導航:首頁 > 網路數據 > 大數據典型應用

大數據典型應用

發布時間:2024-07-05 17:07:44

大數據可以應用在哪些方面

可以應用在雲計算方面。

大數據具體的應用:

1、洛杉磯警察局和加利福尼亞大學合作利用大數據預測犯罪的發生。

2、google流感趨勢(Google Flu Trends)利用搜索關鍵詞預測禽流感的散布。

3、統計學家內特.西爾弗(Nate Silver)利用大數據預測2012美國選舉結果。

4、麻省理工學院利用手機定位數據和交通數據建立城市規劃。

5、梅西百貨的實時定價機制。根據需求和庫存的情況,該公司基於SAS的系統對多達7300萬種貨品進行實時調價。

6、醫療行業早就遇到了海量數據和非結構化數據的挑戰,而近年來很多國家都在積極推進醫療信息化發展,這使得很多醫療機構有資金來做大數據分析。

7、及時解析故障、問題和缺陷的根源,每年可能為企業節省數十億美元。

8、為成千上萬的快遞車輛規劃實時交通路線,躲避擁堵。

9、分析所有SKU,以利潤最大化為目標來定價和清理庫存。

10、根據客戶的購買習慣,為其推送他可能感興趣的優惠信息。

(1)大數據典型應用擴展閱讀:

大數據的用處:

1、與雲計算的深度結合。大數據離不開雲處理,雲處理為大數據提供了彈性可拓展的基礎設備,是產生大數據的平台之一。

自2013年開始,大數據技術已開始和雲計算技術緊密結合,預計未來兩者關系將更為密切。除此之外,物聯網、移動互聯網等新興計算形態,也將一齊助力大數據革命,讓大數據營銷發揮出更大的影響力。

2、科學理論的突破。隨著大數據的快速發展,就像計算機和互聯網一樣,大數據很有可能是新一輪的技術革命。可能會改變數據世界裡的很多演算法和基礎理論,實現科學技術上的突破。

參考資料:

網路--大數據

⑵ 物聯網時代的八大工業大數據應用場景

物聯網時代的八大工業大數據應用場景

工業大數據是一個全新的概念,從字面上理解,工業大數據是指在工業領域信息化應用中所產生的大數據。

隨著信息化與工業化的深度融合,信息技術滲透到了工業企業產業鏈的各個環節,條形碼、二維碼、RFID、工業感測器、工業自動控制系統、工業物聯網、ERP、CAD/CAM/CAE/CAI等技術在工業企業中得到廣泛應用,尤其是互聯網、移動互聯網、物聯網等新一代信息技術在工業領域的應用,工業企業也進入了互聯網工業的新的發展階段,工業企業所擁有的數據也日益豐富。工業企業中生產線處於高速運轉,由工業設備所產生、採集和處理的數據量遠大於企業中計算機和人工產生的數據,從數據類型看也多是非結構化數據,生產線的高速運轉則對數據的實時性要求也更高。因此,工業大數據應用所面臨的問題和挑戰並不比互聯網行業的大數據應用少,某些情況下甚至更為復雜。

工業大數據應用將帶來工業企業創新和變革的新時代。通過互聯網、移動物聯網等帶來的低成本感知、高速移動連接、分布式計算和高級分析,信息技術和全球工業系統正在深入融合,給全球工業帶來深刻的變革,創新企業的研發、生產、運營、營銷和管理方式。這些創新不同行業的工業企業帶來了更快的速度、更高的效率和更高的洞察力。工業大數據的典型應用包括產品創新、產品故障診斷與預測、工業生產線物聯網分析、工業企業供應鏈優化和產品精準營銷等諸多方面。本文將對工業大數據在製造企業的應用場景進行逐一梳理。

1.加速產品創新

客戶與工業企業之間的交互和交易行為將產生大量數據,挖掘和分析這些客戶動態數據,能夠幫助客戶參與到產品的需求分析和產品設計等創新活動中,為產品創新作出貢獻。福特公司是這方面的表率,他們將大數據技術應用到了福特福克斯電動車的產品創新和優化中,這款車成為了一款名副其實的「大數據電動車」。第一代福特福克斯電動車在駕駛和停車時產生大量數據。在行駛中,司機持續地更新車輛的加速度、剎車、電池充電和位置信息。這對於司機很有用,但數據也傳回福特工程師那裡,以了解客戶的駕駛習慣,包括如何、何時以及何處充電。即使車輛處於靜止狀態,它也會持續將車輛胎壓和電池系統的數據傳送給最近的智能電話。

這種以客戶為中心的大數據應用場景具有多方面的好處,因為大數據實現了寶貴的新型產品創新和協作方式。司機獲得有用的最新信息,而位於底特律的工程師匯總關於駕駛行為的信息,以了解客戶,制訂產品改進計劃,並實施新產品創新。而且,電力公司和其他第三方供應商也可以分析數百萬英里的駕駛數據,以決定在何處建立新的充電站,以及如何防止脆弱的電網超負荷運轉。

2.產品故障診斷與預測

這可以被用於產品售後服務與產品改進。無所不在的感測器、互聯網技術的引入使得產品故障實時診斷變為現實,大數據應用、建模與模擬技術則使得預測動態性成為可能。在馬航MH370失聯客機搜尋過程中,波音公司獲取的發動機運轉數據對於確定飛機的失聯路徑起到了關鍵作用。我們就拿波音公司飛機系統作為案例,看看大數據應用在產品故障診斷中如何發揮作用。在波音的飛機上,發動機、燃油系統、液壓和電力系統等數以百計的變數組成了在航狀態,這些數據不到幾微秒就被測量和發送一次。以波音737為例,發動機在飛行中每30分鍾就能產生10TB數據。

這些數據不僅僅是未來某個時間點能夠分析的工程遙測數據,而且還促進了實時自適應控制、燃油使用、零件故障預測和飛行員通報,能有效實現故障診斷和預測。再看一個通用電氣(GE)的例子,位於美國亞特蘭大的GE能源監測和診斷(M&D)中心,收集全球50多個國家上千台GE燃氣輪機的數據,每天就能為客戶收集10G的數據,通過分析來自系統內的感測器振動和溫度信號的恆定大數據流,這些大數據分析將為GE公司對燃氣輪機故障診斷和預警提供支撐。風力渦輪機製造商Vestas也通過對天氣數據及期渦輪儀表數據進行交叉分析,從而對風力渦輪機布局進行改善,由此增加了風力渦輪機的電力輸出水平並延長了服務壽命。

3.工業物聯網生產線的大數據應用

現代化工業製造生產線安裝有數以千計的小型感測器,來探測溫度、壓力、熱能、振動和雜訊。因為每隔幾秒就收集一次數據,利用這些數據可以實現很多形式的分析,包括設備診斷、用電量分析、能耗分析、質量事故分析(包括違反生產規定、零部件故障)等。首先,在生產工藝改進方面,在生產過程中使用這些大數據,就能分析整個生產流程,了解每個環節是如何執行的。一旦有某個流程偏離了標准工藝,就會產生一個報警信號,能更快速地發現錯誤或者瓶頸所在,也就能更容易解決問題。利用大數據技術,還可以對工業產品的生產過程建立虛擬模型,模擬並優化生產流程,當所有流程和績效數據都能在系統中重建時,這種透明度將有助於製造商改進其生產流程。再如,在能耗分析方面,在設備生產過程中利用感測器集中監控所有的生產流程,能夠發現能耗的異常或峰值情形,由此便可在生產過程中優化能源的消耗,對所有流程進行分析將會大大降低能耗。

4.工業供應鏈的分析和優化

當前,大數據分析已經是很多電子商務企業提升供應鏈競爭力的重要手段。例如,電子商務企業京東商城,通過大數據提前分析和預測各地商品需求量,從而提高配送和倉儲的效能,保證了次日貨到的客戶體驗。RFID等產品電子標識技術、物聯網技術以及移動互聯網技術能幫助工業企業獲得完整的產品供應鏈的大數據,利用這些數據進行分析,將帶來倉儲、配送、銷售效率的大幅提升和成本的大幅下降。

以海爾公司為例,海爾公司供應鏈體系很完善,它以市場鏈為紐帶,以訂單信息流為中心,帶動物流和資金流的運動,整合全球供應鏈資源和全球用戶資源。在海爾供應鏈的各個環節,客戶數據、企業內部數據、供應商數據被匯總到供應鏈體系中,通過供應鏈上的大數據採集和分析,海爾公司能夠持續進行供應鏈改進和優化,保證了海爾對客戶的敏捷響應。美國較大的OEM供應商超過千家,為製造企業提供超過1萬種不同的產品,每家廠商都依靠市場預測和其他不同的變數,如銷售數據、市場信息、展會、新聞、競爭對手的數據,甚至天氣預報等來銷售自己的產品。

利用銷售數據、產品的感測器數據和出自供應商資料庫的數據,工業製造企業便可准確地預測全球不同區域的需求。由於可以跟蹤庫存和銷售價格,可以在價格下跌時買進,所以製造企業便可節約大量的成本。如果再利用產品中感測器所產生的數據,知道產品出了什麼故障,哪裡需要配件,他們還可以預測何處以及何時需要零件。這將會極大地減少庫存,優化供應鏈。

5.產品銷售預測與需求管理

通過大數據來分析當前需求變化和組合形式。大數據是一個很好的銷售分析工具,通過歷史數據的多維度組合,可以看出區域性需求佔比和變化、產品品類的市場受歡迎程度以及最常見的組合形式、消費者的層次等,以此來調整產品策略和鋪貨策略。在某些分析中我們可以發現,在開學季高校較多的城市對文具的需求會高很多,這樣我們可以加大對這些城市經銷商的促銷,吸引他們在開學季多訂貨,同時在開學季之前一兩個月開始產能規劃,以滿足促銷需求。對產品開發方面,通過消費人群的關注點進行產品功能、性能的調整,如幾年前大家喜歡用音樂手機,而現在大家更傾向於用手機上網、拍照分享等,手機的拍照功能提升就是一個趨勢,4G手機也占據更大的市場份額。通過大數據對一些市場細節的分析,可以找到更多的潛在銷售機會。

6.生產計劃與排程

製造業面對多品種小批量的生產模式,數據的精細化自動及時方便的採集(MES/DCS)及多變性導致數據劇烈增大,再加上十幾年的信息化的歷史數據,對於需要快速響應的APS來說,是一個巨大的挑戰。大數據可以給予我們更詳細的數據信息,發現歷史預測與實際的偏差概率,考慮產能約束、人員技能約束、物料可用約束、工裝模具約束,通過智能的優化演算法,制定預計劃排產,並監控計劃與現場實際的偏差,動態的調整計劃排產。幫我們規避「畫像」的缺陷,直接將群體特徵直接強加給個體(工作中心數據直接改變為具體一個設備、人員、模具等數據)。通過數據的關聯分析並監控它,我們就能計劃未來。雖然,大數據略有瑕疵,只要得到合理的應用,大數據會變成我們強大的武器。當年,福特問大數據的客戶需求是什麼?而回答是「一匹更快的馬」,而不是現在已經普及的汽車。所以,在大數據的世界裡,創意、直覺、冒險精神和知識野心尤為重要。

7.產品質量管理與分析

傳統的製造業正面臨著大數據的沖擊,在產品研發、工藝設計、質量管理、生產運營等各方面都迫切期待著有創新方法的誕生,來應對工業背景下的大數據挑戰。例如在半導體行業,晶元在生產過程中會經歷許多次摻雜、增層、光刻和熱處理等復雜的工藝製程,每一步都必須達到極其苛刻的物理特性要求,高度自動化的設備在加工產品的同時,也同步生成了龐大的檢測結果。這些海量數據究竟是企業的包袱,還是企業的金礦呢?如果說是後者的話,那麼又該如何快速地撥雲見日,從「金礦」中准確地發現產品良率波動的關鍵原因呢?這是一個已經困擾半導體工程師們多年的技術難題。

某半導體科技公司生產的晶圓在經過測試環節後,每天都會產生包含一百多個測試項目、長度達幾百萬行測試記錄的數據集。按照質量管理的基本要求,一個必不可少的工作就是需要針對這些技術規格要求各異的一百多個測試項目分別進行一次過程能力分析。如果按照傳統的工作模式,我們需要按部就班地分別計算一百多個過程能力指數,對各項質量特性一一考核。這里暫且不論工作量的龐大與繁瑣,哪怕有人能夠解決了計算量的問題,但也很難從這一百多個過程能力指數中看出它們之間的關聯性,更難對產品的總體質量性能有一個全面的認識與總結。然而,如果我們利用大數據質量管理分析平台,除了可以快速地得到一個長長的傳統單一指標的過程能力分析報表之外,更重要的是,還可以從同樣的大數據集中得到很多嶄新的分析結果。

8.工業污染與環保檢測

《穹頂之下》令人印象深刻的一點是通過可視化報表,柴靜團隊向觀眾傳遞霧霾問題的嚴峻性、霧霾的成因等等。

這給我們帶來的一個啟示,即大數據對環保具有巨大價值。《穹頂之下》圖表的原生數據哪裡來的呢?其實並非都是憑借高層關系獲取,不少數據都是公開可查,在中國政府網、各部委網站、中石油中石化官網、環保組織官網以及一些特殊機構,可查詢的公益環保數據越來越多,包括全國空氣、水文等數據,氣象數據,工廠分布及污染排放達標情況等數據等等。只不過這些數據太分散、太專業、缺少分析、沒有可視化,普通人看不懂。如果能夠看懂並保持關注,大數據將成為社會監督環保的重要手段。近日網路上線《全國污染監測地圖》就是一個很好的方式,結合開放的環保大數據,網路地圖加入了污染檢測圖層,任何人都可以通過它查看全國及自己所在區域省市,所有的在環保局監控之下的排放機構(包括各類火電廠、國控工業企業和污水處理廠等)的位置信息、機構名稱、排放污染源的種類,最近一次環保局公布的污染排放達標情況等。可查看距離自己最近的污染源,出現提醒,該監測點檢測項目,哪些超標,超標多少倍。這些信息可以實時分享到社交媒體平台,告知好友,提醒大家一同注意污染源情況及個人安全健康。

總結工業大數據應用的價值潛力巨大。但是,實現這些價值還有很多工作要做。一個是大數據意識建立的問題。過去,也有這些大數據,但由於沒有大數據的意識,數據分析手段也不足,很多實時數據被丟棄或束之高閣,大量數據的潛在價值被埋沒。還有一個重要問題是數據孤島的問題。很多工業企業的數據分布於企業中的各個孤島中,特別是在大型跨國公司內,要想在整個企業內提取這些數據相當困難。因此,工業大數據應用一個重要議題是集成應用。

以上是小編為大家分享的關於物聯網時代的八大工業大數據應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨

⑶ 大數據十大商業應用場景

大數據十大商業應用場景

大數據時代,在未來的幾十年裡,大數據都將會是一個重要都話題。大數據影響著每一個人,並在可以預見的未來繼續影響著。大數據沖擊著許多主要行業,包括零售業、金融行業、醫療行業等等,大數據也在徹底地改變著我們的生活。現在我們就來看看大數據給中國帶來的十商業應用場景,未來大數據產業將會是一個萬億市場。

1、智慧城市

如今,世界超過一半的人口生活在城市裡,到2050年這一數字會增長到75%。政府需要利用一些技術手段來管理好城市,使城市裡的資源得到良好配置。既不出現由於資源配置不平衡而導致的效率低下以及騷亂,又要避免不必要的資源浪費而導致的財政支出過大。大數據作為其中的一項技術可以有效幫助政府實現資源科學配置,精細化運營城市,打造智慧城市。

城市的道路交通,完全可以利用GPS數據和攝像頭數據來進行規劃,包括道路紅綠燈時間間隔和關聯控制,包括直行和左右轉彎車道的規劃、單行道的設置。利用大數據技術實施的城市交通智能規劃,至少能夠提高30%左右的道路運輸能力,並能夠降低交通事故率。在美國,政府依據某一路段的交通事故信息來增設信號燈,降低了50%以上的交通事故率。機場的航班起降依靠大數據將會提高航班管理的效率,航空公司利用大數據可以提高上座率,降低運行成本。鐵路利用大數據可以有效安排客運和貨運列車,提高效率、降低成本。

城市公共交通規劃、教育資源配置、醫療資源配置、商業中心建設、房地產規劃、產業規劃、城市建設等都可以藉助於大數據技術進行良好規劃和動態調整。

大數據技術可以了解經濟發展情況,各產業發展情況,消費支出和產品銷售情況,依據分析結果,科學地制定宏觀政策,平衡各產業發展,避免產能過剩,有效利用自然資源和社會資源,提高社會生產效率。大數據技術也能幫助政府進行支出管理,透明合理的財政支出將有利於提高公信力和監督財政支出。大數據及大數據技術帶給政府的不僅僅是效率提升、科學決策、精細管理,更重要的是數據治國、科學管理的意識改變,未來大數據將會從各個方面來幫助政府實施高效和精細化管理,具有極大的想像空間。

2、金融行業

大數據在金融行業應用范圍較廣,典型的案例有花旗銀行利用IBM沃森電腦為財富管理客戶推薦產品,美國銀行利用客戶點擊數據集為客戶提供特色服務。中國金融行業大數據應用開展得較早,但都是以解決大數據效率問題為主,很多金融行業建立了大數據平台,對金融行業的交易數據進行採集和處理。

金融行業過去的大數據應用以分析自身財務數據為主,以提供動態財務報表為主,以風險管理為主。在大數據價值變現方面,開展的不夠深入,這同金融行業每年上萬億的凈利潤相比是不匹配的。現在已經有一些銀行和證券開始和移動互聯網公司合作,一起進行大數據價值變現,其中招商銀行、平安集團、興業銀行、國信證券、海通證券和Talking Data在移動大數據精準營銷、獲客、用戶體驗等方面進行了不少的嘗試,大數據價值變現效果還不錯,大數據正在幫助金融行業進行價值變現。大數據在金融行業的應用可以總結為以下五個方面:

(1)精準營銷:依據客戶消費習慣、地理位置、消費時間進行推薦

(2)風險管控:依據客戶消費和現金流提供信用評級或融資支持,利用客戶社交行為記錄實施信用卡反欺詐

(3)決策支持:利用抉策樹技術進抵押貸款管理,利用數據分析報告實施產業信貸風險控制

(4)效率提升:利用金融行業全局數據了解業務運營薄弱點,利用大數據技術加快內部數據處理速度

(5)產品設計:利用大數據計算技術為財富客戶推薦產品,利用客戶行為數據設計滿足客戶需求的金融產品

3、醫療行業

醫療行業擁有大量病例、病理報告、醫療方案、葯物報告等。如果這些數據進行整理和分析,將會極大地幫助醫生和病人。在未來,藉助於大數據平台我們可以收集疾病的基本特徵、病例和治療方案,建立針對疾病的資料庫,幫助醫生進行疾病診斷。

如果未來基因技術發展成熟,可以根據病人的基因序列特點進行分類,建立醫療行業的病人分類資料庫。在醫生診斷病人時可以參考病人的疾病特徵、化驗報告和檢測報告,參考疾病資料庫來快速幫助病人確診。在制定治療方案時,醫生可以依據病人的基因特點,調取相似基因、年齡、人種、身體情況相同的有效治療方案,制定出適合病人的治療方案,幫助更多人及時進行治療。同時這些數據也有利於醫葯行業開發出更加有效的葯物和醫療器械。

醫療行業的數據應用一直在進行,但是數據沒有打通,都是孤島數據,沒有辦法起大規模應用。未來需要將這些數據統一收集起來,納入統一的大數據平台,為人類健康造福。政府是推動這一趨勢的重要動力,未來市場將會超過幾千億元。

4、農牧業

農產品不容易保存,合理種植和養殖農產品對農民非常重要。藉助於大數據提供的消費能力和趨勢報告,政府將為農牧業生產進行合理引導,依據需求進行生產,避免產能過剩,造成不必要的資源和社會財富浪費。大數據技術可以幫助政府實現農業的精細化管理,實現科學決策。在數據驅動下,結合無人機技術,農民可以採集農產品生長信息,病蟲害信息。

農業生產面臨的危險因素很多,但這些危險因素很大程度上可以通過除草劑、殺菌劑、殺蟲劑等技術產品進行消除。天氣成了影響農業非常大的決定因素。過去的天氣預報僅僅能提供當地的降雨量,但農民更關心有多少水分可以留在他們的土地上,這些是受降雨量和土質來決定的。Climate公司利用政府開放的氣象站的數據和土地數據建立了模型,他們可以告訴農民可以在哪些土地上耕種,哪些土地今天需要噴霧並完成耕種,哪些正處於生長期的土地需要施肥,哪些土地需要5天後才可以耕種,大數據技術可以幫助農業創造巨大的商業價值。

5、零售行業

零售行業比較有名氣的大數據案例就是沃爾瑪的啤酒和尿布的故事,以及Target通過向年輕女孩寄送尿布廣告而告知其父親,女孩懷孕的故事。

零售行業可以通過客戶購買記錄,了解客戶關聯產品購買喜好,將相關的產品放到一起增加來增加產品銷售額,例如將洗衣服相關的化工產品例如洗衣粉、消毒液、衣領凈等放到一起進行銷售。根據客戶相關產品購買記錄而重新擺放的貨物將會給零售企業增加30%以上的產品銷售額。

零售行業還可以記錄客戶購買習慣,將一些日常需要的必備生活用品,在客戶即將用完之前,通過精準廣告的方式提醒客戶進行購買。或者定期通過網上商城進行送貨,既幫助客戶解決了問題,又提高了客戶體驗。

電商行業的巨頭天貓和京東,已經通過客戶的購買習慣,將客戶日常需要的商品例如尿不濕,衛生紙,衣服等商品依據客戶購買習慣事先進行准備。當客戶剛剛下單,商品就會在24小時內或者30分鍾內送到客戶門口,提高了客戶體驗,讓客戶連後悔等時間都沒有。

利用大數據的技術,零售行業將至少會提高30%左右的銷售額,並提高客戶購買體驗。

6、大數據技術產業

進入移動互聯網之後,非結構化數據和結構化數據呈指數方式增長。現在人類社會每兩年產生的數據將超過人類歷史過去所有數據之和。進入到2015年,人類社會所有的數據之和有望突破5澤B(5ZB),這些數據如何存儲和處理將會成為很大的問題。

這些大數據為大數據技術產業提供了巨大的商業機會。據估計全世界在大數據採集、存儲、處理、清晰、分析所產生的商業機會將會超過2000億美金,包括政府和企業在大數據計算和存儲,數據挖掘和處理等方面等投資。中國2014年大數據產業產值已經超過了千億人民幣,本屆貴陽大數據博覽會就吸引了400多家廠商來參展,充分說明大數據產業的未來的商業價值巨大。

未來中國的大數據產業將會呈幾何級數增長,在5年之內,中國的大數據產業將會形成萬億規模的市場。不僅僅是大數據技術產品的市場,也將是大數據商業價值變現的市場。大數據將會在企業的精準營銷、決策分析、風險管理、產品設計、運營優化等領域發揮重大的作用。

大數據技術產業將會解決大數據存儲和處理的問題,大數據服務公司將利用自身的數據將解決大數據價值變現問題,其所帶來的市場規模將會超過千億人民幣。中國目前擁有大數據,並提供大數據價值變現服務的公司除了我們眾所周知的BAT和移動運營商之外,360、小米、京東、Talking Data、九次方等都會成為大數據價值變現市場的有力參與者,市場足夠大,期望他們將市場做大,幫助所有企業實現大數據價值變現。

7、物流行業

中國的物流產業規模大概有5萬億左右,其中公里物流市場大概有3萬億左右。物流行業的整體凈利潤從過去的30%以上降低到了20%左右,並且下降的趨勢明顯。物流行業很多的運力浪費在返程空載、重復運輸、小規模運輸等方面。中國市場最大等物流公司所佔的市場份額不到1%。因此資源需要整合,運送效率需要提高。

物流行業藉助於大數據,可以建立全國物流網路,了解各個節點的運貨需求和運力,合理配置資源,降低貨車的返程空載率,降低超載率,減少重復路線運輸,降低小規模運輸比例。通過大數據技術,及時了解各個路線貨物運送需求,同時建立基於地理位置和產業鏈的物流港口,實現貨物和運力的實時配比,提高物流行業的運輸效率。藉助於大數據技術對物流行業進行的優化資源配置,至少可以增加物流行業10%左右的收入,其市場價值將在5000億左右。

8、房地產業

中國房地產業發展的高峰已經過去,其面臨的挑戰逐漸增加,房地產業正從過去的粗放發展方式轉向精細運營方式,房地產企業在拍賣土地、住房地產開發規劃、商業地產規劃方面也將會謹慎進行。

藉助於大數據,特別是移動大數據技術。房地產業可以了解開發土地所在范圍常駐人口數量、流動人口數量、消費能力、消費特點、年齡階段、人口特徵等重要信息。這些信息將會幫助房地商在商業地產開發、商戶招商、房屋類型、小區規模進行科學規劃。利用大數據技術,房地產行業將會降低房地產開發前的規劃風險,合理制定房價,合理制定開發規模,合理進行商業規劃。大數據技術可以降低土地價格過高,實際購房需求過低的風險。已經有房地產公司將大數據技術應用於用戶畫像、土地規劃、商業地產開發等領域,並取得了良好的效果。

9、製造業

製造業過去面臨生產過剩的壓力,很多產品包括家電、紡織產品、鋼材、水泥、電解鋁等都沒有按照市場實際需要生產,造成了資源的極大浪費。利用電商數據、移動互聯網數據、零售數據,我們可以了解未來產品市場都需求,合理規劃產品生產,避免生產過剩。

例如依據用戶在電商搜索產品的數據以及物流數據,可以推測出家電產品和紡織產品未來的實際需求量,廠家將依據這些數據來進行生產,避免生產過剩。移動互聯網的位置信息可以幫助了解當地人口進出的趨勢,避免生產過多的鋼材和水泥。

大數據技術還可以根據社交數據和購買數據來了解客戶需求,幫助廠商進行產品開發,設計和生產出滿足客戶需要的產品。

10、互聯網廣告業

2014年中國互聯網廣告市場迎來發展高峰,市場規模預計達到1500億元左右,較2013年增長56.5%。數字廣告越來越受到廣告主的重視,其未來市場規模越來越大。2014年美國的互聯網廣告市場規模接近500億美元,參考中國的人口消費能力,其市場規模會很快達到2000億人民幣左右。

過去到廣告投放都是以好的廣告渠道+廣播式投放為主,廣告主將廣告交給廣告公司,由廣告公司安排投放,其中SEM廣告市場最大,其他的廣告投放方式也是以頁面展示為主,大多是廣播式廣告投放。廣播式投放的弊端是投入資金大,沒有針對目標客戶,面對所有客戶進行展示,廣告的轉化率較低,並存在數字廣告營銷陷阱等問題。

大數據技術可以將客戶在互聯網上的行為記錄下來,對客戶的行為進行分析,打上標簽並進行用戶畫像。特別是進入移動互聯網時代之後,客戶主要的訪問方式轉向了智能手機和平台電腦,移動互聯網的數據包含了個人的位置信息,其360度用戶畫像更加接近真實人群。360度用戶畫像可以幫助廣告主進行精準營銷,廣告公司可以依據用戶畫像的信息,將廣告直接投放到用戶的移動設備,通過用戶經常使用的APP進行廣告投放,其廣告的轉化可以大幅度提高。利用移動互聯網大數據技術進行的精準營銷將會提高十倍以上的客戶轉化率,廣告行業的程序化購買正在逐步替代廣播式廣告投放。大數據技術將幫助廣告主和廣告公司直接將廣告投放給目標用戶,其將會降低廣告投入,提高廣告的轉化率。

目前,影響大數據產業發展主要有兩個大問題,一個是大數據應用場景,一個是大數據隱私保護問題。

大數據商業價值的應用場景,大數據公司和企業正在尋找,目前在移動互聯網的精準營銷和獲客、360度用戶畫像、房地產開發和規劃、互聯網金融的風險管理、金融行業的供應鏈金融,個人徵信等方面已經取得了進步,擁有了很多經典案例。

但在有關大數據隱私保護以及大數據應用過程中個人信息保護方面還停滯不前,大家都在摸石頭過河,不知道哪些事情可以做,哪些事情不可以做。國家在大數據隱私保護方面正在進行立法,估計不久的將來,大數據服務公司和企業將會了解大數據隱私保護方面的具體要求。在沒有明確有關大數據隱私保護法規前,我們可以參考國外的隱私法,嚴格遵守國際上通用的個人隱私保護法,在實施大數據價值變現的過程中,充分保護所有相關方的個人利益。

最後縱觀人類歷史,在任何領域,如果我們可以拿到數據進行分析,我們就會取得進步。如果我們拿不到數據,無法進行分析,我們註定要落後。我們過去因數據不足導致的錯誤遠遠好過那些根本不用數據的錯誤,因此我們需要掌握大數據這個武器,利用好它,幫助人類社會加速進化,幫助企業實現大數據的價值變現。

以上是小編為大家分享的關於大數據十大商業應用場景的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與大數據典型應用相關的資料

熱點內容
javachar與運算 瀏覽:347
如何在cad文件中插入源泉插件 瀏覽:362
存儲路徑無許可權或文件名不合規 瀏覽:496
iphone4s怎麼刪除文件 瀏覽:545
中公教師文件名叫什麼 瀏覽:844
word2010怎麼從任意頁設置頁碼 瀏覽:622
cass怎麼校正數據 瀏覽:612
linux查看所有管理員 瀏覽:2
u盤文件解壓縮失敗如何修復 瀏覽:566
黑蘋果怎麼顯卡才4m 瀏覽:270
方程式0day圖形化工具 瀏覽:961
電腦裝文件很慢 瀏覽:958
網路標號怎麼用 瀏覽:352
會議上文件讀好後要說什麼 瀏覽:783
安裝壓縮文件office 瀏覽:417
2014年網路營銷大事件 瀏覽:186
首頁全屏安裝代碼 瀏覽:39
黨規黨紀指的哪些文件 瀏覽:995
windows編程圖形界面用什麼設置 瀏覽:266
deb文件安裝路徑 瀏覽:540

友情鏈接