❶ 運營商大數據都有什麼優點
1、數據非常精準
運營商大數據最主要的一個優點就是數據非常的精準。可以獲取的數據有很多,比如某些品牌的競價還有優化。還有一種情況是,如果關鍵詞的排名非常的靠前。這種情況下,那些網站訪客,還有一些軟體的用戶,這些客戶的搜索意向非常的強,而且也非常的主動。
2、數據的轉化率比較高
雖然在很多情況下排名的網站,在點擊的過程中,成本都非常的高,但是獲得的數據是非常精準的。這個時候可以參考同行的一些數據,這樣可以把同行的數據作為抓取源。然後再用相對比較低的價格,這些同領域的客戶都爭取到,這一點的優勢是非常明顯的。
3、數據具有可控性
運營商大數據在運行的過程中,很多情況下都是自己抓模型。這樣就可以馬上知道是從哪些網站或者是哪些軟體裡面獲得的這些數據。所以說數據的可控性是非常強大的,另外運營商大數據在運行的過程中,數據也是非常全的,它覆蓋了很多個領域,也覆蓋了很多的網站,除此之外,這些數據還覆蓋了很多的軟體,對數據的全面更加具有優勢了。
關於運營商大數據都有什麼優點,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。
❷ 運營商大數據變現需要新思維
運營商大數據變現需要新思維
電信行業近年來受OTT、管道化、資費調整等因素的影響,受到的沖擊很大,傳統業務利潤下滑趨勢明顯。未來要尋求新的增長點,一定是從數據資產的角度出發。運營商守著數據的金礦,如何從裡面挖掘出一桶桶貨真價實的黃金,這是未來發展的重要方向。
從能力角度分析,電信行業屬於整體IT實力比較強的行業,也最早開始挖掘、發現數據的價值。經過15到20年的發展,特別是以經營分析為核心的數據平台的發展,運營商內部的能力建設已經趨於成熟,數據質量、數據治理、數據標准,這些關乎資產自身質量的工作,基本上已經做得比較成熟。運營商有資本沉下心來考慮,到底利用數據來做什麼。
目前運營商有三種數據可以形成變現。第一種是業務交易數據、流程性數據、互動式數據。從變現形式來看,第一個層面,就是能力平台,比如位置平台、信用平台,這些都是運營商基於自己的數據做的一些能力組件。像銀行在用位置平台的時候,可以用來選址,可以看用戶的流動;交通部門可以看到用戶乘坐汽車、地鐵的情況。這都是能力平台的變現。
第二種是分析能力的變現,比如行業的分析報告,運營商基於自身的數據可以形成銀行業、房地產業、零售業的報告等。另外,運營商還可以做出一些針對性的報告,比如某銀行的市場競爭分析報告等。
第三種是合作運營。運營商一直想做的其實是運營的變現,運營商利用海量的數據,為第三方用戶提供定製化運營的服務,收入按一定比例進行分成。這種是相當於合作運營的方式。
大數據要有專門的部門去運營,必須打破信息孤島、各自為政的組織架構,這在電信行業逐漸達成共識。以中國移動為例,中國移動已經考慮在省級公司建立大數據中心,大數據中心是省級公司的二級部門,集團也有類似的考量。這樣的組織一旦確立,這個部門的職責,主要是做大數據的分析和運營。它的平台一級由原來的IT部門,比如業務支撐系統來承建,上層數據價值的釋放、挖掘,以及對外怎樣去變現,全部交由大數據中心這個新的部門來做。其KPI考核已經不再是用戶新增數、用戶保有量、用戶收入ARPU等。其背負的KPI就是數據到底變成了多少錢。這樣的KPI考核,就會推動這個部門每天都去考慮這些數據怎麼變現,這將大大推動運營商大數據向其他行業的拓展。
大數據運營需要行之有效的商務模式,而目前無論是運營商,還是與之合作的企業、政府相關部門,都在進行嘗試。姜欣表示,數據變現究竟是以包月的形式進行結算、以計件的形式進行結算,還是以聯合運營的方式進行結算,目前運營商和第三方行業都在摸索的過程中,需要經過時間的沉澱,才能形成合適的方式。可能是一種,也可能是幾種方式的組合。但不管是面向大客戶、政府還是個人,這三方面如果都有市場,都得到了認可,也形成了固定的商業模式,那麼未來運營商在數據資產變現上一定能夠達到更好的效果。
❸ 運營商大數據對外價值變現的十大趨勢
作者 | 傅一平
來源 | 與數據同行
最近中國移動提出了DICT戰略,顯示其在政企市場進一步拓展的雄心,在這個背景下,重新探討下運營商的大數據變現很有意義。雖然近半年「大數據圈」似乎有點風聲鶴唳,但對於合法合規的進行大數據業務的企業來講沒有什麼影響。
下面筆者就結合自身實踐,給出未來2-3年運營商大數據價值變現的十個趨勢判斷,僅代表個人看法,希望於你有所啟示。
1、行業服務邊界不斷拓展
依託於運營商潛力巨大的數據資源和政企市場渠道資源,經過多年的市場培育和拓展,當前運營商大數據業務從原來的金融、旅遊等行業逐步拓展到政府、旅遊、交通、教育、商業、招聘、醫療等各個各業。
運營商ICT業務在推進中,也孕育了不少大數據業務的商機,大數據業務則反過來促進了ICT業務的發展,因為大數據除了業務價值,還有一定的社會品牌效應,兩者通過融合可以形成合力。
隨著企業數字化轉型的加快及產業互聯網的崛起,作為未來社會基礎設施的大數據,將與雲計算、人工智慧、物聯網、區塊鏈一起,在行業領域開疆擴土,其應用的邊界幾乎是無限的。
2、進入行業應用的深水區
大數據在行業領域擁有著巨大的潛力並不意味著運營商就能分得多少杯羹。雖然運營商大數據業務當前在金融、旅遊等行業已經有所斬獲,但這些行業低垂的果實基本要被摘光了。
以金融為例,4-5年前運營商切入的驗真,失聯觸達等業務,當前仍然是運營商大數據變現的主力,但金融行業並未如運營商原先預料的那樣,在貸前、貸中、貸後中給予運營商更多的機會,運營商很多變現業務模式的拓展基本是停滯的,起碼不夠快。
在大量的其他行業領域,運營商往往只能做到蜻蜓點水,而無法聚沙成塔,比如業務的復購率很低。
從定性的角度講,運營商對於行業的理解還是比較淺的,其大量的行業應用遊走在企業的核心生產流程之外,大數據似乎是奢侈品,而不是必需品,因此粘性是不夠的。
以金融驗真這個業務為例,其附加值並不高,且容易被替代,想想這幾年對於金融行業的理解又增加了多少呢?這些都是需要反思的地方。
筆者曾經在智慧交通相關文章中提到:運營商的數據在很多領域其實是很有前途的,但必須深耕,要理解這個行業的業務,通曉這個行業的演算法,不停的打磨產品,從而逼近核心。
可以這么說,運營商大數據將很快進入行業應用的深水區,為了順應這個趨勢,運營商需要建立專業化的組織去攻堅克難,挑戰很大。
3、與互聯網公司的競爭加劇
互聯網應該沒有把運營商當成主要的大數據競爭對手,但運營商進入這個領域會跟互聯網公司形成事實上的競爭,無論是新零售,智慧交通等等,進入者都會感受到互聯網巨頭的壓力。
比如運營商要為大型商超提供數據服務,但互聯網公司早就捷足先登,新零售是互聯網出的概念,當運營商還在進行自身渠道的艱難轉型時,互聯網公司線下商業的版圖已經規劃好了,當然也包括了大數據業務。你到商超談,人家一開口就提XX通怎麼樣怎麼樣。
當然還不僅僅是這些。
無論是互聯網公司在To G上自頂向下的推廣策略,還有諸如城市大腦單一采購來源的霸氣,都在說明巨型互聯網公司在這些領域的影響力。
運營商要獲得機會,得動用一切可用的資源,發揮自己數據的差異化價值,由點及面去尋找機會。實踐證明,管道數據的價值是巨大的,但巨型互聯網公司的數據也越來越好,這是不得不面對的現實。
4、從要素驅動向要素+能力驅動轉型
運營商當前在大數據變現上的突破只能說摘取了低垂的果實,但這種通過簡單數據加工形成的數據產品競爭力是不夠的,也是不可持續的。
比如做智慧交通,如果位置精度和覆蓋度不夠,連速度都測不準,根本做不出高質量的數據產品。
應該來講,運營商從來就沒有現成的、高精度的、可以到用戶級別的位置數據,粗精度的原始位置數據未來可能連支撐運營商自己的業務轉型都不夠,運營商需要充分挖掘現有位置數據的潛力,通過建模等方式把較為精準的位置模型做出來,才能有基本的大數據變現底蘊。
位置精度的提升雖然是一小步,但卻是對外大數據變現的一大步。位置准了,運營商對於人們整個線下生活的理解就准了,無論是客流,路網,OD等等都不再話下。
現在運營商依靠數據資源這個要素能走出第一步是不錯的,但光靠資源驅動已經不夠了,能力必須過來接棒,沒有能力加持的運營商大數據變現前景暗淡。
因此,運營商大數據變現未來不再是躺著掙錢,而是要從原始數據的驅動向數據+能力雙驅動轉型,這個能力包括人才、技術、數據、產品、運營等等,這是不容置疑的。但如果只是空喊著口號不敢探索嘗試,則也許連能力提升的機會都沒有。
5、持續強化大數據合作的生態
大數據變現從底向上涉及平台、數據、建模、產品、方案、渠道、咨詢、運營、安全等一系列的內容,運營商無法一手包辦,因此必須建立合作的生態。
從業務的角度看,缺乏渠道合作夥伴、缺乏行業解決方案對於運營商都是很現實的挑戰,最大的痛苦莫過於不知道商機在哪裡,不知道自己想做的這個數據或產品有沒有前途。運營商不可能瞬間將現有的客戶經理隊伍轉為數字化產品的銷售隊伍,畢竟知識結構的要求不一樣。
雖然可以採取MVP的方式推進,但一方面試錯的成本擺在那裡,運營商也並沒有資本為其背書,另一方面時間成本也大了點。現在很多運營商都有合作夥伴招募計劃,這是很好的嘗試,但符合要求的合作夥伴還是太少了。
從開放的角度看,中國移動的夢網曾經創造過輝煌,但開放這句口號不是隨便喊喊的,你得建立一套標准,清晰的告訴別人你有什麼能力,然後如何能方便的接入。
比如當我們在互聯網大會展示城市實驗室產品的時候,發現仍然有那麼多的人驚訝於運營商竟然還能做這個,就說明我們在開放這條道上還有很長的路要走。
而當筆者第一次訪問阿里雲網站的時候,其較好的使用體驗給我留下了深刻的印象,隨後定期的營銷推送起碼說明是用心的,又比如筆者第一次使用騰訊雲域名申請時,其後騰訊雲客服的電話調研也是很及時的。
因此,能否跟更廣泛的合作夥伴建立連接,能否建立起開放的平台,能否確保信息的安全,在很大程度上決定了運營商大數據變現的蛋糕能做多大。
6、通過集中化獲得溢價能力的趨勢將加強
由於歷史原因運營商的大數據實際是分省存儲和運營的,這跟互聯網公司天然的集中統一的數據基因是完全不同的。雖然一些運營商在集中化上做了很多努力,但相對互聯網公司,還是有一些差距。
各省本地化做一些產品雖然帶來了靈活性,但造成了事實上的重復開發,這種模式在創新階段其實沒什麼問題,但最大的問題是各個省能否有足夠的資源去保證產品的持續優化,無論從數據的角度,還是從運營的角度看,我們都需要一定的集約化機制來確保高效低成本的運作。
但這還僅僅是一個方面。
另一方面,相較互聯網,由於數據的割裂,運營商基於單個省的數據做出的產品溢價能力不高,往往只能服務於特定區域,在很多競爭中會處於劣勢,比如當前運營商基於位置數據的應用很多,但為什麼上網數據的變現卻很少呢?
這個不僅僅是簡單的https問題,更是因為客戶對於上網數據的訴求基本是全國的,沒有地域的概念,這讓運營商失去了很多突破的機會。
因此,運營商的大數據在一個省創新後迅速全網復制是一直要堅持的策略,而基於集中化的數據進行創新是提升產品競爭力的一個關鍵。
7、運營商DICT戰略將使得大數據獲得更大支持
隨著數字經濟的發展和行業數字化的進步,傳統產業轉型升級的需求強勁,運營商和雲服務提供商,均在強化雲、網、端、邊協同,推出「雲+網+DICT」智能化解決方案,幫助企業實現更深層次的數字化轉型。
運營商的政企2B市場是當前關注的焦點,而雲+DICT(DT+CT+ICT+IDC)又是其中的關鍵,這意味著未來各種資源會逐步會向DICT傾斜,大數據需要抓住這個機會,通過DICT的融合來促進大數據業務的規模化發展,所謂「借勢」。
另外,當前三大運營商已經宣布了5G商用,中國移動也發布了了「5G+」計劃,其中包括「5G+AICDE」計劃,「5G+AICDE」是將5G作為接入方式,與人工智慧(AI)、物聯網(IoT)、雲計算(Cloud Computing)、大數據(Big Data)、邊緣計算(Edge Computing)等新興信息技術深度融合,准備打造以5G為中心的泛智能基礎設施。
5G時代人和物、物和物之間的連接產生的數據類型將會更多,5G更密集的基站布點意味著更高的定位精度,5G業務形式更加多樣意味著管道中的數據內容會爆發性增加,運營商對於客戶行為的刻畫能力將進一步加強,每項垂直5G行業應用都將會與大數據有著千絲萬縷的關系,這些對於運營大數據的發展是利好。
8、日益趨緊的數據安全要求對於運營商既是挑戰也是機遇
運營商雖然擁有海量的數據,但很多省公司並未實質性的開展大數據業務,很多是基於安全的考量。即使是正在開展大數據變現業務的運營商省份,合規合法經營也是其開展大數據業務的底線,運營商對於大數據的業務創新是相對保守的。
事實上,運營商當前能開展的各項大數據新業務,都需要經過內部極其嚴格的法律、安全多道審核,加上行業、集團、省出台的各種安全管理規范的約束,還有定期的安全檢查,都讓運營商大數據業務從一出生就經歷著內部一輪輪的安全洗禮。
2019年持續發酵的各種信息安全事件讓大數據圈似乎如履薄冰,但其打擊的還是各種違法經營和黑市交易。事實上,經過新一輪的洗盤,運營商也許會面臨較以往更好的商業環境,數據可能會變得更為稀缺,畢竟以前黑市的數據交易會導致良幣驅逐劣幣的現象,當然這也只是一種猜測。
可以肯定的是,未來國家對於信息安全管控的趨緊會使得大數據業務的創新變得更具挑戰性,但合規合法的進行大數據價值挖掘,助力中國經濟高質量發展始終是主流,運營商雖然會面臨安全上的挑戰,但也有更多的機會。
9、運營商大數據對於TO C業務的探索不會停止
互聯網公司TO C業務前期是靠錢燒出來的,畢竟消費者是趨利的,擁有高體驗的產品和一定基礎的用戶後,互聯網公司才有了珍貴的海量數據,這個時候大數據才有用武之地,反過來賦能業務發展,這是互聯網公司應用大數據的本質。
運營商天然就有大數據,但大數據變現的實踐還是告訴我們,運營商的數據維度還是不夠豐富,比如缺乏消費數據,而巨型的互聯網公司通過應用的豐富不斷積累著更多維度的數據。
事實上,當前運營商的數據維度拓展基本是停滯不前的,如果不加以改善,在不久的將來,運營商的數據優勢會逐步變小,最終會影響到產品的競爭力。
現在運營商建立了很多專業公司,比如中國移動的咪咕,有人會質疑這些公司能否賺錢,姑且不從戰略的角度思考這個問題,即使站在大數據的角度看,這些公司的拓展能夠讓運營商擁有更豐富的數據,這就很有價值。最近中移金科成立了,支付數據對於DT有多重要不用解釋吧,因此意義是很深遠的。
其實做大數據產品的,哪個沒有點TO C的夢想?希望運營商能基於自己的資源優勢,結合大數據的差異化特點,能夠打造出真正的既賣座又叫好的TO C產品。
10、運營商對於低價值密度的大數據處理能力要求會大幅提升
運營商的DPI數據具有典型的大數據特徵,有潛力但價值密度低,但這個數據是運營商除位置數據以外最珍貴的數據,很多人說這個數據在運營商變現中實際沒啥應用場景,或者言必稱https,那是比較業余的說法。
隨著5G時代的到來,對於DPI數據的有效開採挖掘對於運營商大數據變現是核心的基礎工作之一。
首先,DPI這個技術原生是為網路優化服務的,比如很多欄位對於數據變現沒有價值,能否考慮更高性價比的處理手段?這個就需要運營商針對性的進行研究,比如從客戶洞察、精準營銷和價值變現的角度去高效低成本的採集管道中的數據。
其次,5G海量、低延時、非結構數據的特點,將進一步促進數據存儲、處理和分析技術的進步,即使是當前的4G,從採集到應用的時延也是比較高的,很難達到場景式營銷的要求,而且保留的周期也非常有限。
最後,5G大數據的價值密度將進一 步降低,對AI的能力要求將更高,即使是針對當前的4G數據,運營商的NLP等能力儲備也是不夠的,因此要盡快補足短板。
當然,以上十個趨勢只是筆者的個人判斷,受限於自己的能力和視野,以上談的肯定有很多不到位的地方,權當筆者拋磚引玉,如果能引發一點思考,那就更好了。
❹ 電信行業如何應用大數據
大數據運用的四個類型 運營商運用大數據主要有四個類型。首先,在市場層面,運營商可以利用大數據對自身的產品進行服務,通過大數據分析用戶行為,改進產品設計,並通過用戶偏好分析,及時、准確進行業務推薦,強化客戶關懷,這樣就可以不斷改善用戶體驗,增加用戶的信息消費以及對運營商的粘稠度;其次,在網路層面,可以通過大數據分析網路的流量、流向變化趨勢,及時調整資源配置,同時還可以分析網路日誌,進行全網路優化,不斷提升網路質量和網路利用率;第三,在企業經營層面,可以通過業務、資源、財務等各類數據的綜合分析,快速准確地確定公司經營管理和市場競爭策略;第四,在業務創新層面,可以在確保用戶隱私不被侵犯的前提下,對數據進行深度加工,對外提供信息服務,為企業創造新的價值。這樣,大數據將助力運營商實現從網路服務提供商,向信息服務提供商的轉變。 由於大數據產業具有強烈互聯網特徵,現有的運營模式很難幫助運營商實現大數據產業的迅速發展,這是因為,對於大數據產業,運營商傳統的金字塔式的組織結構已經過時,傳統架構的信息系統及組織架構已無法應對海量數據和創新型應用,那種由上而下的運營模式無法更接近用戶的需求,顯然已經阻礙運營商自身大數據產業的縱深發展。根據市場需求,運營商必須全面轉向以客戶和消費者為中心的運營體系,重新梳理企業的經營模式和組織架構,這就是模式的創新,大數據產業發展要求運營商實現管理經營和市場信息系統完美對接,新型大數據應用必將助力運營商向信息服務模式轉型。 面向大數據時代,運營商的及時轉型成為必然,否則將有被互聯網企業超越的可能性。理論上講,運營商擁有頗具優勢的大數據資源並不是完全不可替代,例如,用戶的位置信息就可以通過多種APP應用獲得,用戶的網路使用信息也可以通過多家互聯網企業合作獲取,互聯網企業通過泛互聯網化收集更多的大數據信息。另一方面,多行業的垂直整合將成為趨勢,在數據應用層面,行業企業通過多種手段搜集大量的用戶數據,將更貼近用戶,更理解用戶,為其提供更適當的服務,大數據將成為資產更具有戰略意義,各個行業及單位都在關注大數據。 根據大數據數量大、時效性要求高、數據種類及來源多樣化等特徵,運營商首先獲取更多有用的大數據資源,例如,很多的網路運行信息,包含大量有價值的用戶行為和位置信息,這樣的信息可以加以利用。有了資源應該加以利用,避免大數據資源的浪費。事實上,一些運營商擁有大數據這樣的金山,卻似乎無奈坐看並逐漸淪為管道,在不斷強化傳統市場的效益考核,卻好像在忽視大數據價值的流失。 直面數據分析挑戰 當然,海量數據的出現、數據結構的改變,也給運營商的大數據管理及分析帶來了挑戰,一是由於多種業務的發展、市場需求的變化和網路規模的擴大使得運營商大數據迅速的增加,這增加了運營商大數據存儲和處理的難度,使得現有數據倉庫無法線性擴容,這表明傳統的數據倉庫無法有效存儲日益增長的業務數據;二是由於新型大數據服務不同於傳統通信業務分析特點,需要對內容等非結構化、大容量信息進行多用戶、多應用、實時有效的分析,傳統的架構和數據倉庫處理已不能滿足新的信息服務需求。因此,運營商需要建立新型大數據中心,來存儲、分析和處理海量數據,必要的投入是必不可少的。 大數據產業出現和發展是現代信息技術與互聯網時代海量信息的發展到一定階段的必然結果,大數據應用將是海量數據、現代信息技術與各種社會應用的一次化學反應,必將對當今社會的信息技術、商業模式和相關的法律法規產生深刻的變革。