導航:首頁 > 數據分析 > 清遠大數據獲取哪裡來

清遠大數據獲取哪裡來

發布時間:2022-12-16 09:48:44

1. 大數據系統的數據如何獲取

1、從資料庫導入


在大數據技術風靡起來前,關系型資料庫(RDMS)是主要的數據分析與處理的途徑。發展至今資料庫技術已經相當完善,當大數據出現的時候,行業就在考慮能否把資料庫數據處理的方法應用到大數據中,於是 Hive、Spark SQL 等大數據 SQL 產品就這樣誕生。


2、日誌導入


日誌系統將我們系統運行的每一個狀況信息都使用文字或者日誌的方式記錄下來,這些信息我們可以理解為業務或是設備在虛擬世界的行為的痕跡,通過日誌對業務關鍵指標以及設備運行狀態等信息進行分析。


3、前端埋點


為什麼需要埋點?現在的互聯網公司越來越關注轉化、新增、留存,而不是簡單的統計 PV、UV。這些分析數據來源通過埋點獲取,前端埋點分為三種:手工埋點、可視化埋點、自動化埋點。


4、爬蟲


時至至今, 爬蟲的數據成為公司重要戰略資源,通過獲取同行的數據跟自己的數據進行支撐對比,管理者可以更好的做出決策。而且越難爬蟲獲取競爭對手的數據,對於公司來說是越有價值。

2. 大數據的中的數據是從哪裡來的

大數據應用中的關鍵點有三個,首要的就是大數據的數據來源,我們在分析大數據的時候需要重視大數據中的數據來源,只有這樣我們才能夠做好大數據的具體分析內容。那麼大家知不知道大數據的數據來源都是通過什麼渠道獲得的?下面就由小編為大家解答一下這個問題。
對於數據的來源很多人認為是互聯網和物聯網產生的,其實這句話是對的,這是因為互聯網公司是天生的大數據公司,在搜索、社交、媒體、交易等各自核心業務領域,積累並持續產生海量數據。而物聯網設備每時每刻都在採集數據,設備數量和數據量都與日俱增。這兩類數據資源作為大數據的數據來源,正在不斷產生各類應用。國外關於大數據的成功經驗介紹,大多是這類數據資源應用的經典案例。還有一些企業,在業務中也積累了許多數據,從嚴格意義上講,這些數據資源還算不上大數據,但對商業應用而言,卻是最易獲得和比較容易加工處理的數據資源,是我們常用的數據來源。
而數據的來源是我們評價大數據應用的第一個關注點。首先需要我們看這個應用是否真有數據支撐,數據資源是否可持續,來源渠道是否可控,數據安全和隱私保護方面是否有隱患。二是要看這個應用的數據資源質量如何,是好數據還是壞數據,能否保障這個應用的實效。對於來自自身業務的數據資源,具有較好的可控性,數據質量一般也有保證,但數據覆蓋范圍可能有限,需要藉助其他資源渠道。對於從互聯網抓取的數據,技術能力是關鍵,既要有能力獲得足夠大的量,又要有能力篩選出有用的內容。對於從第三方獲取的數據,需要特別關注數據交易的穩定性。數據從哪裡來是分析大數據應用的起點,只有我們找到了好的數據來源,我們就能夠做好大數據的工作。這句需要我們去尋找數據比較密集的領域。
一般來說,我們獲取數據的時候需要數據密集的行業中挖掘數據,主要就是金融、電信、服務行業等等,而金融是一個特別重要的數據密集領域。金融行業既是產生數據尤其是有價值數據的基地,又是數據分析服務的需求方和應用地。更為重要的是,金融行業具備充足的支付能力,將是大數據產業競爭的重要戰場。許多大數據是通過在金融領域的應用輻射到了各個行業。
我們在這篇文章中為大家介紹了大數據的數據來源以及數據密集的領域,希望這篇文章能夠給大家帶來幫助,最後感謝大家的閱讀。

3. 大數據主要來源於什麼

來源:從技術上看,大數據與雲計算的關系就像一枚硬幣的正反面一樣密不可分。大數據必然無法用單台的計算機進行處理,必須採用分布式架構。它的特色在於對海量數據進行分布式數據挖掘。但它必須依託雲計算的分布式處理、分布式資料庫和雲存儲、虛擬化技術。

大數據需要特殊的技術,以有效地處理大量的容忍經過時間內的數據。適用於大數據的技術,包括大規模並行處理(MPP)資料庫、數據挖掘、分布式文件系統、分布式資料庫、雲計算平台、互聯網和可擴展的存儲系統。

大數據」是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力來適應海量、高增長率和多樣化的信息資產。

(3)清遠大數據獲取哪裡來擴展閱讀:

大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

想要系統的認知大數據,必須要全面而細致的分解它,著手從三個層面來展開:

第一層面是理論,理論是認知的必經途徑,也是被廣泛認同和傳播的基線。在這里從大數據的特徵定義理解行業對大數據的整體描繪和定性;從對大數據價值的探討來深入解析大數據的珍貴所在;洞悉大數據的發展趨勢;從大數據隱私這個特別而重要的視角審視人和數據之間的長久博弈。

第二層面是技術,技術是大數據價值體現的手段和前進的基石。在這里分別從雲計算、分布式處理技術、存儲技術和感知技術的發展來說明大數據從採集、處理、存儲到形成結果的整個過程。

第三層面是實踐,實踐是大數據的最終價值體現。在這里分別從互聯網的大數據,政府的大數據,企業的大數據和個人的大數據四個方面來描繪大數據已經展現的美好景象及即將實現的藍圖。

4. 大數據有哪些來源

大數據分析的數據來源有很多種,包括公司或者機構的內部來源和外部來源。分為以下幾類:
1)交易數據。包括POS機數據、信用卡刷卡數據、電子商務數據、互聯網點擊數據、「企業資源規劃」(ERP)系統數據、銷售系統數據、客戶關系管理(CRM)系統數據、公司的生產數據、庫存數據、訂單數據、供應鏈數據等。
2)移動通信數據。能夠上網的智能手機等移動設備越來越普遍。移動通信設備記錄的數據量和數據的立體完整度,常常優於各家互聯網公司掌握的數據。移動設備上的軟體能夠追蹤和溝通無數事件,從運用軟體儲存的交易數據(如搜索產品的記錄事件)到個人信息資料或狀態報告事件(如地點變更即報告一個新的地理編碼)等。
3)人為數據。人為數據包括電子郵件、文檔、圖片、音頻、視頻,以及通過微信、博客、推特、維基、臉書、Linkedin等社交媒體產生的數據流。這些數據大多數為非結構性數據,需要用文本分析功能進行分析。
4)機器和感測器數據。來自感應器、量表和其他設施的數據、定位/GPS系統數據等。這包括功能設備會創建或生成的數據,例如智能溫度控制器、智能電表、工廠機器和連接互聯網的家用電器的數據。來自新興的物聯網(Io T)的數據是機器和感測器所產生的數據的例子之一。來自物聯網的數據可以用於構建分析模型,連續監測預測性行為(如當感測器值表示有問題時進行識別),提供規定的指令(如警示技術人員在真正出問題之前檢查設備)等。
5)互聯網上的「開放數據」來源,如政府機構,非營利組織和企業免費提供的數據。

5. 網路大數據在什麼地方獲取

網路大數據獲取的地方有(在法律范圍內,獲取公開數據):

社區、論壇、微博、知乎、FACEBOOK、Twitter、Ins等社交媒體

網路、搜狗、360、谷歌、必應、雅虎等搜索引擎

美團、大眾點評、58同城、趕集網等信息分類網站

企查查、天眼查等企業工商信息API

智聯、BooS直聘、拉勾、中華英才、領英等招聘網站

阿里巴巴、慧聰、商業新知、軟服之家等ToB類平台或行業網站

公共數據開放網站:

政府數據開放平台

北京市政務數據資源網、上海市政府數據服務網、天津市信息資源統一開放平台、開放廣東、浙江政務服務網「數據開放」專題網站、武漢市政務公開數據服務網、長沙市政府門戶網站數據開放平台、蘇州市政府數據開放平台、成都市公共數據開放平台、數據開放--四川省人民政府網站……

國家相關部門統計信息網站

中國人民銀行、中國銀行業監督管理委員會、中國證券監督管理委員會、中國銀保險監督管理委員會、中國國家統計局……

國外數據開放網站

紐約政府開放數據平台、美國官網數據超市、新加坡政府開放數據平台、休斯頓市開放數據門戶網站、Academic Torrents、hadoopilluminated.com、美國人口普查局、世界銀行開放數據搜索網站、費城開放數據平台……

資源節選自:

【Open Data】國外開放數據中心及政府數據開放平台匯總

最全的中國開放數據(open data)及政府數據開放平台匯總

6. 大數據如何獲取

生活中到處都有數據,所有獲取數據的途徑也有很多,如:
淘寶店
假如我們開了一個淘寶的的話,我們就可以從淘寶裡面的數據魔方這個運用裡面獲取大量的數據,這些數據我們需要好好分析。
微信公眾號
利用微信公眾號,我們也能夠獲得很多的大數據,我們投放廣告,每天有每天的數據統計,每月有每月的數據統計,這些都是大數據時代下的小數據。
網路推廣
我們利用網路推廣來進行廣告投放,這也是獲取大數據的一種方式,利用網路推廣來獲取我們需要的各種大數據,不過,這需要我們先進行前期的投入。
智匯推
智匯推是騰訊旗下的一款商業的廣告產品,我們也能夠通過我們自己的廣告模式來獲取我們需要的最大化的數據,和其他的推廣方式一樣,這里也有每天的數據分析,我們同樣可以獲得大數據。
頭條號
還有就是現在比較火的頭條了,我們利用頭條來進行我們自己公司的廣告推廣,從而獲得我們需要的一些數據,進行統計,進行分析,得出結論,進而進行合理的投放,獲得利益。
微博
微博也是一種獲得大數據的推廣方式之一,我們可以通過微博來進行企業的活動推廣,進而從每日、每月的數據中獲得我們需要的信息,讓我們的推廣模式進行改變,為企業節約成本,為企業帶來收益。

7. 大數據公司的四種數據獲取方法

大數據公司的四種數據獲取方法_數據分析師考試

對於所有號稱涉足大數據的互聯網公司而言,可以從兩方面判斷其前景與價值,其一是否有穩定的數據源,其二是否有持續的變現能力,其中包含數據理解運用的經驗積累。涉及大數據的公司發展在互聯網時代如雨後春筍,除了巨頭網路騰訊阿里巴巴外,還有一些成立時間不算久但底蘊深厚的公司。如國雲數據、帆軟等。不過不管公司多大,獲取數據都是非常重要的基礎。

就數據獲取而言,大的互聯網企業由於自身用戶規模龐大,把自身用戶的電商交易、社交、搜索等數據充分挖掘,已經擁有穩定安全的數據資源。那麼對於其它大數據公司而言,目前大概有四類數據獲取方法:

第一、利用廣告聯盟的競價交易平台。比如你從廣告聯盟上購買某搜索公司廣告位1萬次展示,那麼基本上搜索公司會給你10萬次機會讓你選取,每次機會實際上包含對客戶的畫像描述。如果你購買的量比較大,積累下來也能有一定的互聯網用戶數據資料,可能不是實時更新的資料。這也是為什麼用戶的搜索關鍵詞通常與其它網站廣告位的推薦內容緊密相關,實質上是搜索公司通過廣告聯盟方式,間接把用戶搜索畫像數據公開了。

第二、利用用戶Cookie數據。Cookie就是伺服器暫時存放在用戶的電腦里的資料(.txt格式的文本文件),好讓伺服器用來辨認計算機。互聯網網站可以利用cookie跟蹤統計用戶訪問該網站的習慣,比如什麼時間訪問,訪問了哪些頁面,在每個網頁的停留時間等。也就是說合法的方式某網站只能查看與該網站相關的Cookie信息,只有非法方式或者瀏覽器廠家有可能獲取客戶所有的Cookie數據。真正的大型網站有自己的數據處理方式,並不依賴Cookie,Cookie的真正價值應該是在沒有登錄的情況下,也能識別客戶身份,是什麼時候曾經訪問過什麼內容的老用戶,而不是簡單的遊客。

第三、利用APP聯盟。APP是獲取用戶移動端數據的一種有效手段,在APP中預埋SDK插件,用戶使用APP內容時就能及時將信息匯總給指定伺服器,實際上用戶沒有訪問時,APP也能獲知用戶終端的相關信息,包括安裝了多少個應用,什麼樣的應用。單個APP用戶規模有限,數據量有限,但如某數據公司將自身SDK內置到數萬數十萬APP中,獲取的用戶終端數據和部分行為數據也會達到數億的量級。

第四、與擁有穩定數據源公司進行戰略合作。上述三種方式獲取的數據均存在完整性、連續性的缺陷,數據價值有限。BAT巨頭自身價值鏈較為健全,數據變現通道較為完備,不會輕易輸出數據與第三方合作(獲取除外)。政府機構的數據要麼全部免費,要麼屬於機密,所以不會有商業性質的合作。擁有完整的互聯網(含移動互聯網)的通道數據資源,同時變現手段及能力欠缺的運營商,自然成為大數據合作的首選目標。

以上是小編為大家分享的關於大數據公司的四種數據獲取方法的相關內容,更多信息可以關注環球青藤分享更多干貨

8. 大數據到底是怎麼來的

肯錫全球調研室得到的定義是:一種企業規模大到在得到、存儲、管理方案、分析方面極大地超出了傳統資料庫軟體工具專業能力范圍的數據融合,具有很多的數據企業規模、快速的數據運行、各種各樣的數據類型和實用價值密度低四大特性。

大數據專業性的戰略意義不在於掌握極大的數據信息,而在於對這類含有現實意義的數據進行專業化處理。換而言之,倘若把大數據比作一種全產業鏈,那麼這種全產業鏈進行盈利的關鍵,在於提高對數據的“生產量”,依據“生產製造”進行數據的“增值”。

從技術上看,大數據與大數據技術的關系好似一枚硬幣的正反面一樣密切聯系。大數據必然不能用每台的計算機進行處理,盡量採用分布式架構。它的特性在於對很多數據進行分布式架構數據挖掘。但它盡量依靠大數據技術的分布式架構處理、分布式架構資料庫和雲端存儲、虛擬化技術。

隨著著雲時代的來臨,大數據(Bigdata)也吸引了越來越多的關注。分析師卓越團隊感覺,大數據(Bigdata)一般 用以敘述一個公司鑄就的許多非結構性數據和半結構性數據,這類數據在一鍵下載到關系型資料庫用於分析的情況下會開銷過多時間和金錢。大數據分析常和大數據技術聯繫到一起,因為及時的大中小型數據集分析務必像MapRece一樣的構架來向數十、數百或甚至數千的電腦分配工作上。

大數據務必與眾不同的專業性,以有效地處理許多的承受經歷時間內的數據。可用大數據的專業性,包括規模化並行處理(MPP)資料庫、數據挖掘、分布式系統、分布式架構資料庫、雲計算技術、大數據技術和可擴展的分布式系統。

關於大數據到底是怎麼來的,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

9. 大數據,雲計算中的海量數據是哪裡來的

都是為數據存儲和處理服務的;都需要佔用大量的存儲和計算資源,因版而都要用到海量數權據存儲技術、海量數據管理技術、MapRece等並行處理技術。因此,雲計算和大數據是一個硬幣的兩面,雲計算是大數據的 IT 基礎,而大數據是雲計算的一個殺手級應用。

10. 大數據來自哪裡大數據會去哪裡

大數據來自哪裡?大數據會去哪裡?
初識大數據,首先我們需要知道什麼是大數據呢?用通俗一點的話來說就是一堆一堆又一堆的、海量的數據。通過網路我們知道「大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。」
在當下的互聯網飛速發展的時代,任何一個技術都是為了達到某種目的而發展的,而大數據從根本上來說就是為了做決定存在的,大數據為企業的決策提供有力的依據。比如市場方針的制定,精準營銷的目標群體、營銷數據等等。大數據的存在不僅是為企業提供了數據支撐,而且為用戶提供了更為便捷的信息和數據服務。
大數據體現的是數據的數量多,數據類型豐富。我們需要通過對數據的關系的的挖掘,才能最終將數據進行更好地利用。
誰是物聯網?
物聯網是什麼呢?通俗的概念來講,物聯網就是通過網路信息技術和工業自動化控制技術將硬體和網路進行有效的集合並通過感測器進行對應的信息控制,以此達到對物件的自動控制的混合網路。通過網路我們知道「物聯網(The Internet of things)就是物物相連的互聯網」。這有兩層意思:第一,物聯網的核心和基礎仍然是互聯網,是在互聯網基礎上的延伸和擴展的網路;第二,其用戶端延伸和擴展到了任何物品與物品之間,進行信息交換和通信。物聯網通過智能感知、識別技術與普適計算、泛在網路的融合應用。」
隨著工業控制、信息識別和互聯網網路的發展,物聯網將是下一個信息浪潮。
大數據與物聯網的聯系既有區別也關聯。以小編的個人愚見,物聯網行業如果需要有較好的發展,那麼需要大數據強力的支持,而針對物聯網行業的大數據,則是不斷來源於物聯網超級終端的數據採集。所以,物聯網對大數據的要求相比於大數據對物聯網的依賴更為嚴重。
大數據來自哪裡?大數據會去哪裡?
淺談大數據的來源
大數據的來源這個問題其實很簡單,大數據的來源無非就是我們通過各種數據採集器、資料庫、開源的數據發布、GPS信息、網路痕跡(購物,搜索歷史等)、感測器收集的、用戶保存的、上傳的等等結構化或者非結構化的數據。
淺談大數據能夠帶給我們什麼
大數據能給我們帶來什麼?很多公司現在都在炒大數據的概念,但是真正能做好的有幾個呢?大數據重在積累、強在分析、利於運用。沒有經過多年的有意的數據收集、沒有經過嚴謹細心的數據分析。那麼,如何來談論大數據能給企業或者個人來帶來便捷呢?
大數據能帶給企業的項目立項的數據支撐、精準化營銷、電商的倉位儲備等等。但是針對個人用戶有時候就是麻煩了,因為你隨時都可以接收到很多的營銷簡訊、隱私暴露太多。另外對於個人用戶大數據的好處是可以快速找到自己想要東西、為用戶提供信息服務、獲取消費指導等等。換個角度看問題的話,小編認為應該是利大於弊。
大數據是怎麼帶給我們想要的支撐?
龐大的數據需要我們進行剝離、整理、歸類、建模、分析等操作,通過這些動作後,我們開始建立數據分析的維度,通過對不同的維度數據進行分析,最終我們才能得到我們想到的數據和信息。
1、 項目立項前的市場數據分析為決策提供支撐;
2、 目標用戶群體趨勢分析為產品提供支撐和商務支撐;
3、 通過對運營數據的挖掘和分析為企業提供運營數據支撐;
4、 通過對用戶行為數據進行分析,為用戶提供生活信息服務數據支撐和消費指導數據支撐。
如何通過大數據挖掘潛在的價值?
模型對於大數據的含義
模型有直觀模型,物理模型,思維模型,符合模型等。我們在進行數據挖掘前需要考慮我們需要用這些數據來干什麼?需要建立怎麼樣的模型?然後根據模型與數據的關系來不斷優化模型。
只有建立了正確的模型才能讓數據的挖掘和分析更有便捷。

閱讀全文

與清遠大數據獲取哪裡來相關的資料

熱點內容
win10預裝軟體完全卸載軟體 瀏覽:218
win10b站視頻看不了 瀏覽:117
故事系qq 瀏覽:745
電腦軟體里數據丟失是什麼原因 瀏覽:214
用於文件和文件夾管理的都有哪些 瀏覽:281
汽車雲車流app哪個好 瀏覽:334
看英語作文app軟體哪個好 瀏覽:664
linux文件許可權給其他用戶設置 瀏覽:172
word文件匹配工具 瀏覽:986
api介面版本控制 瀏覽:579
iphone拍出虛焦 瀏覽:163
微信里的文件怎麼打開 瀏覽:653
炫舞空白印象代碼 瀏覽:345
維修用什麼編程器好 瀏覽:824
新建壓縮文件夾沒了 瀏覽:700
陽西哪裡招文件管理 瀏覽:324
騰訊文檔目錄文件名 瀏覽:509
編程指令s1s2q指的是什麼 瀏覽:205
快手下載安卓電視版 瀏覽:811
有哪些app可以搜大學 瀏覽:972

友情鏈接