導航:首頁 > 數據分析 > 華為的大數據應用在哪裡

華為的大數據應用在哪裡

發布時間:2022-12-14 21:42:22

① 華為是為大數據服務的正確嗎

正確

全球已進入以數據研究應用為導向的『『大時代』』,大數據正成為一種生產資料、稀有資產,全面融入社會生產生活,深刻改變著世界的經濟格局、利益格局、安全格局。華為擁有專業的大數據服務團隊,在金融、公共安全等行業有30+的行業成功實踐案例。結合客戶業務需求和現網環境,為客戶提供大數據項目集群架構方案設計和集成實施。

② 華為大數據解決方案是什麼

現在有好多公司在做大數據,不僅僅只有華為。比如北京開運聯合信息技術股份有限公司大數據解決方案是要根據您所需要的行業,來定製的。

③ 華為正式發布鴻蒙系統,這個鴻蒙系統究竟可以應用在哪裡

按照華為的說法,這次發布的鴻蒙系統可以用於很多方面。手錶,手機,電視,終端甚至還有穿戴上面,可以說鴻蒙系統是華為備戰物聯網的終極武器。

華為本來是准備再等一年再發布鴻蒙系統,但是因為一些客觀原因在現在就發布了這個系統。作為千呼萬喚始出來的鴻蒙系統,可以說擁有很強大的功能,在很多領域都可以應用。但是此次華為余承東公布,在接下來的三年將用於工業領域上面。對此,有人有疑惑,那麼手機呢?

這次是鴻蒙系統的發布,但是經過時間的推移我們就能夠看到鴻蒙系統的強大功能。它能夠被運用於很多方面,讓生活更加的方便,就讓我們拭目以待吧。

④ 華為手機的 程序管理 在哪裡怎麼找 軟體數據

華為手機的程序管理位置及軟體數據位置如下:

1、點擊進入設置,如圖:

⑤ 華為大數據解決方案是什麼

華為大數據解決方案是華為公司推出的一種綜合性雲解決方案,主要針對廣告營銷、電商、車聯網等大數據應用場景的雲計算大數據方案,幫助企業用戶構建大數據平台,解決企業的海量數據存儲和分析需求。

⑥ 深圳華為大數據開發在哪

在深圳華為軟體研發中心。主要負責處理和大數據應用,結合大數據可視化分析工程師,挖掘出價值的數據,為企業提供業務發展支持。大數據開發工程師偏重建設和優化系統。

⑦ 華為手機怎樣將通信大數據行程卡添加到桌面

華為手機將通訊大數據行程卡添加到手機桌面上。可以點擊該軟體APP後創建圖標至手機桌面。

⑧ 華為大數據解決方案

是華為公司推出的一種的解決方案,主要針對廣告營銷、電商、車聯網等大數據應內用容場景打造的雲計算大數據方案,幫助企業客戶構建大數據平台,解決企業的海量數據存儲和分析需求http://www.hwclouds.com/solution/bigdata

⑨ 大數據技術有在工業領域的成功應用案例嗎

. 深圳市兒童醫院成功部署IBM集成平台與商業智能分析系統
IBM利用其行業領先的大數據與分析技術,支持深圳市兒童醫院搭建信息集成平台,整合原有分散在多系統中的海量數據,實現各部門的信息共享;同時通過商業智能分析對集成數據進行深入挖掘,為醫院各部門人員的科學決策提供全面的輔助,提升醫院的服務水平和管理能力。
2. Informatica幫助紫金農商銀行深挖數據價值
紫金農商銀行ODS數據倉庫項目建設使用Informatica產品完成數據的載入、清洗、轉換工作顯得尤為簡單,圖形化、流程化設計使維護人員能夠快速、順暢的操作,即使數據源結構發生變化,也不會像以前必須修改大量的程序代碼,只需要在PowerCenter中配置一下即可。
3. 華為大數據一體機服務於北大重點實驗室
經過大量的前期調查,比較和分析准備工作,北大重點實驗室選擇了華為基於高性能伺服器RH5885 V2的HANA數據處理平台。HANA提供的對大量實時業務數據進行快速查詢和分析以及實時數據計算等功能,在很大程度上得益於華為RH5885 V2伺服器的高可靠、高性能和高可用性的支撐。
4. IBM攜手漢端科技為飛鶴乳業打造全產業鏈可追溯體系
IBM、漢端科技與中國飛鶴乳業聯合宣布,通過利用IBM業界領先的全面大數據與分析能力,和漢端科技在商業智能領域豐富的行業經驗,飛鶴乳業實現了產品的可追溯與食品安全的數字化管理,完成了系統數字化、透明化、服務化的升級
5. 浪潮大數據平台大大提升了濟南的警務工作能力
浪潮在幫助濟南公安局在搭建雲數據中心的基礎上構建了大數據平台,以開展行為軌跡分析、社會關系分析、生物特徵識別、音視頻識別、銀行電信詐騙行為分析、輿情分析等多種大數據研判手段的應用,為指揮決策、各警種情報分析、研判提供支持,做到圍繞治安焦點能夠快速精確定位、及時全面掌握信息、科學指揮調度警力和社會安保力量迅速解決問題。
6. 英特爾攜杭州誠道科技構建智能交通
面對大數據挑戰,杭州市和杭州誠道科技有限公司緊密合作,部署了基於英特爾大數據解決方案的誠道重點車輛動態監管系統,通過集中的數據中心將全市卡口、電子警察、視頻監控、流量檢測設備、信號機、誘導設備等有效地連接起來,從交通案件偵破能力、交通警察對機動車輛的監管能力到利用關聯車輛的數據分析能力,都得到了極大提升。
7. 步步高集團借Oracle Exadata 大大提高了IT投資回報率
步步高集團採用 Oracle Exadata資料庫雲伺服器搭建信息化平台,憑借Oracle Exadata資料庫雲伺服器的高擴展性、安全性和冗餘性,步步高集團得以在該基礎架構上運行一系列Oracle零售行業以及Oracle的應用軟體。此外,基於Oracle Exadata的步步高IT新架構比傳統架構擁有更好的性價比,最大限度地增加了IT的投資回報率。
8. 華為Anti-DDoS助阿里巴巴檢測DDoS變革
阿里巴巴現網多個數據中心出口都部署了華為的Anti-DDoS解決方案,平均每天防護的DDoS攻擊次數超過100次,每年達數萬次,峰值防護的DDoS攻擊流量超過100Gbps。如今,DDoS攻擊在阿里巴巴安全工程師眼裡已經習以為常,由華為Anti-DDoS方案自動調度進行清洗防護即可。「雙11」期間,華為Anti-DDoS方案一如既往地成功防護了多輪DDoS攻擊事件,有力保障了阿里巴巴網路交易的順暢平穩。
9. 華為大數據方案在福建移動的應用
為進一步提升外呼成功率,從2014年初開始,福建移動聯合華為公司開展基於大數據的精準營銷工作,採用大數據分析的方法選擇外呼目標價值用戶。基於大數據分析方法和傳統外呼方法分別提供20萬目標客戶清單,在前台無感知下進行對比驗證,確保對比效果不受人為因素影響,經過外呼驗證,基於大數據分析方法較傳統方法外呼成功率提升50%以上,有效支撐了福建移動4G用戶發展戰略。
10. 北京市人民政府「12345」便民電話中心選擇Oracle Exadata 實現便攜服務
為了進一步提升部門的調度能力、辦理水平和群眾滿意度,北京市人民政府「12345」便民電話中心選擇Oracle Exadata資料庫雲伺服器,升級成為北京市非緊急救助服務綜合受理調度平台,通過Oracle Exadata Database Machine支撐起新平台的資料庫訪問需求。升級後的平台能夠整合全市的便民呼叫服務,支撐來自群眾的各類訴求、求助、批評和建議,並可為公眾提供方便、快捷的公共信息服務,真正成為全市的輿情中心、信息匯集中心和城市名片。

11. 民生銀行借IBM BigInsights應對金融業的大數據挑戰
IBM BigInsights大數據解決方案和企業級NoSQL資料庫SequoiaDB合作,為民生銀行搭建低成本、高性能、高可靠且水平擴張的數據平台,幫助民生銀行通過大數據分析應對金融業的大數據挑戰,完善交易流水查詢分析系統,產業鏈金融管理系統,以及私人銀行產品貨架管理系統。
12. 中信銀行信用卡實施EMC Greenplum 數據倉庫解決方案
中信銀行信用卡中心選擇實施EMC Greenplum 數據倉庫解決方案。Greenplum 數據倉庫解決方案為中信銀行信用卡中心提供了統一的客戶視圖,藉助客戶統一視圖,中信銀行信用卡中心可以更清楚地了解其客戶價值體系,從而能夠為客戶提供更有針對性和相關性的營銷活動。基於數據倉庫,中信銀行信用卡中心現在可以從交易、服務、風險、權益等多個層面分析數據。通過提供全面的客戶數據,營銷團隊可以對客戶按照低、中、高價值來進行分類,根據銀行整體經營策略積極地提供相應的個性化服務。
13. 惠普助力雅昌集團掘金大數據
成立於1993年的雅昌集團首創「傳統印刷+IT技術+文化藝術」的商業模式,形成環環相扣的文化產業鏈,為藝術市場提供全面、綜合的一站式服務。基於企業內容數據管理體系,惠普為雅昌搭建了從數據採集、處理、管理到應用的全過程處理流程,使雅昌可以快速利用所需數據,縮短新品上線時間,快速響應市場變化。
14. 德國足球隊採用SAP大數據方案迎戰世界盃
德國足協和SAP公司通過聯合創新引入SAP Match Insights解決方案,該方案基於SAP HANA平台運行處理海量數據,可以為球員和教練提供一個簡明的用戶界面,幫助雙方開展互動性更強的對話,分析球隊訓練、備戰和比賽情況,從而提升球員和球隊的成績。
15. 1號店借Oracle Exadata改善終端客戶體驗
1號店採用Oracle Exadata資料庫雲伺服器成功優化統一整合的數據平台,滿足了不斷增長的業務處理需求,並進一步改善了終端客戶體驗。經過Oracle Exadata整合後的新平台採用混合負載互備架構,將平均處理性能提升7倍,既可以支持目前規劃業務量的業務處理,還能夠隨著業務量的增長進行在線升級、擴容,滿足處理能力和數據量的增長需求。軟、硬體集成設計的Oracle Exadata 協助解決了1號店的I/O瓶頸問題,實現了比傳統架構更高的性能和可擴展性。同時,基於Exadata的1號店IT新架構比傳統架構擁有更好的性價比,最大限度地發揮了IT投資回報率。
16. 大數據在青島銀行:提升銀行交易性能、簡化運營和管理
利用IBM大數據專家PureData,青島銀行能夠高效集成業務數據,簡化運維。PureData for Transactions作為青島銀行重要業務處理系統,能夠在一個系統中整合超過幾十個資料庫,同時提供良好的性能、可用性和可擴展性支持實現廣泛的業務目標,例如地域擴張,突發的業務交易高峰,新櫃面、流程銀行等大規模的業務上線等。
17. Informatica方案幫助南京兒童醫院實現信息互通共享
南京市兒童醫院目前已建成包括HIS、LIS、PACS、電子病歷EMR、醫生工作站、移動護理、病案、財務管理、庫房管理和手術麻醉等幾十個應用系統,這些異構系統間數據調用分散,不能集中統一標准化管理。通過採用Informatica ETL工具構建數據倉庫系統,並基於數據倉庫建設醫院數據調用公共資源中心庫,南京市兒童醫院實現了實時的數據交互和信息共享,干凈、標準的數據為跨應用系統數據關聯分析打下扎實基礎。
18. 東吳大學採用達索系統EXALEAD啟動大數據應用暨產學合作
台灣東吳大學採用達索系統EXALEAD大數據智能應用開發解決方案,全方位地整合校務信息,積極開發校務經營發展的各項應用。此外還將啟動三方產學合作計劃,協助建立校內大數據相關課程、人才培訓和實習機制,使學生自入學就開始不斷提升其未來職場所需的關鍵競爭力,學用合一,實現學校、學生、企業三贏。
19. 網路大腦PK人腦 大數據押高考作文題
為了幫助考生更好地備考,網路高考作文預測通過對過去八年高考作文題及作文範文、海量年度搜索風雲熱詞、歷年新聞熱點等原始數據與實時更新的「活數據」進行深度挖掘分析,以「概率主題模型」模擬人腦思考,反向推導出作文主題及關聯詞彙,為考生預測出2014年高考作文的六大命題方向。

20. IBM助力同仁醫院構築強大的分析體系
同仁醫院通過與IBM合作,同仁醫院建立起了強大的分析能力和體系,包括對臨床、運營、科研、考核等信息的分析,實現智慧的醫院管理與考核;同時也能看到醫療設備的平均故障間隔周期,從而降低了設備的故障率、平均維修時間。這一切都讓工作效率穩步提升,也緩解了病人看病難的問題,提高了患者就醫滿意度。
21. 微軟助上海市浦東新區衛生局更加智能化
作為上海市公共衛生的主導部門,浦東新區衛生局在微軟SQL Server 2012的幫助之下,積極利用大數據,推動衛生醫療信息化走上新的高度:公共衛生部門可通過覆蓋區域的居民健康檔案和電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測和響應程序,快速進行響應。與此同時,得益於非結構化數據的分析能力的日益加強,大數據分析技術也使得臨床決策支持系統更智能。
22. 湖南電信通過分析掌握電信市場動向、針對性定製營銷計劃
利用IBM大數據專家PureData,湖南電信實現了通過分析掌握市場整體經營情況、快速制定市場策略以及加強客戶經理營銷維系的高效執行。PureData for Analytics作為湖南電信本地數據集市建設工程重要組成部分,高效整合了湖南電信旗下各本地網數據,為進一步分析創造先機。
23. 攜程借SQL Server增強了數據採集和掌控
作為國內領先的綜合性旅行服務公司,攜程計算機技術有限公司曾面臨分支機構、服務城市和員工數量的增長所帶來的運營數據分散和數據集成難的 IT 問題。藉助微軟SQL Server 2012 商業智能解決方案,攜程增強了其對所有下屬分支機構的數據採集和掌控,大大減少了計劃性停機時間以及非計劃性停機的時間,靈活的部署選項也可以根據攜程的需要實現從伺服器到雲的擴展。
24. 上海公共研發平台部署Oracle Exadata應對擴展需求
上海公共研發平台部署Oracle Exadata資料庫雲伺服器,以應對其系統和應用的擴展需求。Oracle Exadata融合了一系列同類最佳的預配置的伺服器、網路、存儲和軟體,能為數據倉庫和在線事務處理應用程序提供超強性能。上海公共研發平台運行Oracle Exadata期間相對穩定,CPU佔用率控制在5%以內,極大改善了用戶應用體驗。同時,Exadata平台的可擴展性極好的滿足了上海公共研發平台的系統需求,目前整個公共研發平台的20多個應用系統已經全部遷移到Exadata上,應用部署量增長1倍,且運行十分穩定。
25. 360手機衛士10KB解決iPhone騷擾
360手機衛士通過對海量數據的運算和精準匹配下發,將一組大小僅為10KB的數據即1000個騷擾號碼同步到用戶手機上,打造個性化的騷擾號碼資料庫,此外,每天更新的騷擾號碼庫數據,會依據標記趨勢調整騷擾號碼庫中各類數據比例,即每一位360手機衛士用戶手機中的1000個騷擾號碼都是動態的,隨地域、身份以及騷擾趨勢的變化而變化。
26. 神州數碼助張家港市更「智慧」
在張家港實踐的城市案例中,市民登錄這款「神州數碼」研發的市民公共信息服務平台後,市民只要憑借自己的身份證和密碼,即可通過該系統平台進行240餘項「在線預審」服務、130餘項「網上辦事」服務等,還可通過手機及時查看辦事狀態。相比於以前來說,市民辦事的時間最少可以節省一半以上。

27. IBM助中網組委會構建安全和敏捷的內聯網
IBM專門為中網設計了具有實時大數據分析功能的MatchTracker(賽事追蹤系統),可以為球迷提供數據呈現、計分等功能。 MatchTracker基於IBM SlamTracker分析技術,使球迷能夠利用歷史和實時性數據,洞悉比分之後的態勢和策略。此外,IBM還為中網組委會構建了安全和敏捷的內聯網。
28. Cortana基於微軟Bing大數據預測世界盃
微軟為Cortana增加了世界盃預測的功能,基於微軟Bing大數據,並綜合考慮世界盃各支球隊的過往比賽結果、比賽時間、天氣情況、主場優勢以及其他因素,使用大量的博彩市場公開數據、民意調查、社交媒體以及其它在線數據,利用大數據分析來判斷每場比賽的結果。
29. 中科曙光助同濟大學科研領域再創新高
為了滿足爆炸式增長的用戶和數據量,同濟大學攜手中科曙光,在全面整合雲計算平台和現有資產的基礎上,採用 DS800-F20存儲系統、Gridview集群管理系統,以及Hadoop分布式計算平台構建出了業內領先的大數據柔性處理平台,使得同濟大學在信息學科及其交叉學科研究領域邁上一個新台階。
30. 華為助農行完成海量數據分布式處理的需求
華為向農行提供了良好的計算平台,基於華為RH2288 V2伺服器的分布式並行計算集群進行測試,以及還提供了快速響應客戶需求的研發能力,以及業界最快捷的售後服務。農行的測試結果表明,華為解決方案完全滿足農行對海量數據進行分布式處理的要求。

⑩ 大數據在企業中的應用

大數據在企業中的應用

2015年9月10日,首席數據官聯盟成立儀式暨第一屆首席數據官大會在北大召開,本次活動由中國新一代IT產業聯盟和易觀智庫聯合主辦,中國新一代IT產業推進聯盟技術分委會秘書長魯四海發表演講並參與對話討論。本次對話環節由易觀智慧院副院長葛涵濤主持,參與對話的嘉賓有北大電子政務研究院副院長楊明剛、殼牌中國CIO徐斌、華為大數據總監劉冬冬、北京瀚思安信科技有限公司聯合創始人董昕。各位嘉賓從大數據在企業的應用、人才隊伍建設等方面進行深入討論,以下是對話實錄:


葛涵濤:首先我想請大家做一下自我介紹。


劉冬冬:今年上半年開始代表華為做大數據生態圈的建設,我們這個生態圈是1+6的模式,華為提供公有雲,大計算等服務,與數據挖掘,商業應用,數據可視化展示等合作夥伴,國內篩選200多家大數據公司,和比較核心的合作夥伴,開始了第一批,第二批,第三批的流程,第一批選擇16家簽約,第二批還有十幾家,今年年底會完成初步50家的合作夥伴的合作。


徐斌:殼牌品牌是比較大的公司,殼牌中國業務比較大,殼牌中國在今年已經是121年了,1894年正式進入中國了,就沒有離開。目前我們在中國的業務有上油的油氣的開采,中油的煉化等業務。大數據在殼牌的應用歷史比較悠久,我們開採油田的時候需要用海量的數據做分析,幫助我們在哪裡打井更有效,如何保證製造環節更順暢,更早的發現潛在的風險,這方面有比較多的應用。針對我們幾百萬的用戶,也在做很多的和社交媒體的合作,掌握我們的客戶,留住我們的客戶,尋找新的商業機會。今天很高興有機會和大家交流大數據,特別是我們傳統行業如何使用大數據。


董昕:謝謝大家,我們是瀚思大數據安全,一個新的創業公司。大家想安全和大數據有什麼關系?其實有非常深的關系,我們後面有機會再和大家講。我們這個團隊是2014年成立的,主要成員是來自於埃森哲、甲骨文等這些公司。我們致力於把大型企業雲中心、互聯網裡面所有跟安全相關的,跟業務、應用安全相關的數據做統一大規模的存儲、挖掘、學習和展現,幫助IT從業者,運維人員,甚至企業的領導層從數據終發現一些跟安全相關的東西。希望通過數據驅動整個行業,和整個企業實現由傳統的基於防禦的安全策略,轉向主動智能的安全策略。我們成立一年多,我們公里56人,40多個人都是研發人員,數學科學家等跟數據相關的人員。非常高興有機會和大家探討比較新的行業。


楊明剛:非常感謝主辦方的邀請,很多朋友可能了解電子政務,電子政務就是政府的信息化,還有所謂的智慧城市,還有數字城市。在過去一年多,一直做政府相關的信息化的應用,包括頂層設計。現在隨著大數據概念的提出以後,應用和需求在過去一直存在,只是提升了一個水平。電子政務這塊近兩三年提上很重要的地位。電子商務對大數據的需求也是蠻多的,過去三四年,我們一直研究政務數據和商業大數據,非常高興和大家探討數據和首席數據官未來在整個企業決策和政策決策中的作用。


葛涵濤:我們的各位嘉賓對大數據,對數據資產進行了前期的描繪和支撐。我們都知道現在大數據產品和數據產品數據來源非常廣,包括來自於智能設備,可穿戴設備,來自於金融,來自於終端設備。有了大量的數據,基於數據進行挖掘和分析,數據產品化以後,再將數據產品應用到業務中。但是這些數據產品安全性怎麼樣?針對數據安全和用戶數據隱私與大數據是什麼關系?


楊明剛:我先從價值方面跟大家分享一下。美國有一本書《數字化生存》目前這個社會,隨著網路的發展,我們所有的網路,所也的社會的形態都可以用數據來表達,這個時候無論是政務數據,還是商業數據,還是個人數據都可以用來提供,或者給我們未來決策提供參考。無論是政府治理,還是企業的科學決策,或者個人未來合理的消費計劃,都可以從數據中提取到相關的決策參考。所以這塊,其實所有的數據,看似雜亂無章,各種非結構數據和結構化的數據,通過適當的方法處理,或者通過數學模型處理,能夠給我們管理和決策帶來新的支持或者更大的支持,這是我對整個目前數字這塊所謂的資產,數據是可以增值的資產。


其實我們有了互聯網以後,每個人在網路上,無論是購物,還是通過社交工具或者社會化媒體發表相關的看法或者思想等,我們在網路上留下了大量的數字的網路痕跡,其實提取這些痕跡,包括相關的特徵,用一定的方法去分析,就可以找尋每個人或者相關的機構未來的表現。這個東西在這裡面,有很多東西涉及到個人隱私,可能在這里買的房子,或者附近相關的消費,根據你的社會屬性可以判斷你未來的行為。從某種行為來說,會讓我自己感覺很不舒服,但是這些信息是通過我們允許的放在網路上,只是相關的機構提取過來做一些加工,可能對個人的隱私或者個人尊嚴是一種挑戰。隨著國家立法的完善,我相信網路的隱私權保護會逐漸解決。


董昕:其實好惡誇張的說,我們在座的每一個人都不安全,在網路空間,無論是你產生的數據,還是你的痕跡,還是你的隱私,或多或少在自己的手機里,PC里,或者是伺服器端,安全和隱私可能是永恆的話題,比較大,我就不展開講了。從我們的角度來說,我們更關注的,從一個角度如何把核心的數據,核心的資產保值增值,安全隱私的問題。無論是大數據下面的數據隱私,數據安全,還是小數據的數據隱私和數據安全方法論是一樣的。在管理制度上怎麼進行保障?


過去談論到數據安全,更多的時候是靠技術手段為主,所以才會出現各種各樣的防火牆,加解密設備,數據防泄漏,防入侵。這些東西都有用,但是無法解決所有的問題。要不然也不會出現JP摩根信用卡數據泄漏等問題。我們需要擁抱新型的技術,新型的平台,通過技術本身解決安全問題。


另外一個國外很多報告中都寫到了,設備本身控制數據資產不太現實,我假設所有的東西都是不安全的,把所有的東西都放一個安全體系,這是國際探討的問題。我們怎麼用新型技術保護數據安全,同時結合技術,如何使安全管理的流程和措施,能夠在企業中獲得更多的認識,從而解決這個問題。


葛涵濤:關於數據能力開放的問題,在之前大數據會議上,阿里集團代表上講過,阿里的數據不開放,他們是不是有數據安全的考量。因為他們收購了高德等一系列的社交和位置的公司,掌握了用戶全維度的數據,這是出於隱私保護,基於安全的數據開放,還是比較遙遠的話題。剛才我們在CDO調研報告裡面,在未來的數據業務和大數據技術方向上,在行業領域裡面的發展是非常重要的,我想請劉冬冬和徐總分別談談,比如說大數據業務,還有數據資產等等相關的技術和服務,在你們相應的通訊和能源行業怎麼與你們的業務結合落地的。


徐斌:像大數據的應用,在我們自己的傳統行業會產生什麼樣的作用?我們自己內部把大數據的企業進行劃分。從企業決策中大數據起了很多的作用,同行用爆破的方式採集信息,幫助我們判斷出這個地方打一口井效率是不是高,因為每一口的井的成本是上百萬的,提高10%的成功率是很可觀的,這是決策支持。


第二個是運營優化,比如說油站地下油庫存在非常大的隱患,汽油和柴油泄漏的時候,一對環境造成很大的風險,第二對地下水有影響,甚至產生爆炸。一旦發生這種情況,通過大數據技術能不能提前發現潛在的泄漏風險。通過對比站的分析,提前發現是否存在不適當的損耗的發生,從而發現風險。


第三個就是市場營銷,在我們消費互聯網層面談了很多,我們怎麼樣找到客戶的特性,延伸業務領域,包括業務合作。另外通過合作,找到我們潛在的客戶。像今天的孫總,我們客戶最典型的,對油品的質量要求比較高。我們從互聯網找到這個維度,在電商上購買率很高的,經常談到汽車的,這兩個碰撞就能找到潛在客戶。


第四個就是企業安全進行風險管控。能源行業是高危行業,包括油品配送過程中,配送的時候出現問題,可能出現爆炸的風險,包括成本的增加。因此我們在海外作業的時候,不能很好及時發現風險,可能造成重大的人身傷害,包括知識產權的保護,有跟多配方,這是很關鍵的,這個怎麼防止黑客攻擊。這個和董總有相關性,企業安全,人身的安全,包括信息安全。


第五是業務創新,第六是模式變革。這兩個把我們傳統的,我們通過賣汽油變成我們可能變成第三方汽車服務後市場。以後我們油品可能免費,免費的意義在於盈利模式通過後面衍生的新業務,就是羊毛出在豬身上狗來買單。這就是大數據在我們能源行業6方面的價值。


葛涵濤:我們原來做過石油遠程管道安全監護。現在俄羅斯他們傳輸的油氣管道,很多油氣管道每隔多少公里就有檢查油壓、溫度,還有油管表面的狀況,加入了很多感測器,獲取管道表面的數據,另外還有相應的機器人,會在軌道上定期巡邏,用光來檢查表面的狀況。將這些數據全部匯總在當地的數據中心,最後匯總到歐洲數據中心,如果正常就顯示為綠色的。大數據幫助能源運輸企業,在你發生問題之前就幫你預測問題即將在什麼時間大概發生。在發生之前進行預警,我覺得這個也是大數據跟商業智能整合的非常好的一個案例。


徐斌:在我們石油行業,特別是化工行業,生產行業一旦有一些事故終止生產,想恢復是非常長的時間,一般是三個月,三個月損失多大。越早預測到危險,提前採取措施,效率是很明顯的。


劉冬冬:我們通訊行業跟石油行業是很像的。我們華為也會裝各種各樣的感測器採集數據,知道什麼地方有什麼問題,然後解決問題。比如說一個大型會場,一個足球場,數萬人,大家都在發微信,這個時候能不能發出去,信號如何?這是我們自身運營商的應用場景。衍生出來的應用場景,如果華為或者運營商更早的把大數據應用到企業的經營管理等等各個維度中去,就不會發生像上海那樣的踩踏事件。當外灘單位面積內聚集的人口超過一定量以後就應該有一個預警,告訴相關的管理部門,公安也好,告訴相關的部門人說這個地方已經超多了,通過手機我們可以捕捉這個信息。我們在大數據行業剛剛起步,我相信將來所有的行業,都會面臨變成以數據為驅動,或者以數據為核心驅動力的,而不是像以前以產品為驅動力,以渠道或者品牌為驅動力的。以數據為驅動力的話,這個問題是蠻大的,作為華為來說,現在從各個方面改為以數據為驅動力。從宏觀來說,我們將要做什麼,我們要做哪些產品,這些都可以通過數據給我們進行指導。


在大數據產品裡面,哪些是最需要的,哪些是最急迫的,我們可以通過分析挖掘出來,這個可以指導我們企業將來做什麼,不做什麼。從很小的細節來說,華為2016年找誰做手機形象代言人,我們可以用大數據做。華為手機的粉絲超過100萬。這些人共同關注的是誰,他們共同興趣愛好是什麼?他們每天什麼時間上網,數據的統計就告訴我們了,不需要決策部門每天坐在一起拍腦袋決定是誰,不是誰。剛才說到數據安全問題,我認為數據安全和技術是矛和盾的問題。現在接受就可以了,當我們現在收到騷擾簡訊垃圾簡訊,為什麼會收到,是因為他們掌握了我們手機信息。當企業掌握了很多的信息以後,這時候就造成可以滿意度的問題,讓數據決定數據安全,讓市場決定技術到什麼程度,自然會有優勝劣汰,服務好的企業就會持續發展,服務部好的企業就會死掉。


葛涵濤:我們對用戶數據掌握的越來越多,我們對數據精準分析越來越多,我們傳遞出來的消息就是精準營銷,傳遞的信息就是有用的信息,而不是垃圾信息。這實際上對我們大數據企業,對技術和演算法提出了更高的要求。如何通過大數據分析方法尋找數據中隱藏的,還沒有被發現的價值和知識。


楊明剛:其實所謂大數據,大價值,大數據應該不是大忽悠,我為什麼這么說?因為我在過去一段時間,有一個地方政府,某一個行業部門在使用大數據,但是建完的大數據系統無法滿足他們的業務需求。我們傳統的大數據,一部分是對現有數據的發現,這就是數據檢索,傳統的數據方法就可以做到,對已知的東西,已知的問題,每個數據單元都是了解的,這時候無論是結構化數據,還是非結構化數據,我們可以帶著問題找到蛛絲馬跡,問題存在什麼地方。另外一部分應該是預測的部分,就像海爾孫總談到的問題,其實可以預測。業務管理專家和業務模型建構專家需要有一個緊密結合。大數據其實是一件奢侈品,對華為這樣的產品,對我們海爾這樣的企業,對殼牌這樣的企業是可以投得起資金的,大數據是奢侈品,但是絕大部分的中小企業也需要科學決策,也需要了解市場需求,這時候面臨很重要的選擇,要面臨高昂的成本建立系統,這是不可能的。但是絕大多數的大數據企業都需要高投資,中小企業怎麼通過在數據時代不被淘汰,需要大數據解決方案提供商,或者需要大數據研究者提供一種更典範的,或者更普世的大數據解決方案,不是依託與傳統的數據檢索,或者傳統的數據包裝實現大數據的方案,而是需要跳出傳統的大數據分析方法之外,能不能有另外一種更科學,更普世的方法,讓我們很多中小企業都能享受到當今的大數據服務,需要我們在座的一起探討。實際上個人也需要大數據服務。


葛涵濤:跟簡單,更方便使用的大數據產品,方便企業減少這方面的預算,讓更多的人使用大數據帶來的便利。


楊明剛:中國的天氣預報部門利用大數據是最好的,把過去一百多年的歷史數據拿過來進行預報。真正的大數據是對未來可能的知識的發現,通過大數據發現潛在的數據之間的關聯。


葛涵濤:實際上我們剛才提到了各個不同的行業和企業對大數據的應用,因為你在北大做了十年CIO方面的培養,你們對CDO這方面的人才培養有什麼樣的動作和支持。


魯四海:我們也在探討,剛才我們在PPT裡面分享,首先為什麼會有這樣的角色存在,驅動力是什麼?然後再說需要什麼楊得技能?我覺得CDO有一部分的東西需要從課堂學習的,偏技術這塊的,能涵蓋技術和基礎管理這塊。CDO需要有一些經濟學的基礎在裡面。大數據更大的是告訴我們未來是什麼樣,告訴我們一些未知的東西。不是提一個假設,拿數據進行分析證明這個假設是對的或者是錯的,這個意義不大。真正的意義能夠告訴你未來是這樣的。我覺得CDO在培養過程當中,除了課堂學習以外,還要跟內部的業務部門進行內部的學習和交流。因為我們面臨著未知的世界,更多的需要廣闊的舞台,像CDO聯盟一樣,未來我們做一些交流性的東西,各個行業,不同行業的方式方法進行跨界整合,因為數據在這個時代就是跨界。


葛涵濤:下面我們請我們在座的各位嘉賓,用簡單的一兩句話展望一下大數據時代下,我們這些數據管理人才,CDO們如何在整個大數據背景下做好我們的工作,能在工作上出新出彩,在我們業務設計上有相應的業務創新。


魯四海:應該說任何一個行業任何一個企業的數據都是資產,每個企業都將擁有將數據變成核心競爭力的能力,這個能力可能是自建也可以購買服務獲得。


楊明剛:大數據應用成為未來決策的核心推動力,今天的大數據不能成為大忽悠。


董昕:我們談了很多技術方面的話題,我覺得一個CDO第一應該有大數據的理念,未來主要的價值都是數據。另外一點,我們認為作為一個CDO,一定要跟我們業務相聯系,懂我們的業務,知道我們的收入從哪裡來,成本在哪裡,效率從哪裡提升,這樣CDO才能落地。


徐斌:數據本身有沒有價值,我個人認為數據是沒有價值的,雖然我今天講了很多大數據。只有當數據能幫助企業產生價值的時候才能成為有價值的資產。我經常說數據資產,每個公司都有大量的數據,他們不是資產,因為它沒有用。數據只有成為有用的信息,成為知識,變成智慧,它才是真正的數據資產。不要神話大數據,大數據產生業務的價值,產生商業的價值才叫大。第二我們企業有CDO,或者有虛擬CDO職位,通過其他的CIO、CMO承擔。最主要的是腳踏實地,循序漸進,如果你不把企業的數據用好,談何大數據。如果企業沒有從數據支持決策的文化,大家做任何事情不用客觀數據幫我們做分析,給你再多的數據也沒用。首先是企業文化。第二把現有的數據用好,然後循序漸進引用更多的數據做分析。通過數據發現未知東西,這是偽命題。因為你發現未知東西,因為你不知道,原因是什麼。當形成智慧知道為什麼會發生,這是我們追求的目的,只不過我們現在不知道,所以通過相關的分析找到了相關性,但是不知道原因。未來當我們有足夠多的知識積累,我們就知道原因了。未知領域是大數據的使用階段。


劉冬冬:大數據這塊沒有找到盈利模式,沒有找到市場,推不動。現在大家找到了盈利模式才推下去了,這才是有用的,大數據有用才是硬道理。對於CDO來說,我認為跨界才是最重要的。不光要有知道企業內部的小數據,同時也要知道外部的數據如何和企業內部的數據相結合。比如說做銷售的,系統能不能很快的告訴員工,這個公司銷售額有多大的產能,以及其他合作公司等等的情況,有價值才是最重要的。

以上是小編為大家分享的關於大數據在企業中的應用的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與華為的大數據應用在哪裡相關的資料

熱點內容
win10電腦怎麼休眠不斷網 瀏覽:530
如何查到網站的伺服器 瀏覽:225
編程怎麼確定一個數的位數 瀏覽:362
如何安裝ae腳本文件夾 瀏覽:914
商品驗偽用什麼APP查 瀏覽:350
請問大數據與會計專業做什麼的 瀏覽:77
如何修改數據上年結轉 瀏覽:6
win7一直配置文件重啟 瀏覽:124
佳能ir2525i網路掃描 瀏覽:283
win10指紋無法識別 瀏覽:646
jsp中怎麼引入js文件 瀏覽:925
文件名構成部分 瀏覽:484
興國互聯網app有哪些 瀏覽:475
北京時間票房多少票房統計數據 瀏覽:750
探探文件夾是哪個 瀏覽:429
如何分類微信文件 瀏覽:446
城市天際線win10 瀏覽:813
運動APP跑步如何抓作弊 瀏覽:57
微信中秋節動態祝福語 瀏覽:703
練英語的網站哪個好 瀏覽:894

友情鏈接