導航:首頁 > 網路數據 > 大數據和關系型資料庫

大數據和關系型資料庫

發布時間:2024-07-22 12:36:41

大數據的定義是什麼

大數據首先是一個非常大的數據集,可以達到TB(萬億位元組)甚至ZB(十萬億億位元組)。這裡面的數據可能既有結構化的數據,也有半結構化和非結構化的數據,而且來自於不同的數據源。

結構化的數據是什麼呢?對於接觸過關系型資料庫的小夥伴來說,應該一點都不陌生。對了,就是我們關系型資料庫中的一張表,每行都具有相同的屬性。如下面的一張表:

(子標簽的次序和個數不一定完全一致)

那什麼又是非結構化數據呢?這類數據沒有預定義完整的數據結構,在我們日常工作生活中可能更多接觸的就是這類數據,比如,圖片、圖像、音頻、視頻、辦公文檔等等。

知道了這三類結構的數據,我們再來看看大數據的數據源有哪些呢?歸納起來大致有五種數據源。

一是社交媒體平台。如有名氣的Facebook、Twitter、YouTube和Instagram等。媒體是比較受歡迎的大數據來源之一,因為它提供了關於消費者偏好和變化趨勢的寶貴依據。並且因為媒體是自我傳播的,可以跨越物理和人口障礙,因此它是企業深入了解目標受眾、得出模式和結論、增強決策能力的方式。

二是雲平台。公有的、私有的和第三方的雲平台。如今,越來越多的企業將數據轉移到雲上,超越了傳統的數據源。雲存儲支持結構化和非結構化數據,並為業務提供實時信息和隨需應變的依據。雲計算的主要特性是靈活性和可伸縮性。由於大數據可以通過網路和伺服器在公共或私有雲上存儲和獲取,因此雲是一種高效、經濟的數據源。

三是Web資源。公共網路構成了廣泛且易於訪問的大數據,個人和公司都可以從網上或「互聯網」上獲得數據。此外,國內的大型購物網站,淘寶、京東、阿里巴巴,更是雲集了海量的用戶數據。

四是IoT(Internet of Things)物聯網數據源。物聯網目前正處於迅猛發展勢頭。有了物聯網,我們不僅可以從電腦和智能手機獲取數據,還可以從醫療設備、車輛流程、視頻游戲、儀表、相機、家用電器等方面獲取數據。這些都構成了大數據寶貴的數據來源。

五是來自於資料庫的數據源。現今的企業都喜歡融合使用傳統和現代資料庫來獲取相關的大數據。這些數據都是企業驅動業務利潤的寶貴資源。常見的資料庫有MS Access、DB2、Oracle、MySQL以及大數據的資料庫Hbase、MongoDB等。

我們再來總結一下,什麼樣的數據就屬於大數據呢?通常來大數據有4個特點,這就是業內人士常說的4V,volume容量、 variety多樣性、velocity速度和veracity准確性。

㈡ 大數據常用哪些資料庫(什麼是大資料庫)

通常資料庫分為關系型資料庫和非關系型資料庫,關系型資料庫的優勢到現在也是無可替代的,比如MySQL、SQLServer、Oracle、DB2、SyBase、Informix、PostgreSQL以及比較小型的Aess等等資料庫,這些數據納卜庫支持復雜的SQL操作和事務機制,適合小量數據讀寫場景;但是到了大數據時代,人們更多的數據和物聯網加入的數據已經超出了關系資料庫的承載范圍。

大數據時代初期,隨著數據請求並發量大不斷增大,一般都是採用的集群同虧搭步數據的方式處理,就是將資料庫分成了很多的小庫,每個資料庫的數據內容是不變的,都是保存了源資料庫的數據副本,通過同步或者非同步方式保證數據的一致性,每個庫設定特定的讀寫方式,比如主資料庫負責寫操作,從資料庫是負責讀操作,等等根據業務復雜程度以此類推,將業務在物理層面上進行了分離,但是這種方式依舊存在一定的負載壓力的問題,企業數據在不斷的擴增中,後面就採用分庫分表的方式解決,對讀寫負載進行分離,但是這種實現依舊存在不足,且需要不斷進行資料庫伺服器擴容。

NoSQL資料庫大致分為5種類型

1、列族資料庫:BigTable、HBase、Cassandra、AmazonSimpleDB、HadoopDB等,下面簡單介紹幾個

(1)Cassandra:Cassandra是一個列存儲資料庫,支持跨數據中心的數據復制。它的數據模型提供列索引,log-structured修改,支持反規范化,實體化視圖和嵌入超高速緩存。

(2)HBase:ApacheHbase源於Google的Bigtable,是一個開源、分布式、面向列存儲的模型。在Hadoop和HDFS之上提供了像Bigtable一銷茄拿樣的功能。

(3)AmazonSimpleDB:AmazonSimpleDB是一個非關系型數據存儲,它卸下資料庫管理的工作。開發者使用Web服務請求存儲和查詢數據項

(4)ApacheAumulo:ApacheAumulo的有序的、分布式鍵值數據存儲,基於Google的BigTable設計,建立在ApacheHadoop、Zookeeper和Thrift技術之上。

(5)Hypertable:Hypertable是一個開源、可擴展的資料庫,模仿Bigtable,支持分片。

(6)AzureTables:為要求大量非結構化數據存儲的應用提供NoSQL性能。表能夠自動擴展到TB級別,能通過REST和ManagedAPI訪問。

2、鍵值資料庫:Redis、SimpleDB、Scalaris、Memcached等,下面簡單介紹幾個

(1)Riak:Riak是一個開源,分布式鍵值資料庫,支持數據復制和容錯。(2)Redis:Redis是一個開源的鍵值存儲。支持主從式復制、事務,Pub/Sub、Lua腳本,還支持給Key添加時限。

(3)Dynamo:Dynamo是一個鍵值分布式數據存儲。它直接由亞馬遜Dynamo資料庫實現;在亞馬遜S3產品中使用。

(4)OracleNoSQLDatabase:來自Oracle的鍵值NoSQL資料庫。它支持事務ACID(原子性、一致性、持久性和獨立性)和JSON。

(5)OracleNoSQLDatabase:具備數據備份和分布式鍵值存儲系統

(6)Voldemort:具備數據備份和分布式鍵值存儲系統。

(7)Aerospike:Aerospike資料庫是一個鍵值存儲,支持混合內存架構,通過強一致性和可調一致性保證數據的完整性。

3、文檔資料庫:MongoDB、CouchDB、Perservere、Terrastore、RavenDB等,下面簡單介紹幾個

(1)MongoDB:開源、面向文檔,也是當下最人氣的NoSQL資料庫。

(2)CounchDB:ApacheCounchDB是一個使用JSON的文檔資料庫,使用Javascript做MapRece查詢,以及一個使用HTTP的API。

(3)Couchbase:NoSQL文檔資料庫基於JSON模型。

(4)RavenDB:RavenDB是一個基於.NET語言的面向文檔資料庫。

(5)MarkLogic:MarkLogicNoSQL資料庫用來存儲基於XML和以文檔為中心的信息,支持靈活的模式。

4、圖資料庫:Neo4J、InfoGrid、OrientDB、GraphDB,下面簡單介紹幾個

(1)Neo4j:Neo4j是一個圖資料庫;支持ACID事務(原子性、獨立性、持久性和一致性)。

(2):一個圖資料庫用來維持和遍歷對象間的關系,支持分布式數據存儲。

(3):是結合使用了內存和磁碟,提供了高可擴展性,支持SPARQ、RDFS和Prolog推理。

5、內存數據網格:Hazelcast、OracleCoherence、TerracottaBigMemorry、GemFire、Infinispan、GridGain、GigaSpaces,下面簡單介紹幾個

(1)Hazelcast:HazelcastCE是一個開源數據分布平台,它允許開發者在資料庫集群之上共享和分割數據。

(2)OracleCoherence:Oracle的內存數據網格解決方案提供了常用數據的快速訪問能力,一致性支持事務處理能力和數據的動態劃分。

(3)TerracottaBigMemory:來自Terracotta的分布式內存管理解決方案。這項產品包括一個Ehcache界面、Terracotta管理控制台和BigMemory-Hadoop連接器。

(4)GemFire:VmwarevFabricGemFire是一個分布式數據管理平台,也是一個分布式的數據網格平台,支持內存數據管理、復制、劃分、數據識別路由和連續查詢。

(5)Infinispan:Infinispan是一個基於Java的開源鍵值NoSQL數據存儲,和分布式數據節點平台,支持事務,peer-to-peer及client/server架構。

(6)GridGain:分布式、面向對象、基於內存、SQLNoSQL鍵值資料庫。支持ACID事務。

(7)GigaSpaces:GigaSpaces內存數據網格能夠充當應用的記錄系統,並支持各種各樣的高速緩存場景。

㈢ 在大數據時代,關系型資料庫有哪些缺點

在大數據時代,關系型資料庫有哪些缺點

關系型資料庫的主要特徵
1)數據集中控制,在文件管理方法中,文件是分散的,每個用戶或每種處理都有各自的文件,這些文件之間一般是沒有聯系的,因此,不能按照統一的方法來控制、維護和管理。而資料庫則很好地克服了這一缺點,可以集中控制、維護和管理有關數據。
2)數據獨立,資料庫中的數據獨立於應用程序,包括數據的物理獨立性和邏輯獨立性,給資料庫的使用、調整、優化和進一步擴充提供了方便,提高了資料庫應用系統的穩定性。
3)數據共享,資料庫中的數據可以供多個用戶使用,每個用戶只與庫中的一部分數據發生聯系;用戶數據可以重疊,用戶可以同時存取數據而互不影響,大大提高了資料庫的使用效率。
4)減少數據冗餘,資料庫中的數據不是面向應用,而是面向系統。數據統一定咐鋒瞎義、組織和存儲,集中管理,避免了不必要的數據冗餘,也提高了數據的一致性。
5)數據結構化,整個資料庫按一定的結構形式構成,數據在記錄內部和記錄類型之間相互關聯,用戶可通過不同的路徑存取數據。
6)統一的數據保護功能,在多用戶共享數據資源的情況下,對用戶使用數據有嚴格的檢查,對資料庫規定密碼或存取許可權,基喊拒絕非法用戶進入資料庫,以確保數據的安全性、一致性和並發控制。

關系型資料庫和實時資料庫都有哪些?

很多了。。關系型的有:SQLServer、Sybase、Informix
mysql 。等等。。
實時的我知道的有:Lotus Notes。。包括XML也可以做為實時資料庫的。

要那麼多來干什麼啊?現在的資料庫大多都是關系型資料庫啊。Oracle、SQLServer、Sybase、Informix、aess、DB2、mysql、vfp、人大金倉(國產的,我用過)只要你認為可以,什麼xml都可以作為關系型資料庫啊。恰好10個。 希望我的回答對你有幫助!

關系型資料庫有哪些啊?

目前主流的大型資料庫、中型資料庫以及個人及小型資料庫幾乎都是關系型資料庫,例如ORACLE、SQL SERVER、MySQL、SyBase、Aess等等。

關系型資料庫都有哪些

大型的有:
oracle、sqlserver、db2、infomix、Sybase 等
開源的有:
MySQL、Postpresql 等
文件型的有:
Aess、SQL Anywhere、sqlite、interbase

大數據與關系型資料庫水火不容嗎

不沖突,各有用處。
很多大數據應用還是基於關系型資料庫。
大數據一般和具體應用相關,關系型資料庫是一種工具

常用的關系型資料庫有哪些?

1、存儲引擎:MySQL中的數據用各種不同的技術存儲在文衡空件(或者內存)中。這些技術中的每一種技術都使用不同的存儲機制、索引技巧、鎖定水平並且最終提供廣泛的不同的功能和能力。通過選擇不同的技術,你能夠獲得額外的速度或者功能,從而改善你的應用的整體功能。

2、索引設計:索引和表一般要創建在不同的表空間中,以提高IO性能。因為索引不會在空值上生效,所以如果某列有空值且希望建立索引,那麼可以考慮建立組合索引(colName, 1)。

3、sql優化器(商業資料庫競爭的核心):由於移動設備的資源限制,嵌入式移動資料庫一般和應用系統集成在一起,作為整個應用系統的前端而存在,而它所管理的數據集可能是後端伺服器中數據集的子集或子集的副本。

4、事務管理與並發控制:在事務處理中,一旦某個操作發生異常,則整個事務都會重新開始,資料庫也會返回到事務開始之前的狀態,在事務中對資料庫所做的一切操作都會取消。事務要是成功的話,事務中所有的操作都會執行。

5、容災與恢復技術:基於數據同步復制技術,通過實時同步I/O,實現伺服器和資料庫數據從源端到目標端的持續捕獲(RPO趨近於0,註:RPO=最後備份與發生災難之間的時間,也是業務系統所允許的在災難過程中的最大數據丟失),並且可以全自或手動創建數據恢復點,以確保數據發生錯誤時,恢復數據到最新的時間點。

vertica是關系型資料庫么

一般情況vertical-align用的地方不多是因為其兼容性不好。
在及其特殊的情況下才會用到它,在需要漢字和圖片對齊的地方我從來不用它。
在父元素高度一定的情況下用height和line-height可以實現垂直對齊。
垂直居中還和字體有一定的影響,字體不一樣可能看著就不太絕對居中。
vertica-align不是所有標簽內都有效。在td內用向你說的有中英文差異的話不如在外邊再加個div使div居中裡面的自然也就居中了。
需要圖文都居中的地方建議使用height和line-height同值的方法。

㈣ 璇風畝榪版暟鎹搴撲笁縐嶆ā鍨嬪強鍏剁壒鐐

鏁版嵁搴撶$悊緋葷粺鏀鎸佺殑鏁版嵁妯″瀷鏈夊眰嬈℃ā鍨嬨佺綉鐘舵ā鍨嬪拰鍏崇郴妯″瀷3縐嶃

涓銆佸眰嬈℃ā鍨嬪眰嬈℃ā鍨嬪皢鏁版嵁緇勭粐鎴愪竴瀵瑰氬叧緋葷殑緇撴瀯錛屽眰嬈$粨鏋勯噰鐢ㄥ叧閿瀛楁潵璁塊棶鍏朵腑姣忎竴灞傛$殑姣忎竴閮ㄥ垎銆備紭鐐規槸瀛樺彇鏂逛究涓旈熷害蹇錛涚粨鏋勬竻鏅幫紝瀹規槗鐞嗚В錛涙暟鎹淇鏀瑰拰鏁版嵁搴撴墿灞曞規槗瀹炵幇錛涙緔㈠叧閿灞炴у嶮鍒嗘柟渚褲

鍙戝睍鐜扮姸

鍦ㄦ暟鎹搴撶殑鍙戝睍鍘嗗彶涓婏紝鏁版嵁搴撳厛鍚庣粡鍘嗕簡灞傛℃暟鎹搴撱佺綉鐘舵暟鎹搴撳拰鍏崇郴鏁版嵁搴撶瓑鍚勪釜闃舵電殑鍙戝睍錛屾暟鎹搴撴妧鏈鍦ㄥ悇涓鏂歸潰鐨勫揩閫熺殑鍙戝睍銆

鐗瑰埆鏄鍏崇郴鍨嬫暟鎹搴撳凡緇忔垚涓虹洰鍓嶆暟鎹搴撲駭鍝佷腑鏈閲嶈佺殑涓鍛橈紝80騫翠唬浠ユ潵錛屽嚑涔庢墍鏈夌殑鏁版嵁搴撳巶鍟嗘柊鍑虹殑鏁版嵁搴撲駭鍝侀兘鏀鎸佸叧緋誨瀷鏁版嵁搴擄紝鍗充嬌涓浜涢潪鍏崇郴鏁版嵁搴撲駭鍝佷篃鍑犱箮閮芥湁鏀鎸佸叧緋繪暟鎹搴撶殑鎺ュ彛銆

榪欎富瑕佹槸浼犵粺鐨勫叧緋誨瀷鏁版嵁搴撳彲浠ユ瘮杈冨ソ鐨勮В鍐崇$悊鍜屽瓨鍌ㄥ叧緋誨瀷鏁版嵁鐨勯棶棰樸傞殢鐫浜戣$畻鐨勫彂灞曞拰澶ф暟鎹鏃朵唬鐨勫埌鏉ワ紝鍏崇郴鍨嬫暟鎹搴撹秺鏉ヨ秺鏃犳硶婊¤凍闇瑕侊紝榪欎富瑕佹槸鐢變簬瓚婃潵瓚婂氱殑鍗婂叧緋誨瀷鍜岄潪鍏崇郴鍨嬫暟鎹闇瑕佺敤鏁版嵁搴撹繘琛屽瓨鍌ㄧ$悊銆

㈤ 大數據正在如何改變資料庫格局

大數據正在如何改變資料庫格局

提及「資料庫」,大多數人會想到擁有30多年風光歷史的RDBMS。然而,這可能很快就會發生改變。

一大批新的競爭者都在爭奪這一塊重要市場,他們的方法是多種多樣的,卻都有一個共同點:極其專注於大數據。推動新的數據迭代衍生品大部分都是基於底層大數據的3V特徵:數量,速度和種類。本質上來講,今天的數據比以往任何時候都要傳輸更快,體積更大,同時更加多樣化。這是一個新的數據世界,換言之,傳統的關系資料庫管理系統並沒有真正為此而設計。「基本上,他們不能擴展到大量,或快速,或不同種類的數據。」一位數據分析、數據科學咨詢機構的總裁格雷戈里認為。這就是哈特漢克斯最近發現。截至到2013年左右,營銷服務機構使用不同的資料庫,包括MicrosoftSQLServer和Oracle真正應用集群(RAC)的組合。「我們注意到,數據隨著時間的增長,我們的系統不能足夠快速的處理信息」一位科技發展公司的負責人肖恩說到。「如果你不斷地購買伺服器,你只能繼續走到這幺遠,我們希望確保自己有向外擴展的平台。」最小化中斷是一個重要的目標,Iannuzzi說到,因逗首此「我們不能只是切換到Hadoop。」相反,卻選擇了拼接機器,基本上把完整的SQL資料庫放到目前流行的Hadoop大數據平台之上,並允許現有的應用程序能夠與它連接,他認為。哈特漢克斯現在是在執行的初期階段,但它已經看到了好處,Iannuzzi說,包括提高容錯性,高可用性,冗餘性,穩定性和「性能全面提升」。一種完美風暴推動了新的資料庫技術的出現,IDC公司研究副總裁CarlOlofson說到。首先,「我們正在使用的設備與過去對比,處理大數據集更加快速,靈活性更強」Olofson說。在過去,這樣的集合「幾乎必須放在旋轉磁碟上」,而且數據必須以特定的方式來結構化,他解釋說。現在有64位定址,使得能夠設置更大的存儲空間以及更快的網路,並能夠串聯多台計算器充當單個大型資料庫。「這些東西在不可用之前開辟了可能性」Olofson說。與此同時,工作負載也發生了變化。10年前的網站主要是靜態的,例如,今天我們享受到的網路服務環境和互動式購物體驗。反過來,需要新的可擴展性,他說。公司正在利用新的方式來使用數據。雖然傳統上我們大部分的精力都放在了對事務處理_銷售總額的記錄,比如,數據存儲在可以用來分析的地方_現在我們做的更多。應用狀態管理就是一個例子假設你正在玩一個網路游戲。該技術會記錄你與系統的每個會話並連接在一起,以呈現出連續的體驗,即使你切換設備或各種移動,不同的伺服器都會進行處理,Olofson解釋說。數據必須保持連續性,這樣企業才可以分析問題,例如「為什麼從來沒有人穿過水晶廳」。在網路購物方面,為什麼對方點擊配坦選擇顏色後大多數人不會購買某個特殊品牌的鞋子。「以前,我們並沒試圖解決這些問題,或者我們試圖扔進盒子也不太合適」Olofson說。Hadoop是當今新的競爭者中一個重量級的產品。雖然他本身不是一個資料庫,它的成長為企業解決大數據扮演關鍵角色。從本質上講,Hadoop是一個運行高度並行應用程序的數據中心平台,它有很強的可擴展性。通過允許企業擴展「走出去」的分布方式,而不是通過額外昂貴的伺服器「向上」擴展,「它使得我們可以低成本地把一個大的數據集匯總,然後進行分析研究成果」Olofson說。其他新的RDBMS的替代品如NoSQL家族產品,其中包括MongoDB-目前第四大流行資料庫管理系統,比照DB引擎山賣數和MarkLogic非結構化數據存儲服務。「關系型資料庫一直是一項偉大的技術持續了30年,但它是建立在不同的時代有不同的技術限制和不同的市場需求,」MarkLogic的執行副總裁喬·產品帕卡說。大數據是不均勻的,他說。許多傳統的技術,這仍然是一個基本要求。「想像一下,你的筆記本電腦上唯一的程序是Excel」帕卡說。「設想一下,你要和你的朋友利用網路保持聯系_或者你正在寫一個合約卻不適合放進行和列中。」拼接數據集是特別棘手的「關系型,你把所有這些數據集中在一起前,必須先決定如何去組織所有的列,」他補充說。「我們可以採取任何形式或結構,並立即開始使用它。」NoSQL資料庫沒有使用關系數據模型,並且它們通常不具有SQL介面。盡管許多的NoSQL存儲折中支持速度等其他因素,MarkLogic為企業定身量做,提供更為周全的選擇。NoSQL儲存市場有相當大的增長,據市場研究媒體,不是每個人都認為這是正確的做法-至少,不是在所有情況下。NoSQL系統「解決了許多問題,他們橫向擴展架構,但他們卻拋出了SQL,」一位CEO-MonteZweben說。這反過來,又為現有的代碼構成問題。SpliceMachine是一家基於Hadoop的實時大數據技術公司,支持SQL事務處理,並針對OLAP和OLAP應用進行實時優化處理。它被稱為替代NewSQL的一個例子,另一類預期會在未來幾年強勁增長。「我們的理念是保持SQL,但橫向擴展架構」Zweben說。「這是新事物,但我們正在努力試圖使它讓人們不必重寫自己的東西。」深度信息科學選擇並堅持使用SQL,但需要另一種方法。公司的DeepSQL資料庫使用相同的應用程序編程介面(API)和關系模型如MySQL,意味著沒有應用變化的需求而使用它。但它以不同的方式處理數據,使用機器學習。DeepSQL可以自動適應使用任何工作負載組合的物理,虛擬或雲主機,該公司表示,從而省去了手動優化資料庫的需要。該公司的首席戰略官ChadJones表示,在業績大幅增加的同時,也有能力將「規模化」為上千億的行。一種來自Algebraix數據完全不同的方式,表示已經開發了數據的第一個真正的數學化基礎。而計算器硬體需在數學建模前建成,這不是在軟體的情況下,Algebraix首席執行官查爾斯銀說。「軟體,尤其是數據,從未建立在數學的基礎上」他說,「軟體在很大程度上是語言學的問題。」經過五年的研發,Algebraix創造了所謂的「數據的代數」集合論,「數據的通用語言」Silver說。「大數據骯臟的小秘密是數據仍然放在不與其他數據小倉融合的地方」Silver解釋說。「我們已經證明,它都可以用數學方法來表示所有的集成。」配備一個基礎的平台,Algebraix現在為企業提供業務分析作為一種服務。改進的性能,容量和速度都符合預期的承諾。時間會告訴我們哪些新的競爭者取得成功,哪些沒有,但在此期間,長期的領導者如Oracle不會完全停滯不前。「軟體是一個非常時尚行業」安德魯·門德爾松,甲骨文執行副總裁資料庫伺服器技術說。「事情經常去從流行到不受歡迎,回再次到流行。」今天的許多創業公司「帶回炒冷飯少許拋光或旋轉就可以了」他說。「這是一個新一代孩子走出學校和重塑的東西。」SQL是「唯一的語言,可以讓業務分析師提出問題並得到答案,他們沒有程序員,」門德爾松說。「大市場將始終是關系型。」至於新的數據類型,關系型資料庫產品早在上世紀90年代發展為支持非結構化數據,他說。在2013年,甲骨文的同名資料庫版本12C增加了支持JSON(JavaScript對象符號)。與其說需要一個不同類型的資料庫,它更是一種商業模式的轉變,門德爾松說。「雲,若是每個人都去,這將破壞這些小傢伙」他說。「大家都在雲上了,所以在這里有沒有地方來放這些小傢伙?「他們會去亞馬遜的雲與亞馬遜競爭?」他補充說。「這將是困難的。」甲骨文有「最廣泛的雲服務」門德爾松說。「在現在的位置,我們感覺良好。」Gartner公司的研究主任里克·格林沃爾德,傾向於採取了類似的觀點。「對比傳統強大的RDBMS,新的替代品並非功能齊全」格林沃爾德說。「一些使用案例可以與新的競爭者來解決,但不是全部,並非一種技術」。展望未來,格林沃爾德預計,傳統的RDBMS供貨商感到價格壓力越來越大,並為他們的產品增加新的功能。「有些人會自由地帶來新的競爭者進入管理自己的整個數據生態系統」他說。至於新的產品,有幾個會生存下來,他預測「許多人將被收購或資金耗盡」。今天的新技術並不代表傳統的RDBMS的結束,「正在迅速發展自己」IDC的Olofson。贊成這種說法,「RDBMS是需要明確定義的數據_總是會有這樣一個角色。」但也會有一些新的競爭者的角色,他說,特別是物聯網技術和新興技術如非易失性內存晶元模塊(NVDIMM)占據上風。
閱讀全文

與大數據和關系型資料庫相關的資料

熱點內容
phpjquery瀑布流代碼 瀏覽:849
如何更改無線網路設置 瀏覽:136
微信發紅包合法嗎 瀏覽:52
抖音年度可視化數據在哪裡生成 瀏覽:327
數據返回原頁怎麼保存 瀏覽:271
js單例創建一個對象 瀏覽:342
可刪除的手機文件在手機哪個窗口 瀏覽:354
網路維護系統都有哪些 瀏覽:938
刻繪大師文件格式 瀏覽:894
app下載是什麼軟體 瀏覽:899
編程員面試注意什麼 瀏覽:20
公司備案證號看哪個文件 瀏覽:622
資料庫及表的創建的操作步驟 瀏覽:87
如何進華為交換機編程 瀏覽:260
litepal外部資料庫 瀏覽:261
迅雷用描述文件安裝失敗 瀏覽:789
app消費賬單真的會寄嗎 瀏覽:580
超鏈接文件名 瀏覽:770
安利盒子升級 瀏覽:848
編程stray錯誤什麼意思 瀏覽:839

友情鏈接