導航:首頁 > 數據分析 > 大型數據集怎麼處理

大型數據集怎麼處理

發布時間:2022-12-19 15:32:35

❶ 什麼 是 大 數據

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
數據存取:關系資料庫、NOSQL、SQL等。
基礎架構:雲存儲、分布式文件存儲等。
數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
數據挖掘:分類 (Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text, Web ,圖形圖像,視頻,音頻等)
模型預測:預測模型、機器學習、建模模擬。
結果呈現:雲計算、標簽雲、關系圖等。
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。

第一,數據體量巨大。從TB級別,躍升到PB級別。
第二,數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
第三,價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
第四,處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。

大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。

❷ 保護大數據安全的10個要點

一項對2021年數據泄露的分析顯示,總共有50億份數據被泄露,這對所有參與大數據管道工作的人來說,從開發人員到DevOps工程師,安全性與基礎業務需求同等重要。

大數據安全是指在存儲、處理和分析過於龐大和復雜的數據集時,採用任何措施來保護數據免受惡意活動的侵害,傳統資料庫應用程序無法處理這些數據集。大數據可以混合結構化格式(組織成包含數字、日期等的行和列)或非結構化格式(社交媒體數據、PDF 文件、電子郵件、圖像等)。不過,估計顯示高達90%的大數據是非結構化的。

大數據的魅力在於,它通常包含一些隱藏的洞察力,可以改善業務流程,推動創新,或揭示未知的市場趨勢。由於分析這些信息的工作負載通常會將敏感的客戶數據或專有數據與第三方數據源結合起來,因此數據安全性至關重要。聲譽受損和巨額經濟損失是大數據泄露和數據被破壞的兩大主要後果。

在確保大數據安全時,需要考慮三個關鍵階段:

當數據從源位置移動到存儲或實時攝取(通常在雲中)時,確保數據的傳輸

保護大數據管道的存儲層中的數據(例如Hadoop分布式文件系統)

確保輸出數據的機密性,例如報告和儀錶板,這些數據包含通過Apache Spark等分析引擎運行數據收集的情報

這些環境中的安全威脅類型包括不適當的訪問控制、分布式拒絕服務(DDoS)攻擊、產生虛假或惡意數據的端點,或在大數據工作期間使用的庫、框架和應用程序的漏洞。

由於所涉及的架構和環境復雜性,大數據安全面臨著許多挑戰。在大數據環境中,不同的硬體和技術在分布式計算環境中相互作用。比如:

像Hadoop這樣的開源框架在設計之初並沒有考慮到安全性

依賴分布式計算來處理這些大型數據集意味著有更多的系統可能出錯

確保從端點收集的日誌或事件數據的有效性和真實性

控制內部人員對數據挖掘工具的訪問,監控可疑行為

運行標准安全審計的困難

保護非關系NoSQL資料庫

這些挑戰是對保護任何類型數據的常見挑戰的補充。

靜態數據和傳輸中數據的可擴展加密對於跨大數據管道實施至關重要。可擴展性是這里的關鍵點,因為除了NoSQL等存儲格式之外,需要跨分析工具集及其輸出加密數據。加密的作用在於,即使威脅者設法攔截數據包或訪問敏感文件,實施良好的加密過程也會使數據不可讀。

獲得訪問控制權可針對一系列大數據安全問題提供強大的保護,例如內部威脅和特權過剩。基於角色的訪問可以幫助控制對大數據管道多層的訪問。例如,數據分析師可以訪問分析工具,但他們可能不應該訪問大數據開發人員使用的工具,如ETL軟體。最小許可權原則是訪問控制的一個很好的參考點,它限制了對執行用戶任務所必需的工具和數據的訪問。

大數據工作負載所需要的固有的大存儲容量和處理能力使得大多數企業可以為大數據使用雲計算基礎設施和服務。但是,盡管雲計算很有吸引力,暴露的API密鑰、令牌和錯誤配置都是雲中值得認真對待的風險。如果有人讓S3中的AWS數據湖完全開放,並且對互聯網上的任何人都可以訪問,那會怎麼樣?有了自動掃描工具,可以快速掃描公共雲資產以尋找安全盲點,從而更容易降低這些風險。

在復雜的大數據生態系統中,加密的安全性需要一種集中的密鑰管理方法,以確保對加密密鑰進行有效的策略驅動處理。集中式密鑰管理還可以控制從創建到密鑰輪換的密鑰治理。對於在雲中運行大數據工作負載的企業,自帶密鑰 (BYOK) 可能是允許集中密鑰管理而不將加密密鑰創建和管理的控制權交給第三方雲提供商的最佳選擇。

在大數據管道中,由於數據來自許多不同的來源,包括來自社交媒體平台的流數據和來自用戶終端的數據,因此會有持續的流量。網路流量分析提供了對網路流量和任何潛在異常的可見性,例如來自物聯網設備的惡意數據或正在使用的未加密通信協議。

2021年的一份報告發現,98%的組織感到容易受到內部攻擊。在大數據的背景下,內部威脅對敏感公司信息的機密性構成嚴重風險。有權訪問分析報告和儀錶板的惡意內部人員可能會向競爭對手透露見解,甚至提供他們的登錄憑據進行銷售。從內部威脅檢測開始的一個好地方是檢查常見業務應用程序的日誌,例如 RDP、VPN、Active Directory 和端點。這些日誌可以揭示值得調查的異常情況,例如意外的數據下載或異常的登錄時間。

威脅搜尋主動搜索潛伏在您的網路中未被發現的威脅。這個過程需要經驗豐富的網路安全分析師的技能組合,利用來自現實世界的攻擊、威脅活動的情報或來自不同安全工具的相關發現來制定關於潛在威脅的假設。具有諷刺意味的是,大數據實際上可以通過發現大量安全數據中隱藏的洞察力來幫助改進威脅追蹤工作。但作為提高大數據安全性的一種方式,威脅搜尋會監控數據集和基礎設施,以尋找表明大數據環境受到威脅的工件。

出於安全目的監視大數據日誌和工具會產生大量信息,這些信息通常最終形成安全信息和事件管理(SIEM)解決方案。

用戶行為分析比內部威脅檢測更進一步,它提供了專門的工具集來監控用戶在與其交互的系統上的行為。通常情況下,行為分析使用一個評分系統來創建正常用戶、應用程序和設備行為的基線,然後在這些基線出現偏差時進行提醒。通過用戶行為分析,可以更好地檢測威脅大數據環境中資產的保密性、完整性或可用性的內部威脅和受損的用戶帳戶。

未經授權的數據傳輸的前景讓安全領導者徹夜難眠,特別是如果數據泄露發生在可以復制大量潛在敏感資產的大數據管道中。檢測數據泄露需要對出站流量、IP地址和流量進行深入監控。防止數據泄露首先來自於在代碼和錯誤配置中發現有害安全錯誤的工具,以及數據丟失預防和下一代防火牆。另一個重要方面是在企業內進行教育和提高認識。

框架、庫、軟體實用程序、數據攝取、分析工具和自定義應用程序——大數據安全始於代碼級別。 無論是否實施了上述公認的安全實踐,代碼中的安全缺陷都可能導致數據泄漏。 通過在軟體開發生命周期中檢測自研代碼及開源組件成分的安全性,加強軟體安全性來防止數據丟失。

❸ R讀取大型數據集內存不足如何解決,如果利用Linux有什麼有效方法嗎

有個比較簡單暴力的方法是fread里的nrows參數設置。
R所有讀取數據的函數都有nrows和skip這兩個參數,可以寫個循環,一個文件分段讀取,skip跳過前面讀過的,用nrows控制最大讀入行數,防止內存不足。
分段處理之後將文件寫入本地,用rm將比較大的變數消除掉,用gc()釋放這部分內存。
——好處是簡單粗暴多平台可用,缺點是,真的很慢……
如果有條件還是建議申請個伺服器來跑,比如學生可以詢問導師院系有沒有用於大型計算的伺服器。
另外Unix系統對內存的限制確實是比Windows好些,可惜我也不知道正確的打開方式QAQ

❹ 如何為大數據處理構建高性能Hadoop集群

越來越多的企業開始使用Hadoop來對大數據進行處理分析,但Hadoop集群的整體性能卻取決於CPU、內存、網路以及存儲之間的性能平衡。而在這篇文章中,我們將探討如何為Hadoop集群構建高性能網路,這是對大數據進行處理分析的關鍵所在。

關於Hadoop

「大數據」是鬆散的數據集合,海量數據的不斷增長迫使企業需要通過一種新的方式去管理。大數據是結構化或非結構化的多種數據類型的大集合。而 Hadoop則是Apache發布的軟體架構,用以分析PB級的非結構化數據,並將其轉換成其他應用程序可管理處理的形式。Hadoop使得對大數據處理成為可能,並能夠幫助企業可從客戶數據之中發掘新的商機。如果能夠進行實時處理或者接近實時處理,那麼其將為許多行業的用戶提供強大的優勢。

Hadoop是基於谷歌的MapRece和分布式文件系統原理而專門設計的,其可在通用的網路和伺服器硬體上進行部署,並使之成為計算集群。

Hadoop模型

Hadoop的工作原理是將一個非常大的數據集切割成一個較小的單元,以能夠被查詢處理。同一個節點的計算資源用於並行查詢處理。當任務處理結束後,其處理結果將被匯總並向用戶報告,或者通過業務分析應用程序處理以進行進一步分析或儀表盤顯示。

為了最大限度地減少處理時間,在此並行架構中,Hadoop「moves jobs to data」,而非像傳統模式那樣「moving data to jobs」。這就意味著,一旦數據存儲在分布式系統之中,在實時搜索、查詢或數據挖掘等操作時,如訪問本地數據,在數據處理過程中,各節點之間將只有一個本地查詢結果,這樣可降低運營開支。

Hadoop的最大特點在於其內置的並行處理和線性擴展能力,提供對大型數據集查詢並生成結果。在結構上,Hadoop主要有兩個部分:

Hadoop分布式文件系統(HDFS)將數據文件切割成數據塊,並將其存儲在多個節點之內,以提供容錯性和高性能。除了大量的多個節點的聚合I/O,性能通常取決於數據塊的大小——如128MB。而傳統的Linux系統下的較為典型的數據塊大小可能是4KB。

MapRece引擎通過JobTracker節點接受來自客戶端的分析工作,採用「分而治之」的方式來將一個較大的任務分解成多個較小的任務,然後分配給各個TaskTrack節點,並採用主站/從站的分布方式(具體如下圖所示):

Hadoop系統有三個主要的功能節點:客戶機、主機和從機。客戶機將數據文件注入到系統之中,從系統中檢索結果,以及通過系統的主機節點提交分析工作等。主機節點有兩個基本作用:管理分布式文件系統中各節點以及從機節點的數據存儲,以及管理Map/Rece從機節點的任務跟蹤分配和任務處理。數據存儲和分析處理的實際性能取決於運行數據節點和任務跟蹤器的從機節點性能,而這些從機節點則由各自的主機節點負責溝通和控制。從節點通常有多個數據塊,並在作業期間被分配處理多個任務。

部署實施Hadoop

各個節點硬體的主要要求是市縣計算、內存、網路以及存儲等四個資源的平衡。目前常用的並被譽為「最佳」的解決方案是採用相對較低成本的舊有硬體,部署足夠多的伺服器以應對任何可能的故障,並部署一個完整機架的系統。

Hadoop模式要求伺服器與SAN或者NAS進行直接連接存儲(DAS)。採用DAS主要有三個原因,在標准化配置的集群中,節點的縮放數以千計,隨著存儲系統的成本、低延遲性以及存儲容量需求不斷提高,簡單配置和部署個主要的考慮因素。隨著極具成本效益的1TB磁碟的普及,可使大型集群的TB級數據存儲在DAS之上。這解決了傳統方法利用SAN進行部署極其昂貴的困境,如此多的存儲將使得Hadoop和數據存儲出現一個令人望而卻步的起始成本。有相當大一部分用戶的Hadoop部署構建都是採用大容量的DAS伺服器,其中數據節點大約1-2TB,名稱控制節點大約在1-5TB之間,具體如下圖所示:

來源:Brad Hedlund, DELL公司

對於大多數的Hadoop部署來說,基礎設施的其他影響因素可能還取決於配件,如伺服器內置的千兆乙太網卡或千兆乙太網交換機。上一代的CPU和內存等硬體的選擇,可根據符合成本模型的需求,採用匹配數據傳輸速率要求的千兆乙太網介面來構建低成本的解決方案。採用萬兆乙太網來部署Hadoop也是相當不錯的選擇。

萬兆乙太網對Hadoop集群的作用

千兆乙太網的性能是制約Hadoop系統整體性能的一個主要因素。使用較大的數據塊大小,例如,如果一個節點發生故障(甚至更糟,整個機架宕機),那麼整個集群就需要對TB級的數據進行恢復,這就有可能會超過千兆乙太網所能提供的網路帶寬,進而使得整個集群性能下降。在擁有成千上萬個節點的大型集群中,當運行某些需要數據節點之間需要進行中間結果再分配的工作負載時,在系統正常運行過程中,某個千兆乙太網設備可能會遭遇網路擁堵。

每一個Hadoop數據節點的目標都必須實現CPU、內存、存儲和網路資源的平衡。如果四者之中的任意一個性能相對較差的話,那麼系統的潛在處理能力都有可能遭遇瓶頸。添加更多的CPU和內存組建,將影響存儲和網路的平衡,如何使Hadoop集群節點在處理數據時更有效率,減少結果,並在Hadoop集群內添加更多的HDFS存儲節點。

幸運的是,影響CPU和內存發展的摩爾定律,同樣也正影響著存儲技術(TB級容量的磁碟)和乙太網技術(從千兆向萬兆甚至更高)的發展。預先升級系統組件(如多核處理器、每節點5-20TB容量的磁碟,64-128GB內存),萬兆乙太網卡和交換機等網路組件是重新平衡資源最合理的選擇。萬兆乙太網將在Hadoop集群證明其價值,高水平的網路利用率將帶來效益更高的帶寬。下圖展示了Hadoop集群與萬兆乙太網的連接:

許多企業級數據中心已經遷移到10GbE網路,以實現伺服器整合和伺服器虛擬化。隨著越來越多企業開始部署Hadoop,他們發現他們完全不必要大批量部署1U的機架伺服器,而是部署更少,但性能更高的伺服器,以方便擴展每個數據節點所能運行的任務數量。很多企業選擇部署2U或4U的伺服器(如戴爾 PowerEdge C2100),每個節點大約12-16個核心以及24TB存儲容量。在這種環境下的合理選擇是充分利用已經部署的10GbE設備和Hadoop集群中的 10GbE網卡。

在日常的IT環境中構建一個簡單的Hadoop集群。可以肯定的是,盡管有很多細節需要微調,但其基礎是非常簡單的。構建一個計算、存儲和網路資源平衡的系統,對項目的成功至關重要。對於擁有密集節點的Hadoop集群而言,萬兆乙太網能夠為計算和存儲資源擴展提供與之相匹配的能力,且不會導致系統整體性能下降。

❺ 個人大數據亂了怎麼快速修復

個人大數據亂了會嚴重影響個人信貸行為,可以從以下幾方面入手養好大數據:
1.最好在半年內不要再申請信用卡、貸款產品,尤其是網貸;
2.已申請到的貸款、信用卡要按時還款,不能出現違約失信行為;
3.通過正規、靠譜的渠道進行網貸黑名單監測,查詢自己的網貸借款情況、被拒次數等;
4.往後通過正規渠道申請貸款,盡量不要碰網貸,少查詢網貸產品可借款額度。
一、大數據(bigdata)是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據有大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)五大特點。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。大數據的用法傾向於預測分析、用戶行為分析或某些其他高級數據分析方法的使用。對於「大數據」(Bigdata)研究機構Gartner給出了這樣的定義。「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。
二、隨著雲時代的來臨,大數據(Bigdata)也吸引了越來越多的關注。分析師團隊認為,大數據(Bigdata)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。
三、大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了,通過各行各業的不斷創新,大數據會逐步為人類創造更多的價值。

❻ 7個因素決定大數據的復雜性 如何處理

7個因素決定大數據的復雜性 如何處理

我們談論了很多關於復雜數據及其為你的商業智能帶來的挑戰和機遇,但是導致數據復雜化的是什麼呢?

以及你如何區分你的公司當前的數據是否是「復雜的」,亦或不久的將來會變得復雜?本文將解決這些問題。

為什麼這很重要?

當你試圖將數據轉化為商業價值時,它的復雜度很可能會預示你將面對的困難程度——復雜數據的准備和分析通常要比簡單數據更加困難,以及通常需要一組不同的BI 工具來實現。復雜數據在可以「成熟的」分析和可視化之前需要額外的准備工作和數據模型。因此重要的是,通過了解您目前的數據的復雜程度以及它在未來的復雜性趨向,來評估您的大數據/商業智能項目是否能夠勝任這一任務。

簡單測試:大數據或者異構數據

在高級層面上,有兩種基本的跡象表明你的數據可能被視為是復雜的:

你的數據很「大」:我們把大放在引號里是因為它貌似符合「大數據」術語的含義。然而事實是,處理海量數據在計算資源需要處理巨大的數據集方面提出了一個挑戰, 就像把小麥從谷殼分開的困難,或者說在一個巨大的原始信息中辨別信號和雜音。

你的數據來自許多不同的數據源:多重數據源通常意味著臟數據,或者遵循著不同的內部邏輯結構的簡單的多個數據集。為了確保數據源有統一的數據語言,數據必須被轉換或整合到一個中央資源庫。

可以認為這是兩個最初的(可供選擇的)徵兆:如果你正處理大數據或異構數據,你應當開始思考數據的復雜性。但是深究一下,對你的公司的數據的復雜性,以下有7個更具體的指標。

(注意,以上兩點之間有相似之處,但不互相排除——反之,例如,離散數據往往意味著各種各樣的數據結構類型)

7個因素決定你的數據的復雜性

1、數據結構

不同數據源的數據,或甚至來自同一個源的不同表,通常設計同樣的信息但結構卻完全不同:

舉例來說,想像你們人力資源部有三種不同的表格,一個是員工個人信息表,另一個是員工職位和薪資表第三個是員工職位要求表,諸如此類——而你們財務部門隨同保險、福利和其他花費一起記錄同樣的信息到單個表中。另外,在這些表中的一些表可能提到員工的全名,而另一些則只有名字的首字母,或者二者的結合。為了從所有表中有效使用數據,同時不丟失或重復信息,需要數據建模或准備工作。

這是最簡單的用例:更進一步復雜化的是處理最初沒有適當地模式的非結構化數據源(例如NoSQL 資料庫)。

2、數據大小

再次回到模糊的「大數據」概念,你收集的數據量會影響你需要用來分析它的軟硬體的類型。這個可以通過原始大小來衡量:位元組,TB或PB——數據增長越大,越有可能「窒息」廣泛使用的內存資料庫(IMDB),依賴於轉化壓縮數據到伺服器內存。其他因素包括多元異構數據——包含很多數據行的表(Excel,可以說是最常用的數據分析工具,最大行數限制為1048576行),或結構化數據——包含很多數據列的表。

你將會發現在分析工具和方法上用於分析100,000行數據和那些用於分析1億行數據的是明顯不同的。

3、數據細節

你想要探索的數據的粒度水平。當創建一個儀表盤或報表,展現總結或聚合數據時常常比讓終端用戶鑽取到每一個細節更容易實現——然而這是以犧牲數據分析的深度和數據挖掘為代價而做的權宜之計。

創建一個BI系統,使其具有顆粒向海量數據鑽取處理分析的能力,(不依賴於預定義查詢,聚合或匯總表)

4、查詢語言

不同的數據源有不同的數據語言:雖然SQL是從常見數據源和RDBMS提取數據的主要手段,但是當使用第三方平台時你會經常需要通過它自己的API和語法去連接它,以及解析用於訪問數據的數據模型和協議。

你的BI工具需要足夠靈活的根據數據源允許這種本地連接的方式,或者通過內置插件或API訪問,否則你會發現你自己將不得不重復一個繁瑣的導出數據到表格SQL資料庫數據倉庫的過程,然後導入到你的商業智能軟體里,從而使你的分析變得麻煩。

5、數據類型

一方面動態數據以表格形式存儲,處理的大多是數值型數據,但是大規模和非結構化的機器數據完全是另外一回事兒,就像是文字數據集存儲在MongoDB中,當然了,更別提像視頻音頻這種超大規模的非結構化數據了。

不同的數據類型具有不同的規則,為使得商業決策建立在對公司數據的全面考慮的基礎上,找到一種建立單一可信來源的方法是至關重要的。

6、離散數據

數據存儲在多個位置:例如,組織里的不同部門,本地或雲(付費存儲或通過雲應用),來自客戶或供應商的外部數據等。這種數據不僅收集起來很困難(簡單來說是由於及時而有效的接收數據而需要的利益相關者的數量)。而且一旦收集了——在不同的數據集交叉引用和分析之前,通常需要「清理」或標准化,因為每個本地數據集是根據相關組織應用程序自身的實際和關注收集數據。

7、數據量的增長

最終,你不僅需要考慮當前數據,還有數據的增長或變化的速度。如果經常更新數據源,或經常增加新的數據源,這將會消耗你的軟硬體資源(無論何時當源數據發生重大更改時,不是非常先進的系統都需要重新獲取整個數據集),以及上述提到的關於結構、類型、大小的復合性問題等。

怎樣掌控復雜數據?

如果你認同上述的一個或更多以及你的數據剛剛好是復雜的,不要絕望:理解,是找到一個合適的解決方案的第一步,以及復雜數據的分析本身不需要過於復雜。我們將在未來的文章中涉及解決復雜數據的方法,但是你將想問自己的第一件事可能是——控制復雜數據你實際需要多少BI系統。

以上是小編為大家分享的關於7個因素決定大數據的復雜性 如何處理的相關內容,更多信息可以關注環球青藤分享更多干貨

❼ 什麼叫大數據 怎麼理解大數據

1、「大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

2、麥肯錫全球研究所給出的定義是:一種規模大到在獲取、存儲、管理、分析方面大大超出了傳統資料庫軟體工具能力范圍的數據集合,具有海量的數據規模、快速的數據流轉、多樣的數據類型和價值密度低四大特徵。

3、大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的數據進行專業化處理。換而言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。

4、從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

5、隨著雲時代的來臨,大數據(Bigdata)也吸引了越來越多的關注。大數據(Bigdata)通常用來形容一個公司創造的大量非結構化數據和半結構化數據,這些數據在下載到關系型資料庫用於分析時會花費過多時間和金錢。大數據分析常和雲計算聯繫到一起,因為實時的大型數據集分析需要像MapRece一樣的框架來向數十、數百或甚至數千的電腦分配工作。

6、大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

❽ ArcGIS中的大型數據集怎麼分塊處理

ArcGIS中的大型數據集分塊處理:每次處理都是從覆蓋整個數據范圍的單個分塊開始。如果單個分塊中的數據過大而無法在物理內存中進行處理,則會將其細分成四個等大的分塊。然後,再對子分塊進行處理。如果第二級分塊中的數據仍然過大,則會再進一步細分。此過程將持續執行,直到可以在物理內存中處理每個分塊的數據為止。詳細處理過程可參考http://www.dsac.cn/Software/Detail/21497

閱讀全文

與大型數據集怎麼處理相關的資料

熱點內容
win10預裝軟體完全卸載軟體 瀏覽:218
win10b站視頻看不了 瀏覽:117
故事系qq 瀏覽:745
電腦軟體里數據丟失是什麼原因 瀏覽:214
用於文件和文件夾管理的都有哪些 瀏覽:281
汽車雲車流app哪個好 瀏覽:334
看英語作文app軟體哪個好 瀏覽:664
linux文件許可權給其他用戶設置 瀏覽:172
word文件匹配工具 瀏覽:986
api介面版本控制 瀏覽:579
iphone拍出虛焦 瀏覽:163
微信里的文件怎麼打開 瀏覽:653
炫舞空白印象代碼 瀏覽:345
維修用什麼編程器好 瀏覽:824
新建壓縮文件夾沒了 瀏覽:700
陽西哪裡招文件管理 瀏覽:324
騰訊文檔目錄文件名 瀏覽:509
編程指令s1s2q指的是什麼 瀏覽:205
快手下載安卓電視版 瀏覽:811
有哪些app可以搜大學 瀏覽:972

友情鏈接