Ⅰ 數據科學及大數據在計算機領域的應用現狀
2 大數據的技術和實際應用現狀分析
2.1 大數據的技術分析
大數據技術在應用過程中不斷完善與發展,現在主要的大數據技術有大數據分析挖掘技?g與大數據技術中的數據隱私保護技術。大數據技術一般進行數據採集,數據存儲都通過感測器的網路及智能感知層進行。在對數據進行實際處理過程中,通常採用數據清理和集成與交互技術,集成與交換能有效的進行數據的應用,對數據的分析能力起到一定的提高作用。數據挖掘技術是數據提煉的一種常用技術,通過對數據的有效挖掘能把一些無規律的數據變成有規律的數據,提高數據的實際應用效果。在數據實際處理的過程中,大量的數據處理需要一定方法,需要先進的手段進行有效的完成數據處理,以適應現代數據的發展需要,提高數據的應用效果,在數據處理應用數據挖掘技術,對數據處理,數據的性能提升起到重要作用,能高效的完成數據處理。數據隱私保護技術是大數據根據用戶的需要進行設計的,尤其數據在網路傳輸的過程中,很多重要的數據都需要進行保護,提
高其數據的保護措施,能進一步加強其實際的應用效果,完善其實際的形成過程。數據之間存在一定聯系,對數據採用科學有效的應用過程,促進數據科學有效的應用,提高數據的應用效果。
2.2 大數據技術的應用現狀分析
大數據技術應用各個領域,為其它領域的發展提供了技術支持。大數據在商業發展的過程中起到重要作用,對產品的分析、查詢等起到重要作用。對產品的技術分析,銷售分析都利用大數據軟體進行分析,提高了分析的效率,促使分析的結果更加科學、准確。大數據技術在實際的工作生產生活當中的應用中,在關鍵技術領域方面也是多方面的。其中的結構化數據的應用領域方面,這也是傳統數據分析研究的對象。當前比較主流的結構化數據管理工具就是關系型資料庫,在對數據分析的能力上表現的較為突出。還有是在文本領域中的應用,是比較常見的非結構化數據,再有幾歲多媒體的數據以及網頁數據和移動社交網路數據等等。尤其Internt技術的廣泛應用,大數據在網路平台的驅動下,發展更加迅速,更能發揮大數據技術的功能,大數據技術是在應用過程中,不斷完善,不斷革新技術以適應現代社會發展需要,能為企業行業的發展提供技術支持。
Ⅱ 數據分析常見的應用場景有哪些
1、醫療保健
醫療保健系統內生成的數據水平並非無關緊要。傳統上,由於標准化和整合數據的能力有限,醫療保健行業滯後於使用大數據分析。
但是現在,大數據分析通過提供個性化的醫學和處方分析而改善了醫療保健。研究人員正在挖掘數據,以查看對於特定情況更有效的治療方法,確定與葯物副作用有關的模式,並獲得其他可幫助患者並降低成本的重要信息。
2、製造業
預測性製造提供了幾乎零的停機時間和透明度。它需要大量的數據和高級的預測工具,才能系統地將數據轉化為有用的信息。
在製造業中使用大數據分析應用程序的主要好處是:產品質量和缺陷跟蹤、供應計劃、製造過程缺陷跟蹤。