導航:首頁 > 數據分析 > 大數據如何發現違紀行為的

大數據如何發現違紀行為的

發布時間:2022-12-25 05:15:45

大數據,會用還要善用

大數據,會用還要善用
人類進入大數據時代,大數據應用滲透到各行各業中,不斷形塑新業態。
對紀檢監察工作而言,大數據技術能幫助清除監督「盲點」。大數據技術能在海量數據中發現高概率現象,通過收集、對比、分析發現數據異常,挖掘隱藏其中的問題線索,使監督更加精準,從而減少紀檢監察工作的「死角」和「盲點」。
大數據技術有利於突破監督「難點」。通過建設跨部門數據互聯互通共享機制,實現監管模式創新。比如,各地應用大數據嚴防「車輪上的腐敗」,建立規范的公務用車運行監管平台,開通「實時定位、多車管理、歷史軌跡、衛星抓拍、定點停放、停車統計」等功能,對公車私用等問題實施精準打擊。
大數據技術在查找監督「重點」上也能發揮重要作用。通過運用社會公共服務生成的海量數據,可以發現新增廉政風險點、違紀違法新花樣,確定監督重點;運用「互聯網+監督」模式,能充分釋放群眾和媒體監督的正能量,形成無處不在的監督網路,實現黨內監督與黨外監督的良性互動。
大數據在紀檢監察領域應用前景廣闊。面對大數據浪潮,我們不僅要「想用」,還要「會用」,更要「善用」。
用好大數據,先從「想用」開始。首先要牢固樹立運用大數據解決重點、難點問題的意識,主動利用大數據手段尋求解決方案。深入了解大數據技術的最新趨勢、最新動態,經常搜集反饋硬體設備、軟體系統工具創新等方面的最新信息,用成熟的技術、定型的成果為紀檢監察系統大數據應用平台建設提供支持。
要「會用」大數據。在有效管控風險的基礎上,敢嘗敢試,及時跟進新的大數據技術工具,抓好新舊方法之間的分析對比、轉換提升。要瞄準需花大量時間重復、記憶的事,尋求大數據解決方案,把紀檢監察幹部從一般的、繁瑣的、沉重的簡單勞動中解放出來,把精力更多投入需要發揮主觀能動性的工作中,提升工作效能。
要「善用」大數據。任何科技手段都只是工具,能否找到最合理使用方法,關鍵在人。既不能敵視工具,也不能唯工具論,以大數據應用包打天下。要成為運用大數據的主人,不被大數據「綁架」。用好自下而上的創新能力,充分發揮年輕幹部接受、運用新事物快的優勢,以點帶面地推動大數據應用在紀檢監察系統常態化,積極探索運用大數據技術推動「權力入籠」的新手段,提高工作質量與效益。

❷ 大數據科學家需要掌握的幾種異常值檢測方法

引言

異常值檢測與告警一直是工業界非常關注的問題,自動准確地檢測出系統的異常值,不僅可以節約大量的人力物力,還能盡早發現系統的異常情況,挽回不必要的損失。個推也非常重視大數據中的異常值檢測,例如在運維部門的流量管理業務中,個推很早便展開了對異常值檢測的實踐,也因此積累了較為豐富的經驗。本文將從以下幾個方面介紹異常值檢測。

1、異常值檢測研究背景

2、異常值檢測方法原理

3、異常值檢測應用實踐

異常值檢測研究背景

異常值,故名思議就是不同於正常值的值。 在數學上,可以用離群點來表述,這樣便可以將異常值檢測問題轉化為數學問題來求解。

異常值檢測在很多場景都有廣泛的應用,比如:

1、流量監測

互聯網上某些伺服器的訪問量,可能具有周期性或趨勢性:一般情況下都是相對平穩的,但是當受到某些黑客攻擊後,其訪問量可能發生顯著的變化,及早發現這些異常變化對企業而言有著很好的預防告警作用。

2、金融風控

正常賬戶中,用戶的轉賬行為一般屬於低頻事件,但在某些金融詐騙案中,一些嫌犯的賬戶就可能會出現高頻的轉賬行為,異常檢測系統如果能發現這些異常行為,及時採取相關措施,則會規避不少損失。

3、機器故障檢測

一個運行中的流水線,可能會裝有不同的感測器用來監測運行中的機器,這些感測器數據就反應了機器運行的狀態,這些實時的監測數據具有數據量大、維度廣的特點,用人工盯著看的話成本會非常高,高效的自動異常檢測演算法將能很好地解決這一問題。

異常值檢測方法原理

本文主要將異常值檢測方法分為兩大類:一類是基於統計的異常值檢測,另一類是基於模型的異常值檢測。

基於統計的方法  

基於模型的方法

1、基於統計的異常值檢測方法

常見的基於統計的異常值檢測方法有以下2種,一種是基於3σ法則,一種是基於箱體圖。

3σ法則  

箱體圖

3σ法則是指在樣本服從正態分布時,一般可認為小於μ-3σ或者大於μ+3σ的樣本值為異常樣本,其中μ為樣本均值,σ為樣本標准差。在實際使用中,我們雖然不知道樣本的真實分布,但只要真實分布與正太分布相差不是太大,該經驗法則在大部分情況下便是適用的。

箱體圖也是一種比較常見的異常值檢測方法,一般取所有樣本的25%分位點Q1和75%分位點Q3,兩者之間的距離為箱體的長度IQR,可認為小於Q1-1.5IQR或者大於Q3+1.5IQR的樣本值為異常樣本。

基於統計的異常檢測往往具有計算簡單、有堅實的統計學基礎等特點,但缺點也非常明顯,例如需要大量的樣本數據進行統計,難以對高維樣本數據進行異常值檢測等。

2、基於模型的異常值檢測

通常可將異常值檢測看作是一個二分類問題,即將所有樣本分為正常樣本和異常樣本,但這和常規的二分類問題又有所區別,常規的二分類一般要求正負樣本是均衡的,如果正負樣本不均勻的話,訓練結果往往會不太好。但在異常值檢測問題中,往往面臨著正(正常值)負(異常值)樣本不均勻的問題,異常值通常比正常值要少得多,因此需要對常規的二分類模型做一些改進。

基於模型的異常值檢測一般可分為有監督模型異常值檢測和無監督模型異常值檢測,比較典型的有監督模型如oneclassSVM、基於神經網路的自編碼器等。 oneclassSVM就是在經典的SVM基礎上改進而來,它用一個超球面替代了超平面,超球面以內的值為正常值,超球面以外的值為異常值。

經典的SVM  

1

 基於模型的方法

2

基於神經網路的自編碼器結構如下圖所示。

自編碼器(AE)

將正常樣本用於模型訓練,輸入與輸出之間的損失函數可採用常見的均方誤差,因此檢測過程中,當正常樣本輸入時,均方誤差會較小,當異常樣本輸入時,均方誤差會較大,設置合適的閾值便可將異常樣本檢測出來。但該方法也有缺點,就是對於訓練樣本比較相近的正常樣本判別較好,但若正常樣本與訓練樣本相差較大,則可能會導致模型誤判。

無監督模型的異常值檢測是異常值檢測中的主流方法,因為異常值的標注成本往往較高,另外異常值的產生往往無法預料,因此有些異常值可能在過去的樣本中根本沒有出現過, 這將導致某些異常樣本無法標注,這也是有監督模型的局限性所在。 較為常見的無監督異常值檢測模型有密度聚類(DBSCAN)、IsolationForest(IF)、RadomCutForest(RCF)等,其中DBSCAN是一種典型的無監督聚類方法,對某些類型的異常值檢測也能起到不錯的效果。該演算法原理網上資料較多,本文不作詳細介紹。

IF演算法最早由南京大學人工智慧學院院長周志華的團隊提出,是一種非常高效的異常值檢測方法,該方法不需要對樣本數據做任何先驗的假設,只需基於這樣一個事實——異常值只是少數,並且它們具有與正常值非常不同的屬性值。與隨機森林由大量決策樹組成一樣,IsolationForest也由大量的樹組成。IsolationForest中的樹叫isolation tree,簡稱iTree。iTree樹和決策樹不太一樣,其構建過程也比決策樹簡單,因為其中就是一個完全隨機的過程。

假設數據集有N條數據,構建一顆iTree時,從N條數據中均勻抽樣(一般是無放回抽樣)出n個樣本出來,作為這顆樹的訓練樣本。

在樣本中,隨機選一個特徵,並在這個特徵的所有值范圍內(最小值與最大值之間)隨機選一個值,對樣本進行二叉劃分,將樣本中小於該值的劃分到節點的左邊,大於等於該值的劃分到節點的右邊。

這樣得到了一個分裂條件和左、右兩邊的數據集,然後分別在左右兩邊的數據集上重復上面的過程,直至達到終止條件。 終止條件有兩個,一個是數據本身不可再分(只包括一個樣本,或者全部樣本相同),另外一個是樹的高度達到log2(n)。 不同於決策樹,iTree在演算法裡面已經限制了樹的高度。不限制雖然也可行,但出於效率考慮,演算法一般要求高度達到log2(n)深度即可。

把所有的iTree樹構建好了,就可以對測試數據進行預測了。預測的過程就是把測試數據在iTree樹上沿對應的條件分支往下走,直到達到葉子節點,並記錄這過程中經過的路徑長度h(x),即從根節點,穿過中間的節點,最後到達葉子節點,所走過的邊的數量(path length)。最後,將h(x)帶入公式,其中E(.)表示計算期望,c(n)表示當樣本數量為n時,路徑長度的平均值,從而便可計算出每條待測數據的異常分數s(Anomaly Score)。異常分數s具有如下性質:

1)如果分數s越接近1,則該樣本是異常值的可能性越高;

2)如果分數s越接近0,則該樣本是正常值的可能性越高;

RCF演算法與IF演算法思想上是比較類似的,前者可以看成是在IF演算法上做了一些改進。針對IF演算法中沒有考慮到的時間序列因素,RCF演算法考慮了該因素,並且在數據樣本采樣策略上作出了一些改進,使得異常值檢測相對IF演算法變得更加准確和高效,並能更好地應用於流式數據檢測。

IF演算法

RCF演算法

上圖展示了IF演算法和RCF演算法對於異常值檢測的異同。我們可以看出原始數據中有兩個突變異常數據值,對於後一個較大的突變異常值,IF演算法和RCF演算法都檢測了出來,但對於前一個較小的突變異常值,IF演算法沒有檢測出來,而RCF演算法依然檢測了出來,這意味著RCF有更好的異常值檢測性能。

異常值檢測應用實踐

理論還需結合實踐,下面我們將以某應用從2016.08.16至2019.09.21的日活變化情況為例,對異常值檢測的實際應用場景予以介紹:

從上圖中可以看出該應用的日活存在著一些顯著的異常值(比如紅色圓圈部分),這些異常值可能由於活動促銷或者更新迭代出現bug導致日活出現了比較明顯的波動。下面分別用基於統計的方法和基於模型的方法對該日活序列數據進行異常值檢測。

基於3σ法則(基於統計)

RCF演算法(基於模型)

從圖中可以看出,對於較大的突變異常值,3σ法則和RCF演算法都能較好地檢測出來, 但對於較小的突變異常值,RCF演算法則要表現得更好。

總結

上文為大家講解了異常值檢測的方法原理以及應用實踐。綜合來看,異常值檢測演算法多種多樣 ,每一種都有自己的優缺點和適用范圍,很難直接判斷哪一種異常檢測演算法是最佳的, 具體在實戰中,我們需要根據自身業務的特點,比如對計算量的要求、對異常值的容忍度等,選擇合適的異常值檢測演算法。

接下來,個推也會結合自身實踐,在大數據異常檢測方面不斷深耕,繼續優化演算法模型在不同業務場景中的性能,持續為開發者們分享前沿的理念與最新的實踐方案。

❸ 大數據殺熟涉嫌違法,你是如何看待大數據殺熟行為的

我覺得大數據殺熟屬於互聯網公司的惡意行為,這種行為也嚴重侵犯了用戶的合法權益。

對於經常使用互聯網服務的用戶來說,很多用戶都遭遇過大數據殺熟的情況,用戶也會覺得非常憤怒,畢竟自己遭到了互聯網公司的區別對待。對於這些經常使用互聯網服務的用戶來講,用戶本身屬於老客戶,按理說應該得到一定的優惠,但互聯網公司卻利用用戶的使用習慣來故意做出傷害用戶權益的行為,這樣的行為已經引起了用戶的廣泛抵制。

一、大數據殺熟的行為已經涉嫌違法。

在個人信息保護法出台以後,我們可以看到大數據殺出的行為已經被定性為違法,相關涉事人員很有可能會恢復刑事責任。與此同時,用戶可以實名舉報任何大數據刪除的行為,只要用戶掌握了足夠多的證據,用戶就可以通過這種方式來維護自己的合法權益。

閱讀全文

與大數據如何發現違紀行為的相關的資料

熱點內容
簡述網路直接市場調查方式有哪些 瀏覽:683
怎麼連接移動網路設置 瀏覽:781
電腦網卡怎麼連接網路連接不上網嗎 瀏覽:838
刷子公司網站怎麼做 瀏覽:272
86版本艾爾文測試 瀏覽:714
深宮曲文件夾是哪個 瀏覽:618
蘋果u盤修復工具哪個好用 瀏覽:124
微信動態表情包搞笑 瀏覽:436
可以去哪裡找編程老師問問題 瀏覽:608
win10lol全屏 瀏覽:25
qq圖片動態動漫少女 瀏覽:122
sai繪圖教程視頻 瀏覽:519
如何分析載入減速法數據 瀏覽:672
手機怎麼免費轉換pdf文件格式 瀏覽:668
在哪個網站可以駕照年檢 瀏覽:89
iphone可以播放ape嗎 瀏覽:991
matlabp文件能破解嗎 瀏覽:817
四川省高三大數據考試是什麼 瀏覽:457
導出打開java文件 瀏覽:671
win10藍屏是硬碟壞了么 瀏覽:46

友情鏈接