具體的,是質和量、現象和本質、偶然和必然的統一體,這樣的原型,如果不經過抽象和簡化,人們對其認識是困難的,也無法准確把握它的本質屬性。建模假設就是根據實際對象的特徵和建模的目的,在掌握必要資料的基礎上,對原型進行抽象、簡化,把那些反映問題本質屬性的形態、量及其關系抽象出來,簡化掉那些非本質的因素,使之擺脫原型的具體復雜形態,形成對建模有用的信息資源和前提條件,並且用精確的語言作出假設,是建模過程關鍵的一步。對原型的抽象、簡化不是無條件的,一定要善於辨別問題的主要方面和次要方面,果斷地抓住主要因素,拋棄次要因素,盡量將問題均勻化、線性化,並且要按照假設的合理性原則進行,假設合理性原則有以下幾點:
①目的性原則:從原型中抽象出與建模目的有關的因素,簡化掉那些與建模目的無關的或關系不大的因素。
②簡明性原則:所給出的假設條件要簡單、准確,有利於構造模型。
③真實性原則:假設條件要符合情理,簡化帶來的誤差應滿足實際問題所能允許的誤差范圍。
④全面性原則:在對事物原型本身作出假設的同時,還要給出原型所處的環境條件。
(3)模型建立
在建模假設的基礎上,進一步分析建模假設的各條件首先區分哪些是常量,哪些是變數,哪些是已知量,哪些是未知量;然後查明各種量所處的地位、作用和它們之間的關系,建立各個量之間的等式或不等式關系,列出表格、畫出圖形或確定其他數學結構,選擇恰當的數學工具和構造模型的方法對其進行表徵,構造出刻畫實際問題的數學模型。
在構造模型時究竟採用什麼數學工具,要根據問題的特徵、建模的目的要求以及建模者的數學特長而定 可以這樣講,數學的任一分支在構造模型時都可能用到,而同一實際問題也可以構造出不同的數學模型,一般地講,在能夠達到預期目的的前提下,所用的數學工具越簡單越好。
在構造模型時究竟採用什麼方法構造模型,要根據實際問題的性質和建模假設所給出的建模信息而定,就以系統論中提出的機理分析法和系統辨識法來說,它們是構造數學模型的兩種基本方法。機理分析法是在對事物內在機理分析的基礎上,利用建模假設所給出的建模信息或前提條件來構造模型;系統辨識法是對系統內在機理一無所知的情況下利用建模假設或實際對系統的測試數據所給出的事物系統的輸入、輸出信息來構造模型。隨著計算機科學的發展,計算機模擬有力地促進了數學建模的發展,也成為一種構造模型的基本方法,這些構模方法各有其優點和缺點,在構造模型時,可以同時採用,以取長補短,達到建模的目的。
(4)模型求解
構造數學模型之後,再根據已知條件和數據分析模型的特徵和結構特點,設計或選擇求解模型的數學方法和演算法,這其中包括解方程、畫圖形、證明定理、邏輯運算以及穩定性討論,特別是編寫計算機程序或運用與演算法相適應的軟體包,並藉助計算機完成對模型的求解。
(5)模型分析
根據建模的目的要求,對模型求解的數字結果,或進行變數之間的依賴關系分析,或進行穩定性分析,或進行系統參數的靈敏度分析,或進行誤差分析等。通過分析,如果不符合要求,就修改或增減建模假設條件,重新建模,直到符合要求;通過分析如果符合要求,還可以對模型進行評價、預測、優化等。
(6)模型檢驗
模型分析符合要求之後,還必須回到客觀實際中去對模型進行檢驗,用實際現象、數據等檢驗模型的合理性和適用性,看它是否符合客觀實際,若不符合,就修改或增減假設條件,重新建模,循環往復,不斷完善,直到獲得滿意結果 目前計算機技術已為我們進行模型分析、模型檢驗提供了先進的手段,充分利用這一手段,可以節約大量的時間、人力和物力。
(7)模型應用
模型應用是數學建模的宗旨,也是對模型的最客觀、最公正的檢驗 因此,一個成功的數學模型,必須根據建模的目的,將其用於分析、研究和解決實際問題,充分發揮數學模型在生產和科研中的特殊作用。
以上介紹的數學建模基本步驟應該根據具體問題靈活掌握,或交叉進行,或平行進行,不拘一格地進行數學建模則有利於建模者發揮自己的才能。
關於軟體有matlab lindo 等
❷ 如何創建數據模型
建立數據模型
1、建立實體聯系模型
1.1、實體聯系模型的基本構成
實體聯系(ER)數據模型所採用的三個主要概念是:實體集、聯系集和屬性。
實體集是具有相同類型及相同性質(屬性)的實體集合。聯系集是指同類聯系的集合。
在ER模型中,用矩形框表示實體集(矩形框中寫上實體名),用橢圓表示屬性(橢圓中標上屬性名),實體的主碼用下劃線表示。實體集之間的聯系集用菱形表示,並用無向邊與相關實體集連接,菱形中寫上聯系名,無向邊上寫上聯系集的類型。
實體集之間的聯系類型有一對一,一對多,多對多
1.2、多元聯系
在ER模型中,可以表示兩個以上實體集之間的聯系,稱為多元聯系。
一個多元聯系集總可以用多個不同的二元聯系集來替代。考慮一個抽象的三元聯系集R,它聯系了實體集A、B、C。可引進一實體集E替代聯系R,然後,為實體集E和A、B、C建立三個新的二元聯系集,分別命名為RA、RB、RC。可以將這一過程直接推廣到n元聯系集的情況。所以,理論上可以限制E R模型中只包含二元聯系集。
1.3、聯系的屬性
聯系也可以具有單獨的屬性。
1.4、自身聯系
在一個聯系中,一個實體集可以出現兩次或多次,扮演多個不同角色,此種情況稱為實體集的自身聯系。一個實體集在聯系中出現多少次我們就從聯繫到這個實體集畫多少條線,到實體集的每條線代表該實體集所扮演的不同角色。
1.5、子類和Is-a層次聯系
在信息世界中,常常需要描述這樣的實體集A,A屬於另一實體集B。A中的實體都有特殊的屬性需要描述,並且這些特殊屬性對B中其他的實體無意義。在ER模型中,稱A是B的子類,或B是A的父類。兩類實體之間存在一種層次聯系——Is-a(屬於)。
如果A和B存在Is-a聯系,則A中的每個實體a只和B中的一個實體b相聯系,而B中的每一個實體最多和A中的一個實體相聯系。從這個意義上說,A和B存在一對一的聯系。但事實上,a和b是同一事物。A可以繼承B中的所有屬性,又可以有自己特殊的屬性說明。用來區分A的主碼也就是B的主碼。
2、ER模型向關系模型的轉化
ER模型是概念模型的表示。要使計算機能處理模型中的信息,首先必須將它轉化為具體的DBMS能處理的數據模型。ER模型可以向現有的各種數據模型轉換,而目前市場上的DBMS大部分是基於關系數據模型的, ER模型向關系數據模型的轉換方法
關系模型的邏輯結構是一系列關系模式(表)的集合。將ER模型轉化為關系模式主要需解決的問題是:如何用關系表達實體集以及實體集間的聯系。
ER模型向關系模型轉換的一般規則和步驟:
(1)將每一個實體集轉換為一個關系模式,實體集的屬性轉換成關系的屬性,實體集的碼即對應關系的碼。
(2)將每個聯系集轉換成關系模式。對於給定的聯系R,由它所轉換的關系具有以下屬性:
聯系R單獨的屬性都轉換為該關系的屬性;
聯系R涉及到的每個實體集的碼屬性(集)轉換為該關系的屬性。轉換後關系的碼有以下幾種情況:
· 若聯系R為1∶1聯系,則每個相關實體的碼均可作為關系的候選碼;
· 若聯系R為1∶ n聯系,則關系的碼為n端實體的碼;
· 若聯系R為m∶ n聯系,則關系的碼為相關實體碼的集合。
有時,聯系本身的一些屬性也必須是結果關系的碼屬性。
(3)根據具體情況,把具有相同碼的多個關系模式合並成一個關系模式。
❸ 如何使用PowerDesigner創建物理數據模型
物理模型能夠直觀的反應出當前資料庫的結構。在資料庫中的表、視圖、存儲過程等資料庫對象都可以在物理模型中進行設計。在powerdesigner中創建物理數據模型的具體步驟如下圖所示:新建一個物理模型後,此時就會進入物理模型的設計面板,如下圖所示:系統會顯示一個專門用於物理模型設計的工具欄如下圖所示:若要在物理模型中添加一個表,單擊按鈕,然後再到模型設計面板中單擊一次便可以添加一個表,系統默認為表命名為Table_n,這里的n會隨著添加的表增多而順序增加。添加的表是沒有任何的列的,如下圖所示:單擊工具欄的按鈕,講滑鼠切換回指針模式,然後雙擊一個表,系統將打開表的屬性窗口,在General選項卡中可以設置表的Name、Code等屬性例如我們要新建一個學生表(Student),則可以修改Name和Code單擊【Columns】切換到列選項卡,在下面的列表中可以添加表中的列,Name是模型上顯示的名稱,Code是生成的實際列名,後面的3個復選框P代表主鍵(primary key),F代表外鍵(foreign key),M代表不能為空。為學生表添加列,如下圖所示:點擊【確定】按鈕,就可以創建完成了,如下圖所示:
❹ 數據建模的如何進行
概念建模
數據建模大致分為三個階段,概念建模階段,邏輯建模階段和物理建模階段。其中概念建模和邏輯建模階段與資料庫廠商毫無關系,換言之,與MySQL,SQL Server,Oracle沒有關系。物理建模階段和資料庫廠商存在很大的聯系,因為不同廠商對同一功能的支持方式不同,如高可用性,讀寫分離,甚至是索引,分區等。
概念建模階段
實際工作中,在概念建模階段,主要做三件事:
1. 客戶交流
2. 理解需求
3. 形成實體
這也是一個迭代,如果先有需求,盡量去理解需求,明白當前項目或者軟體需要完成什麼,不明白或者不確定的地方和客戶及時交流,和客戶double confirm過的需求,落實到實體(Package);但是好多時候我們需要通過先和客戶交流,進而將交流結果落實到需求,之後進一步具體到實體;本文可能會涉及到一些來自於EA(Enterprise Architect 7.1)建模術語,(EA中將每個實體視為一個Package)。這里並不對各種建模工具進行比較,如Visio,EA,PowerDesigner, ERWin等;其實作為員工的我們選擇性很少,公司有哪個產品的Licence,我們就用哪個吧。
舉例說明:在一個B2C電子商務網站中,這樣的需求再普通不過了:客戶可以在該網站上自由進行購物!我們就以這個簡單例子,對其進行細分,來講解整個數據建模的過程,通過上面這句話,我們可以得出三個實體:客戶,網站,商品;就像Scrum(敏捷開發框架的一種)中倡導的一樣每個Sprint,都要產出確確實實的東西,OK,概念建模階段,我們就要產出實體。客戶和商品(我們將網站這個實體扔掉,不需要它。)
在創建這兩個實體(Package)的時候,我們記得要講對需求的理解,以及業務規則,作為Notes添加到Package中,這些信息將來會成為數據字典中非常重要的一部分,也就是所謂的元數據。BTW,EA或者其他建模工具應該都可以自動生成數據字典,只不過最終生成的格式可能不太一樣。如在Customer這個Package的Notes上,我們可以這樣寫,用戶都要通過填寫個人基本信息以及一個郵箱來注冊賬戶,之後使用這個郵箱作為登錄帳號登錄系統進行交易。
在概念建模階段,我們只需要關注實體即可,不用關注任何實現細節。很多人都希望在這個階段把具體表結構,索引,約束,甚至是存儲過程都想好,沒必要!!因為這些東西使我們在物理建模階段需要考慮的東西,這個時候考慮還為時尚早。可能有的人在這個階段擔心會不會丟掉或者漏掉一些實體?也不用擔心,2013年好多公司都在採用Scrum的開發模式,只要你當前抽象出來的實體滿足當前的User Story,或者當前的User Story裡面的實體,你都抽象出來了,就可以了!如果你再說,我們User Story太大,實體太多,不容易抽象,那就真沒辦法了,建議你們的團隊重新開Sprint 計劃會議。
邏輯建模
邏輯建模階段
對實體進行細化,細化成具體的表,同時豐富表結構。這個階段的產物是,可以在資料庫中生成的具體表及其他資料庫對象(包括,主鍵,外鍵,屬性列,索引,約束甚至是視圖以及存儲過程)。我在實際項目中,除了主外鍵之外,其他的資料庫對象我都實在物理建模階段建立,因為其他資料庫對象更貼近於開發,需要結合開發一起進行。如約束,我們可以在web page上做JavaScript約束,也可以在業務邏輯層做,也可以在資料庫中做,在哪裡做,要結合實際需求,性能以及安全性而定。
針對Customer這個實體以及我們對需求的理解,我們可以得出以下幾個表的結構,用戶基本信息表(User),登錄賬戶表(Account),評論表(Commnets,用戶可能會對產品進行評價),當然這個案例中我們還會有更多的表,如用戶需要自己上傳頭像(圖片),我們要有Picture表。
針對產品實體,我們需要構建產品基本信息表(Proct),通常情況下,我們產品會有自己的產品大類(ProctCategory)甚至產品小類(ProctSubCategory),某些產品會因為節假日等原因進行打折,因為為了得到更好的Performance我們會創建相應ProctDiscount表,一個產品會有多張圖片,因此產品圖片表(ProctPicture)以及產品圖片關系表(ProctPictureRelationship),(當然我們也可以只設計一張Picture表,用來存放所有圖片,用戶,產品以及其他)有人說產品和圖片是一對多的關系,不需要創建一個關系表啊?是的,我認為只要不是一對一的關系,我都希望創建一個關系表來關聯兩個實體。這樣帶來的好處,一是可讀性更好,實現了實體和表一一對應的關系,二是易於維護,我們只需要維護一個關系表即可,只有兩列(ProctID和PictureID),而不是去維護一個Picture表。
客戶進行交易,即要和商品發生關系,我們需要Transaction表,一個客戶會買一個或者多個商品,因為一筆Transaction會涉及一個或多個Procts,因此一個Transaction和ProctDiscount之間的關系(ProctDiscount和Proct是一一對應的關系)需要創建,我們稱其為Item表,裡面保存TransactionID以及這筆涉及到的ProctDiscountID(s),這里插一句,好多系統都需要有審計功能,如某個產品歷年來的打折情況以及與之對應的銷售情況,我們這里暫不考慮審計方面的東西。
就這樣,我們根據需求我們確定下來具體需要哪些表,進一步豐富每一個表屬性(Column),當然這裡面會涉及主鍵的選取,或者是使用代理鍵(Surrogate Key),外鍵的關聯,約束的設置等細節,這里筆者認為只要能把每個實體屬性(Column)落實下來就是很不錯了,因為隨著項目的開展,很多表的Column都會有相應的改動。至於其他細節,不同資料庫廠商,具體實現細節不盡相同。關於主鍵的選取多說一句,有的人喜歡所有的表都用自增長ID作為主鍵,而有的人希望找到唯一能標識當前記錄的一個屬性或者多個屬性作為主鍵;自增長ID作為代理主鍵,對於將來以多個類似當前Transaction System作為數據源,構建數據倉庫的時候,這些自增長ID主鍵會是一個麻煩(多個系統中,相同表存在大量主鍵重復);使用一個屬性或多個屬性作為作為主鍵,不管主鍵是可編輯的,讀寫效率是我們必須考慮得。所以並沒有一個放之四海而皆準的原則,筆者只是給大家推薦一些考慮的因素。
物理建模
物理建模階段
EA可以將在邏輯建模階段創建的各種資料庫對象生成為相應的SQL代碼,運行來創建相應具體資料庫對象(大多數建模工具都可以自動生成DDL SQL代碼)。但是這個階段我們不僅僅創建資料庫對象,針對業務需求,我們也可能做如數據拆分(水平或垂直拆分),如B2B網站,我們可以將商家和一般用戶放在同一張表中,但是針對PERFORMANCE考慮,我們可以將其分為兩張表;隨業務量的上升,Transaction表越來越大,整個系統越來越慢,這個時候我們可以考慮數據拆分,甚至是讀寫分離(即實現MASTER-SLAVE模式,MYSQL/SQLSERVER可以使用Replication,當然不同存儲引擎採用不同的方案),這個階段也會涉及到集群的事情,如果你是架構師或者數據建模師,這個時候你可以跟DBA說,Alright,I am done with it,now is your show time.
相信大家都知道範式,更有好多人把3NF奉為經典,3NF確實很好,但是3NF是幾十年前提出來的,那個時候的數據量以及訪問頻率和2012年完全不是一個數量級的;因此我們絕對不能一味地遵守3NF;在整個數據建模過程中,在保證數據結構清晰的前提下,盡量提高性能才是我們關注的要點,因此筆者大力倡導數據適當冗餘!
上面筆者是結合一些實際例子表達自己對數據建模的觀點,希望對讀著有用。在數據建模過程中,不要希望一步到位將資料庫設計完整,筆者不管是針對data warehouse還是Transactional Database設計,從來沒有過一次成功的經歷。隨著項目的進行,客戶和開發團隊對業務知識與日增長,因此原來的設計也在不斷完善中。畢竟,數據建模或者設計資料庫不是我們的最終目的,我們需要的是一個健壯,性能優越,易擴展,易使用的軟體!
❺ 大數據建模一般有哪些步驟
1、數據測量
數據測量包括ECU內部數據獲取,車內匯流排數據獲取以及模擬量數據獲取,特別是對於新能源汽車電機、逆變器和整流器等設備頻率高達100KHz的信號測量,ETAS提供完整的解決方案。
2、大數據管理與分析
目前的汽車嵌入式控制系統開發環境下,人們可以通過各種各樣不同的途徑(如真實物體、模擬環境、模擬計算等)獲取描述目標系統行為和表現的海量數據。
正如前文所述,ETAS數據測量環節獲取了大量的ECU內部以及模擬量數據,如何存儲並有效地利用這些數據,並從中發掘出目標系統的潛力,用以指引進一步的研發過程,成為極其重要的課題。
3、虛擬車輛模型建模與校準
基於大數據管理與分析環節對測量數據進行的分析,我們得到了一些參數之間的相互影響關系,以及相關物理變數的特性曲線。如何將這些隱含在大量數據中的寶貴的知識和數據保存下來並為我們後續的系統模擬分析所用呢?
模型是一個比較好的保存方式,我們可以通過建立虛擬車輛及虛擬ECU模型庫,為後續車輛及ECU的開發驗證提供標准化的模擬模型。ETAS除提供相關車輛子系統模型,還提供基於數據的建模和參數校準等完整解決方案。
4、測試與驗證(XiL)
在測試與驗證環節,通常包含模型在環驗證(MiL),軟體在環驗證(SiL),虛擬測試系統驗證(VTS)以及硬體在環驗證(HiL)四個階段,ETAS提供COSYM實現在同一軟體平台上開展四個環節模擬驗證工作。
關於大數據建模一般有哪些步驟,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❻ 數據挖掘建模有哪些步驟
1.定義商業問題,數據挖掘的中心價值主要在於商業問題上,所以初步階段必須對組織的問題與需求深入了解,經過不斷與組織討論與確認之後,擬訂一個詳盡且可達成的方案。
2.數據理解,定義所需要的數據,收集完整數據,並對收集的數據做初步分析,包括識別數據的質量問題、對數據做基本觀察、除去雜訊或不完整的數據,可提升數據預處理的效率,接著設立假設前提。
3.數據預處理,因為數據源不同,常會有格式不一致等問題。因此在建立模型之前必須進行多次的檢查修正,以確保數據完整並得到凈化。
4.建立模型,根據數據形式,選擇最適合的數據挖掘技術並利用不同的數據進行模型測試,以優化預測模型,模型愈精準,有效性及可靠度愈高,對決策者做出正確的決策愈有利。
5.評價和理解,在測試中得到的結果,只對該數據有意義。實際應用中,使用不同的數據集其准確度便會有所差異,因此,此步驟最重要的目的便是了解是否有尚未被考慮到的商業問題盲點。
6.實施,數據挖掘流程通過良性循環,最後將整合過後的模型應用於商業,但模型的完成並非代表整個項目完成,知識的獲得也可以通過組織化、自動化等機制進行預測應用,該階段包含部署計劃、監督、維護、傳承與最後的報告結果,形成整個工作循環。
❼ 資料庫的設計一般經過哪幾個階段
資料庫設計可以分為概念結構設計、邏輯結構設計和物理結構設計三個階段。
(1)概念結構設計。這是資料庫設計的第一個階段,在管理信息系統的分析階段,已經得到了系統的數據流程圖和數據字典,現在要結合數據規范化的理論,用一種數據模型將用戶的數據需求明確地表示出來。
概念數據模型是面向問題的模型,反映了用戶的現實工作環境,是與資料庫的具體實現技術無關的。建立系統概念數據模型的過程叫做概念結構設計。
(2)邏輯結構設計。根據已經建立的概念數據模型,以及所採用的某個資料庫管理系統軟體的數據模型特性,按照一定的轉換規則,把概念模型轉換為這個資料庫管理系統所能夠接受的邏輯數據模型。不同的資料庫管理系統提供了不同的邏輯數據模型,如層次模型、網狀模型、關系模型等。
(3)物理結構設計。為一個確定的邏輯數據模型選擇一個最適合應用要求的物理結構的過程,就叫做資料庫的物理結構設計。資料庫在物理設備上的存儲結構和存取方法稱為資料庫的物理數據模型。
❽ 建模步驟
(一)確定性建模
儲層建模的主要目的是將儲層結構和儲層參數的變化在二維或三維空間用圖形顯示出來。一般而言,儲層地質建模有以下四個主要步驟。
1.數據准備和資料庫的建立
儲層建模一般需要以下四大類數據(庫)。
(1)坐標數據。包括井位坐標、深度、地震測網坐標等。
(2)分層數據。各井的層組劃分與對比數據、地震資料解釋的層面數據等。
(3)斷層數據。包括斷層的位置、產狀、斷距等。
(4)儲層數據。各井各層組砂體頂底界深度、孔隙度、滲透率、含油飽和度等。
2.建立地層格架模型
地層格架模型是由坐標數據、分層數據和斷層數據建立的疊合層面模型,即將各井的相同層組按等時對比連接起來,形成層面模型,然後利用斷層數據,將斷層與層面模型進行組合,建立地層的空間格架,並進行網格化。
3.二維或三維空間賦值
利用井所提供的數據對地層格架的每個網格進行賦值,建立二維或三維儲層數據體。
4.圖形處理與顯示
對所建數據體進行圖形變換,並以圖形的形式顯示出來。
(二)隨機建模
隨機建模的步驟與確定性建模有所差別,主要有以下五個步驟。
1.建立原始資料庫
任何儲層模型的建立都是從資料庫開始的,但與確定性建模資料庫不同的是,用於隨機建模的資料庫分為兩大類,第一類是原始資料庫(與確定性建模相同),包括坐標、分層、斷層和儲層數據;第二類是隨機模擬需要輸入的統計特徵數據。
2.建立定性地質概念模型
根據原始資料庫及其他基礎地質資料,建立定性儲層地質概念模型,如沉積相分布、砂體連續性、儲層非均質性模型等,以用於選擇模擬參數和指導隨機模型的優選。
3.確定模擬輸入的統計特徵參數
統計特徵參數包括變異函數(岩性指標變異系數和岩石物性變異函數)特徵值、概率密度函數特徵值(砂岩面積或體積密度、岩石物性概率密度函數)、砂體寬厚比、長寬比等。
4.隨機模擬,建立一簇隨機模型
應用合適的隨機模擬方法進行隨機建模,得出一簇隨機模型。在建模過程中,可採用兩步建模法,先建立離散的儲層結構模型,然後在此基礎上建立連續的儲層參數分布模型。
5.隨機模型的優選
對於建立的一簇隨機模型,應根據儲層地質概念模型對其進行優選,選擇一些接近實際地質情況的隨機模型作為下一步油藏數值模擬的輸入。
❾ 數據分析建模步驟有哪些
1、分類和聚類
分類演算法是極其常用的數據挖掘方法之一,其核心思想是找出目標數據項的共同特徵,並按照分類規則將數據項劃分為不同的類別。聚類演算法則是把一組數據按照相似性和差異性分為若干類別,使得同一類別數據間的相似性盡可能大,不同類別數據的相似性盡可能小。分類和聚類的目的都是將數據項進行歸類,但二者具有顯著的區別。分類是有監督的學習,即這些類別是已知的,通過對已知分類的數據進行訓練和學習,找到這些不同類的特徵,再對未分類的數據進行分類。而聚類則是無監督的學習,不需要對數據進行訓練和學習。常見的分類演算法有決策樹分類演算法、貝葉斯分類演算法等;聚類演算法則包括系統聚類,K-means均值聚類等。
2、回歸分析
回歸分析是確定兩種或兩種以上變數間相互依賴的定量關系的一種統計分析方法,其主要研究的問題包括數據序列的趨勢特徵、數據序列的預測以及數據間的相關關系等。按照模型自變數的多少,回歸演算法可以分為一元回歸分析和多元回歸分析;按照自變數和因變數間的關系,又可分為線性回歸和非線性回歸分析。
3、神經網路
神經網路演算法是在現代神經生物學研究的基礎上發展起來的一種模擬人腦信息處理機制的網路系統,不但具備一般計算能力,還具有處理知識的思維、學習和記憶能力。它是一種基於導師的學習演算法,可以模擬復雜系統的輸入和輸出,同時具有非常強的非線性映射能力。基於神經網路的挖掘過程由數據准備、規則提取、規則應用和預測評估四個階段組成,在數據挖掘中,經常利用神經網路演算法進行預測工作。
4、關聯分析
關聯分析是在交易數據、關系數據或其他信息載體中,查找存在於項目集合或對象集合之間的關聯、相關性或因果結構,即描述資料庫中不同數據項之間所存在關系的規則。例如,一項數據發生變化,另一項也跟隨發生變化,則這兩個數據項之間可能存在某種關聯。關聯分析是一個很有用的數據挖掘模型,能夠幫助企業輸出很多有用的產品組合推薦、優惠促銷組合,能夠找到的潛在客戶,真正的把數據挖掘落到實處。4市場營銷大數據挖掘在精準營銷領域的應用可分為兩大類,包括離線應用和在線應用。其中,離線應用主要是基於客戶畫像進行數據挖掘,進行不同目的針對性營銷活動,包括潛在客戶挖掘、流失客戶挽留、制定精細化營銷媒介等。而在線應用則是基於實時數據挖掘結果,進行精準化的廣告推送和市場營銷,具體包括DMP,DSP和程序化購買等應用。
❿ 數學建模的步驟
數學建模的主要步驟:
第一、 模型准備
首先要了解問題的實際背景,明確建模目的,搜集必需的各種信息,盡量弄清對象的特徵。
第二、 模型假設
根據對象的特徵和建模目的,對問題進行必要的、合理的簡化,用精確的語言作出假設,是建
模至關重要的一步。如果對問題的所有因素一概考慮,無疑是一種有勇氣但方法欠佳的行為,所以
高超的建模者能充分發揮想像力、洞察力和判斷力,善於辨別主次,而且為了使處理方法簡單,應
盡量使問題線性化、均勻化。
第三、 模型構成
根據所作的假設分析對象的因果關系,利用對象的內在規律和適當的數學工具,構造各個量間
的等式關系或其它數學結構。這時,我們便會進入一個廣闊的應用數學天地,這里在高數、概率老
人的膝下,有許多可愛的孩子們,他們是圖論、排隊論、線性規劃、對策論等許多許多,真是泱泱
大國,別有洞天。不過我們應當牢記,建立數學模型是為了讓更多的人明了並能加以應用,因此工
具愈簡單愈有價值。
第四、模型求解
可以採用解方程、畫圖形、證明定理、邏輯運算、數值運算等各種傳統的和近代的數學方法,
特別是計算機技術。一道實際問題的解決往往需要紛繁的計算,許多時候還得將系統運行情況用計
算機模擬出來,因此編程和熟悉數學軟體包能力便舉足輕重。
第五、模型分析
對模型解答進行數學上的分析。"橫看成嶺側成峰,遠近高低各不?quot;,能否對模型結果作
出細致精當的分析,決定了你的模型能否達到更高的檔次。還要記住,不論那種情況都需進行誤差
分析,數據穩定性分析。
數學建模採用的主要方法有:
(一)、機理分析法:根據對客觀事物特性的認識從基本物理定律以及系統的結構數據來推導出模
型。
1、比例分析法:建立變數之間函數關系的最基本最常用的方法。
2、代數方法:求解離散問題(離散的數據、符號、圖形)的主要方法。
3、邏輯方法:是數學理論研究的重要方法,對社會學和經濟學等領域的實際問題,在決策,對策
等學科中得到廣泛應用。
4、常微分方程:解決兩個變數之間的變化規律,關鍵是建立「瞬時變化率」的表達式。
5、偏微分方程:解決因變數與兩個以上自變數之間的變化規律。
(二)、數據分析法:通過對量測數據的統計分析,找出與數據擬合最好的模型
1、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
2、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
3、回歸分析法:用於對函數f(x)的一組觀測值(xi,fi)i=1,2,…,n,確定函數的表達式,由
於處理的是靜態的獨立數據,故稱為數理統計方法。
4、時序分析法:處理的是動態的相關數據,又稱為過程統計方法。
(三)、模擬和其他方法
1、計算機模擬(模擬):實質上是統計估計方法,等效於抽樣試驗。①離散系統模擬,有一組狀
態變數。②連續系統模擬,有解析表達式或系統結構圖。
2、因子試驗法:在系統上作局部試驗,再根據試驗結果進行不斷分析修改,求得所需的模型結構
。
3、人工現實法:基於對系統過去行為的了解和對未來希望達到的目標,並考慮到系統有關因素的
可能變化,人為地組成一個系統。
希望能解決您的問題。