導航:首頁 > 網路數據 > 曲強大數據

曲強大數據

發布時間:2024-06-28 14:41:32

Ⅰ 什麼是大數據。。大數據是什麼

大數據,IT行業術語,是指無法在一定時間范圍內用常規軟體工具進行捕捉、管理內和處理的數據集合,容是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。

在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣捷徑,而採用所有數據進行分析處理。

大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性)。



(1)曲強大數據擴展閱讀:
大數據包括結構化、半結構化和非結構化數據,非結構化數據越來越成為數據的主要部分。

據IDC的調查報告顯示:企業中80%的數據都是非結構化數據,這些數據每年都按指數增長60%。

大數據就是互聯網發展到現今階段的一種表象或特徵而已,沒有必要神話它或對它保持敬畏之心,在以雲計算為代表的技術創新大幕的襯托下,這些原本看起來很難收集和使用的數據開始容易被利用起來了。

Ⅱ 金融大數據是什麼

金融大數據是指收集海量非結構化數據,分析挖掘客戶的交易和消費信息,掌握客戶的消費習慣,准確預測客戶的行為,提高金融機構的服務、營銷和風控能力。
1、大數據金融主要體現在三個方面:一是數據客觀准確匹配;二是交易成本低,客戶群大;最後,數據及時有效,有助於控制風險。
2、大數據金融通過大數據技術收集客戶交易信息、在線社區交流行為、資金流動趨勢等數據。大數據金融了解客戶的消費習慣,針對不同的客戶推出不同的營銷和廣告,或分析客戶的信用狀況。
拓展資料:
1)因為大數據金融數據是根據客戶自己的行為收集的大數據金融是客觀真實的。因此,大數據金融為客戶制定的回售方案和偏好推薦也能精準大數據金融匹配度高。大數據金融基於雲計算技術 雲計算是一種超大規模分布式計算技術,通過預設程序,大數據金融雲計算可以搜索、計算和分析各類客戶數據,無需人工參與。
2)大數據金融雲計算技術降低了收集和分析數據的成本,不僅整合了碎片化的需求和供應,而且大大降低了大數據金融交易的成本,實現了跨區域的信息流動和交換,客戶群也隨之增長。在大數據金融模型中,互聯網公司設置了各種風險指標,如違約率、延遲交貨率、售後投訴率等,大數據金融收集的客戶數據是實時的,因為其信用評價也是實時的。時間,有利於數據需求方及時分析對方的信用狀況,控制和防範交易風險。
3)大數據,或稱海量數據,是指所涉及的海量數據,無法通過主流軟體工具進行檢索、管理、處理和整理成信息,幫助企業在合理的時間內做出更積極的業務決策。 「大數據」研究院Gartner給出了這樣的定義。 「大數據」需要一種新的處理模式,具有更強的決策力、洞察力和發現力和流程優化能力,以適應海量、高增長率和多樣化的信息資產。

Ⅲ 大數據時代讀後感1000字(2)

大數據時代讀後感1000字(精選7篇)

舍恩伯格分三部分來討論大數據,即思維變革、商業變革和管理變革。在第一部分」大數據時代的思維變革「中,舍恩伯格旗幟鮮明的亮出他的三個觀點:一、更多:不是隨機樣本,而是全體數據;二、更雜:不是精確性,而是混雜性;三、更好:不是因果關系,而是相關關系。對於第一個觀點,我不敢苟同。一方面是對全體數據進行處理,在技術和設備上有相當高的難度。另一方面是不是都有此必要,對於簡單事實進行判斷的數據分析難道也要採集全體數據嗎?我曾與香港城市大學的祝建華教授討論過。祝教授是傳播學研究方法和數據分析的專家,他認為一定可以找到一種數理統計方法來進行分析,並不一定需要全部數據。聯繫到舍恩伯格第二個觀點中所說的相關關系,我理解他說的全體數據不是指數量而是指范圍,即大數據的隨機樣本不限於目標數據,還包括目標以外的所有數據。我認為大數據分析不能排除隨機抽樣,只是抽樣的方法和范圍要加以拓展。

我同意舍恩伯格的第二觀點,我認為這是對他第一個觀點很好的補充,這也是對精準傳播和精準營銷的一種反思。」大數據的簡單演算法比小數據的復雜演算法更有效。「更具有宏觀視野和東方哲學思維。對於舍恩伯格的第三個觀點,我也不能完全贊同。」不是因果關系,而是相關關系。「不需要知道」為什麼「,只需要知道」是什麼「。傳播即數據,數據即關系。在小數據時代人們只關心因果關系,對相關關系認識不足,大數據時代相關關系舉足輕重,如何強調都不為過,但不應該完全排斥它。大數據從何而來?為何而用?如果我們完全忽略因果關系,不知道大數據產生的前因後果,也就消解了大數據的人文價值。如今不少學者為了闡述和傳播其觀點往往語出驚人,對舊有觀念進行徹底的否定。

世間萬物的復雜性多樣化並非非此即彼那麼簡單,舍恩伯格也是這種二元對立的幼稚思維嗎?其實不然,讀者在閱讀時一定要看清楚他是在什麼語境下說的,不要因囫圇吞棗的淺讀而陷入斷章取義的誤讀。比如說舍恩伯格在提出」不是因果關系,而是相關關系。「這一論斷時,他在書中還說道:」在大多數情況下,一旦我們完成了對大數據的相關關系分析,而又不再滿足於僅僅知道『是什麼』時,我們就會繼續向更深層次研究的因果關系,找出背後的『為什麼』。「[i]由此可見,他說的全體數據和相關關系都在特定語境下的,是在數據挖掘中的選項。

大數據研究的一大驅動力就是商用,舍恩伯格在第二部分里討論了大數據時代的商業變革。舍恩伯格認為數據化就是一切皆可」量化「,大數據的定量分析有力地回答」是什麼「這一問題,但仍然無法完全回答」為什麼「。因此,我認為並不能排除定性分析和質化研究。數據創新可以創造價值,這是毫無疑問的。舍恩伯格在討論大數據的角色定位時仍把它置於數據應用的商業系統中,而沒有把它置於整個社會系統里,但他在第二部分大數據時代的管理變革中討論了這個問題。在風險社會中信息安全問題日趨凸顯,數據獨裁與隱私保護成為一對矛盾。如何擺脫大數據的困境?舍恩伯格在最後一節」掌控「中試圖回答,但基本上屬於老生常談。我想,或許凱文·凱利的《失控》可以幫助我們解答這個問題?至少可以提供更多的思考維度。正如舍恩伯格在結語中所道:」大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。「謝謝舍恩伯格!讓大數據討論從自然科學回到人文社科。由此推斷,《大數據時代》不是最終答案,也不是標准答案,只是參考答案。

此外,在閱讀此書之前還必須具備一些數據科學的基本知識和基本概念,比如說什麼叫數據?什麼叫大數據?數據分析與數據挖掘的區別,數字化與數據化有什麼不同?讀前做些功課讀起來就比較好懂了。

大數據時代讀後感1000字 篇2

我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。這個命題是我讀這本書最大的感觸。個人認為也是這本書最核心的思想。從頭說起吧,首先,書提出一個顛覆我以前認知的命題--」並非原子而是信息才是一切的本源「,將世界看做信息,看做可以理解的數據的海洋,為我們提供了一個從未有過的審視下是的視角。它是一種可以滲透到所有生活領域的世界觀。這個命題是在書的最後一部分中的某一段中描寫的。我之所以把它放在最前面來講,因為我覺得,這是談數據化世界的前提,自然也是談論大數據的前提啦。書的中間部分有一節講到數據化和數字化的區別。經過我自己腦子的整理,把數據化世界這個命題列為大數據思維的第二步。寫到這里,我不由得反省下,我是不是有領悟到書的精髓所在(我認為的精髓),就是第一句話。因為回顧我整個思路,還是按照舊模式的因果關系思考模式思考問題。書中另一個吸引我的地方就是,有很多觀點的論述,會從哲學的高度論述。雖然,自己肚子沒多少墨水,但是讀這些描述的時候,就會發現自己會更好的理解作者提出的命題。比如書中有一段文字

當我們說人類是通過因果關系了解世界時,我們指的是我們再理解和解釋世界各種現象時使用的兩種基本方法:一種是通過快速、虛幻的因果關系,還有一種就是通過緩慢、有條不紊的因果關系。大數據會改變這兩種基本方法在我們認識世界時所扮演的角色。

在附上一些事例的時候,用作者提供的」本質「去看待時,很容易理解,確實是這么回事。好了,那麼大數據到底改變了我們什麼呢,作者給出3點,

大數據的精髓在於我們分析信息時的三個轉變,這些轉變講改變我們理解和組建社會的方法。

第一個轉變就是,在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(樣本=總體)

第二個轉變就是,研究數據如此之多,以至於我們不再熱衷於追求精確度

第三個轉變因前兩個轉變而促成,即我們不再熱衷於尋找因果關系,而應該尋找事物之間的相關關系。大數據告訴我們」是什麼「而不是」為什麼「。在大數據時代,我們不必知道現象背後的原因,我們只要讓數據自己發聲。,出處:短美文,否則追究其責任,謝謝你的支持,我們會給做得更好!

正如大家所知道的那樣,人類的大腦具備這樣的功能,它會把新輸入的刺激或信息與」過去的經驗或積累的部分知識「相對照,然後進行調整並接受下來。如果眼前新的現實與大腦中儲存的固有信息無法協調,便會在無意識中拒絕接受新的現實(當作沒有看見);或者通過自己一知半解的知識任意推測,使自己認識到的情況偏離實際(產生錯覺)。這是人的一種本能,目的在於使自己保持冷靜。

所以作者稱之為revolution。

講了這么多,那麼大數據到底給我們帶來什麼。在這里,我只想談我感觸最深的,其他的有興趣的可以自己去了解。當然,書中提了很多,最多的就是,XXX公司或者個人利用大數據創造了多大的財富了,拋開這些表面的不說,最讓我動心亦或者是害怕的是,預測。這是大數據帶來最核心的東西,動心的理由無須贅述,計算機會告訴你什麼時候買什麼雙色球可以中頭獎,想想心裡是不是有一點小激動咧。當然這只是我打的一個比較誇張的比喻。至於害怕呢,書中有段話我很喜歡

公平正義的基礎是人只有做了某事才需要對它負責,畢竟,想做而未做不是犯罪,社會關系於個人責任的基本信條是,人為其選擇的行為承擔責任。如果大數據分析完全准確,那麼我們的未來會被精準的預測,因此在未來,我們不僅會失去選擇的權利,而且會按照預測去行動。如果精準的預測成為現實的話,我們也就失去了自由意志,失去了自由選擇的權利。既然我們別無選擇,那麼我們也就不需要承擔責任。這不是很諷刺嗎。

扯到這里,順便扯一下,書中另一段關於自由意志的描述

在哲學界,關於因果關系是否存在的爭論已經持續了幾個世紀。畢竟,如果凡事皆有因果的話,那麼我們就沒有決定任何事的自由了。如果說我們做的每一個決定或者每一個想法都是其他事情的結果。而這個結果又是由其他原因導致的。以此循環往復,那麼就不存在人的自由意志這一說了。——所有的生命軌跡都只是受因果關系的控制了。因此,對於因果關系在世間所扮演的角色,哲學家們爭論不休,有時他們認為,這是與自由意志相對立。

書中舉了個例子,舉了部電影《少數派報告》,當我看到這里的時候,」哎喲,我居然看過這部電影,想想心裡還是有點小激動「,有興趣的可以去看下,大概就是講警察通過預測來提前抓捕犯人,不過不是通過大數據,是通過超人類的方式。當你什麼舉動都可以被預測,相當於你完全暴露在太陽光下,換成你,你害怕不。

最後,附上兩段結語,一段是書中的一段話,另一段是我自己瞎編的。

大數據並不是一個充斥著演算法和機器的冰冷世界,人類的作用依然無法被完全替代。大數據為我們提供的不是最終答案,只是參考答案,幫助是暫時的,而更好的方法和答案還在不久的未來。

大數據終將會影響到我們,也像其他技術一樣會是一把雙刃劍,用得好,動心,濫用,害怕。如同核技術一樣,用的話,造福地球,濫用,給個金剛石地球你,照樣爆。我相信,未來的大數據的發展會如作者所說的,是一場生活、工作與思維的革命。

大數據時代讀後感1000字 篇3

「大數據」一詞不知何時在我們的生活悄然出現,為了一探究竟,我便選擇了《大數據時代》一書。

作者先從全局簡單地描述大數據對我們的生活、工作與思維的影響,再從三方面具體地用上百個學術和商業的實例展開寫作。樣本=總體、追求精確性和相關關系等大數據時代具體特點一一現出。在同時,作者也從個人、企業等多角度分析大數據中的隱憂。

書中內容繁多,在此不能各方面概括。此書中雖有許多專有名詞,但作者以其通俗的語言以及許多實例讓我嗅到大數據時代中一抹清新之氣。

為什麼是清新的呢?因為書中的內容彷彿向我打開了一個既有點熟悉又有點陌生的世界。我們現在已處於網路時代 ,在我們日常簡單的操作中大量數據產生,然而起初我們僅用眾多技術在解決手頭上的問題,那些大數據像沙子中的金子,價值不被發現。到目前,每當我們網上購書時總會看到「猜你喜歡」的欄目、出現谷歌搜索與流感預測、Farecast與飛機票價預測系統等,這些事情的達成全來自於那些曾被忽略的大數據同時也在證明「預測,大數據的核心」這句話,為我們的生活創造了前所未有的可量化的維度。看到書中這部分內容時,我不禁感受到自己的生活已在享大數據帶來的福利,就像「猜你喜歡」欄目讓我觸到更多合我口味的書,讓我看到了以前無法發現的細節。擁有大量數據的公司巨頭如谷歌、亞馬遜大力開發有關大數據的新型產業和研究相關項目。借網路時代的便利大數據成為了如今最有商業價值的事物,使一切可量化的趨勢也開始出現。「本質上世界是由信息構成的」,面對這句話時,大數據時代彷彿就在眼前。

在感受驚嘆著大數據能為我們做到以往無法想像的事和它巨大的價值時,我認同大數據能極大優化我們的生活,但又不禁為這時代感到擔憂。一旦大數據時代來臨,不僅我們的隱私可能不再是隱私,就如書中所言「我們時刻暴露在『第三隻眼』下:亞馬遜監視著我們的購物習慣,谷歌監視著我們的購物習慣,而微博似乎什麼都知道」,而且利用大數據我們可以預測許多事情並且十分高效,一旦人們依賴大數據極少運用人類自身的創新等能力被數據束縛住,世界只會淪落為一個極少活力的機械環境。而我認為最大的憂患,是大數據時代對人類自身思維、思想、信仰等精神領域的沖擊。如今我們都生活在數據中,大數據時代說不定在幾年後就會逐步來臨,這使我不禁發問:我們一直堅信著信仰著的究竟是什麼?我覺得世界說變就變實在令我想不通這個問題。事情都有好壞,我也不知道自己是否杞人憂天。

於是我繼續去探索作者對這問題的思考。「更大的數據在於人本身」,作者還說「我們是在創造更好的未來」,也說「在一個預測的時代里,人類的自由意志不可侵犯,這一點不可輕視。我們在使用大數據時,應當懷有謙恭之心,銘記人性之本」。人類學家克利福德吉爾茲曾說:「努力在可以應用、可以拓展的地方,應用它、拓展它;在不能應用、不能拓展的地方,就停下來。」這些話語彷彿是陽光,驅散我心中對大數據時代的擔憂以及內心對其的恐懼。我認為,在堅守我們內心和自由意志下,大數據才會造福我們人類世界,發揮出它背後對人溫暖的光芒。

面對時代的變革,我會為堅守內心深處的自由意志而努力並「擁抱大數據」。

大數據時代讀後感1000字 篇4

世界的本質就是數據,當你掌握了數據,你便掌控了世界—你可以輕而易舉地通過數據中的相關關系預測事物的發展,將一切不利因素扼殺於搖籃之中—這遠勝於"防患於未然"。

《大數據時代》一書,讓我們在觀念上有了三大轉變:要全體不要抽樣,要效率不要絕對精確,要相關不要因果。全書介紹了 "大數據"時代三種大的變革:思維變革,商業變革和管理變革。在這些巨大變革如洪水一般的"沖擊"之下,現代社會的運作方式必將有重大的改變,若不順應這種變革的潮流,就像古中國固步自封,最終被堅船利炮打開國門而自己還用著長鉤鐵戟抗爭一樣,不可避免被掠奪,被落於世界進程之後,所以我們必須轉變我們的思想。

"我們不再熱衷於尋找因果關系,而應該尋找事物間的相關關系",我想這句話是本書的核心思想。大數據時代,信息與數據已成為了一切的本源,我們生活在各種數據構成的海洋之中,如果從另一種視角看,就好像無數條"看不見的線"將我們與這些數據聯繫到一起,這是我們以前從未有過、從未想過的。大數據改變了我們以前的通過因果關系了解世界的方法,而提供了幾種新的途徑,因為,在大數據時代,我們可以分析更多數據,有時甚至可以處理和某個特別現象相關的所有數據,也就是:樣本=總體;而且,當研究數據如此之多時,我們已不熱衷於"精確",而是"混亂",若不接受"混亂",那麼有95%的非結構化數據無法利用,這將無法使我們構建完整的數據世界,在分析更多、更全面的數據之後,我們就可以從這些數據之中發掘它們的相關關系,即以"是什麼"而不是"為什麼"的角度看待數據,不用管其從何而來,只要分析其如何影響其他事物既可,即"讓數據自己發聲",這些,徹底推翻了人類以前探索數據的方法,展現了一個全新的世界。

這種觀念以驚人的力量給現知識狀況帶來了巨大的沖擊,通過對海量數據的分析,獲得巨大價值的產品和服務,或深刻的洞見。比如谷歌公司,2009年h1n1流行之時,通過檢測檢索詞條,處理34。5億個不同的數據模型,通過預測並與2007、2008年的美國疾控中心記錄的實際流感病例進行對比後,確定了45條檢索詞條組合,並將其用於一個特定的數學模型後,預測結果與官方數據相關系數高達97%,這種大數據技術,以前所未有的方式,通過海量數據分析得出流感所傳播的范圍,為預測流感提供了一種更快速、高效的工具。

同時,雖然大數據可為人類造福、對抗病症,但這僅限於掌握這門技術而言,若不重視這種技術,當我們的對手早於我們一步構建這種數據網路之時,便是我們的災難,想想,大數據雖核心的在於預測,當敵人通過這種手段預測我方下一步的行動,將是可怕的—比如你的.導彈將從何處發射,將飛往哪,你的軍隊動向、目標,總之所有一切"未來"將掌控於敵手,敵方甚至可以藉此發現那些將來有"大作為"的人,從而進行滲透或扼殺,這對我們的發展無疑是致命的,所以,盡快加速大數據系統的構建進程是必須的。

對於我們國防生,也必須順應這種發展趨勢,未來的時代必將是數據極易獲取,數據網路共享化的時代,通過這些數據,建立數據模型,可以准確分析並給出適合每一個人的計劃,如運動量、訓練強度,可以"先知、先覺",及時發現一個人的負面情緒前及時疏導,這些必將成為現實,我們必須跟進時代,做好准備,去應對大數據時代的一切!

大數據時代讀後感1000字 篇5

「除了上帝,任何人都必須用數據來說話。」——這是《大數據》中出現的讓人印象深刻的一句話,也是全書力圖傳遞的信息。在數字信息時代,數據和空氣一樣遍布生活,對於有些人來說,數據無意義,而對於有些人來說,數據,即真相。

美國是《大數據》的主角,全書通過講述美國半個多世紀信息開放、技術創新的歷史,公共財政透明的曲折、《數據質量法》背後的隱情、全民醫改法案的波瀾、統一身份證的百年糾結、街頭警察的創新傳奇、美國礦難的悲情歷史、商務智能的前世今生、數據開放運動的全球興起,Web3·0與下一代互聯網的未來圖景等等,為讀者一一細解數據創新給公民、政府、社會帶來的種種挑戰和變革。

透過全書,一個立體的美國及美國人民的思想呈現在我們面前——美國人民執著於個人隱私的保護,卻又不遺餘力地推動著政府信息的透明與公開。

讀完此書,對生活中的數據及數據處理突然有了很大的興趣。如果有一天,處處以數據說話,那麼,政治、制度、生活將更加清明,事故、將降到最低點。

作為信息技術教師,是有必要閱讀此書的!有慧根的教師將能從書中挖掘出信息技術特有的文化以及能用於教學的鮮活案例。

每天能用來閱讀的時間很少,總是要等到夜深疲倦時才有空打開書本,總是在眼睛極不舒服的情況下堅持閱讀,《大數據》就這樣在堅持中溶入我的思想……

大數據時代讀後感1000字 篇6

讀完《大數據》,我才意識到這並不是一本枯燥無味的書籍。作者運用案例和講故事的方式,把美國數據開放、收集、使用背後的立法故事、公民故事、技術故事、商業故事娓娓道來,引人入勝,令我大開眼界。

我在想,大數據概念對於教育來說會產生什麼樣的實用價值呢?一直以來,中國教育在研究教育的數字化,比如數字化校園,這個思路就是把我們教育的內容進行數字化,其結果指向的就是電子教材的研發或者是教學過程的數字化。美其名曰,這是教育技術的重要內涵。在教學過程中,學生的行為表現都可以被數據化,而這項研究不是任何一個專業可以深入下去的,它的專業性太強,所以我才會想到,所謂教育技術與其研究教育的數字化,不如研究教育的數據化來得實在,來的有意義。長期以來,我們並不了解教育對一個人的影響具體會如何表現,我們有的只是一個輪廓,我們也並不確定一個教師的行為對學生具體產生了哪些影響。所以,人們對教育一直有一個深深的質疑,它是不是科學的?大數據概念至少提出了關注「是什麼」比「為什麼」要有實際意義得多。而我們的教育恰好需要把注意力從「為什麼」轉移到「是什麼」上面來,只有如此,才能把教育從為什麼發展成「可能成為什麼」上來,這會是一次思想上的革命。而對於現在地位岌岌可危的教育技術來說,把研究的重點從數字化轉移到數據化上面,這才是它的出路。

如何將數據融入教學,教育者首先通過標准化全科教學處方,實現了教師授課模板和教學內容的標准化,保證每個教學過程和內容是可控的,然後結合每天的教學內容,處理好面對的數據,處理好數據,自然也就處理好了課堂的反饋,最終形成了既注重教學體驗又以教學結果為導向的教學體系。

與此同時,不僅要注重課上的學生資源,在課後還要對這些資源進行跟蹤處理。這與過去的教育教學顯然是不同的,面對大數據時代的到來,教學有所改變是必然的。所以,無論環境怎麼變換,數據如何復雜,我們都不能不去改變自己的教學去迎合將來的這個大數據時代。

大數據時代讀後感1000字 篇7

舍恩伯格的《大數據時代》,讓我重新審視了"大數據"這個在信息時代異軍突起的熱點詞彙,作為信息安全專業的我,對大數據這個詞本身有著更多的熱忱。

在網路上搜索到的解釋是:"大數據",或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟體工具工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。特點:數量、速度、品種、真實性。

而舍恩伯格認為,大數據並不能定義一個確切的概念。他提到"大數據是人們獲得新的認知,創造新的價值的源泉;大數據還是改變市場、組織機構,以及政府和公民關系的方法。"這是一種更具有人文色彩和社會意義的詮釋。

本書中,主要從三個方面論述,即思維變革、商業變革和管理變革。而舍恩伯格更是著重闡明三大觀點:

一、更多:不是隨機樣本,而是全體數據。

二、更雜:不是精確性,而是混雜性。

三、更好:不是因果關系,而是相關關系。

對於觀點一,我不敢苟同,畢竟大數據的實現需要一定的技術支持,而顯然,現在這種技術還不夠成熟,同時一些簡單的事情運用大數據反倒是問題更加復雜化,因此這種大叔據的繁雜處理方式更適用於一些特定的情況,比如商業預測,人類dna的研究等。

而對第二種觀點,我是十分贊同舍恩伯格所說的"大數據的簡單演算法比小數據的簡單演算法有效"。在計算機行業迅速發展中,一種新的簡單可行的演算法的出現,遠沒有計算機在運算速度和存儲容量的發展快,而大數據演算法似乎更能迎合這種大趨勢。

觀點三中提到的相關關系在大數據中可是重量級的,它能較快找到事物規律和對應的解決措施,當然,也不能完全忽視因果關系,畢竟人們在思維上更能夠接受因果關系分析出的結果,而大數據預測的需要人們慢慢的適應才能接受。當我們完成相關關系的分析而又不滿足於只知道"是什麼"的時候,我們就可以轉而研究"為什麼"了,畢竟問題的根本在於因果。而舍恩伯格的全體數據和相關關系是大數據時代下的一種捷徑。

但是在信息時代,信息安全問題的日趨凸顯,數據獨裁與隱私保護之間的矛盾更是立於風口浪尖,成為眾矢之的,舍恩伯格在本書的最後章節曾試圖尋找一種解決方式來擺脫這一種困境,但最終沒能做到,但是他提出"大數據並不是一個充斥著演算法的和機器的冰冷世界,人類的作用仍無法被完全代替。"這里表明人在數據時代同樣的重要,數據是為人類服務的,也就該人類驅使下完成相應的目的。

在這樣的大環境下,常引起我更多的思考和擔憂。

大數據時代對於我們同是機遇與挑戰,一些國家已開始步入大數據時代的行列,並在各個領域開始研究和使用。而對於我國龐大的人口,以及較大的領土面積,都可以在大數據時代為我們提供數據的保障,而能否面臨挑戰,在大國之間的新一輪角色角逐間嶄露頭角,我們更需要解決技術等方面的問題,更應在政策上逐步開放各領域的數據,保證數據來源、許可權等問題得到解決,不斷學習先進的計算機技術,縮小與其他國家的差距。

工業化、信息化,我們都向世界交出了一份讓世界不能小覷的答案;

大數據時代的數據化我們又將怎樣在新的風暴中所向披靡,如果大數據時代是一種必然趨勢,那這就是我們這一代人的責任,是我們新的戰場!

;

Ⅳ 大數據是什麼

作者:李麗
鏈接:https://www.hu.com/question/23896161/answer/28624675
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。

"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。
亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。
研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二、大數據分析
從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
三、大數據技術
1、數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
2、數據存取:關系資料庫、NOSQL、SQL等。
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or
association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text,
Web ,圖形圖像,視頻,音頻等)
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
四、大數據特點
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
1、
數據體量巨大。從TB級別,躍升到PB級別。
2、
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
3、
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4、
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。
五、大數據處理
大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理
六、大數據應用與案例分析
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
[1] Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
[2] 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
[3] 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
[1] 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。

[2] 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
[1] XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
[2] 電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
[3] 中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
[4] NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。

Ⅳ 大數據 大變革、大機遇

大數據:大變革、大機遇

從來沒有哪一次技術變革能像大數據革命一樣,在短短的數年之內,從少數科學家的主張,轉變為全球領軍公司的戰略實踐,繼而上升為大國的競爭戰略,形成一股無法忽視、無法迴避的歷史潮流。互聯網、物聯網、雲計算、智慧城市、智慧地球正在使數據沿著「摩爾定律」飛速增長,一個與物理空間平行的數字空間正在形成。在新的數字世界當中,數據成為最寶貴的生產要素,順應趨勢、積極謀變的國家和企業將乘勢崛起,成為新的領軍者;無動於衷、墨守成規的組織將逐漸被邊緣化,失去競爭的活力和動力。毫無疑問,大數據正在開啟一個嶄新時代。

大數據時代有什麼本質特徵?大數據的來源是什麼?大數據又將流向哪裡?大數據在提升政府治理、改善經濟治理、再造公共服務模式、激發商業創新方面有哪些卓越案例?中國需要怎麼樣的戰略反應才能抓住大數據帶來的寶貴機遇?一系列問題亟待研究者給出深入解析。

「數據驅動發展」成為時代主題

如今,大數據已經被賦予多重戰略含義。從資源的角度,數據被視為「未來的石油」,作為戰略性資產進行管理;從國家治理角度,大數據被用來提升治理效率、重構治理模式、破解治理難題,它將掀起一場國家治理革命;從經濟增長角度,大數據是全球經濟低迷環境下的產業亮點,是戰略新興產業的最活躍部分;從國家安全形度,全球數據空間沒有國界邊疆,大數據能力成為大國之間博弈和較量的利器。總之,國家競爭焦點將從資本、土地、人口、資源轉向數據空間,全球競爭版圖將分成新的兩大陣營:數據強國與數據弱國。

宏觀上看,由於大數據革命的系統性影響和深遠意義,主要大國快速做出戰略響應,將大數據置於非常核心的位置,推出國家級創新戰略計劃。美國2012年發布《大數據研究和發展計劃》,並成立「大數據高級指導小組」,2013年又推出「數據—知識—行動」計劃,2014年進一步發布《大數據:把握機遇,維護價值》政策報告,啟動「公開數據行動」,陸續公開50個門類的政府數據,鼓勵商業部門進行開發和創新。歐盟正在力推《數據價值鏈戰略計劃》,英國發布《英國數據能力發展戰略規劃》,日本發布《創建最尖端IT國家宣言》,韓國提出「大數據中心戰略」。中國多個省市發布了大數據發展戰略,國家層面的《關於促進大數據發展的行動綱要》也於2015年8月19日正式通過。

微觀上看,大數據重塑了企業的發展戰略和轉型方向。美國的企業以GE提出的「工業互聯網」為代表,提出智能機器、智能生產系統、智能決策系統,將逐漸取代原有的生產體系,構成一個「以數據為核心」智能化產業生態系統。德國企業以「工業4.0」為代表,要通過信息物理系統(CPS——cyber physical system),把一切機器、物品、人、服務、建築統統連接起來,形成一個高度整合的生產系統。中國的企業以阿里巴巴董事局主席馬雲提出的「DT時代」(data technology)為代表,認為未來驅動發展的不再是石油、鋼鐵,而是數據。這三種新的發展理念可謂異曲同工、如出一轍,共同宣告了「數據驅動發展」成為時代主題。

與此同時,大數據也是促進國家治理變革的基礎性力量。正如《大數據時代》作者舍恩伯格在定義中所強調的,「大數據是人們在大規模數據的基礎上可以做到的事情,而這些事情在小規模數據的基礎上是無法完成的」。在國家治理領域,陽光政府、責任政府、智慧政府建設,大數據為解決以往的「頑疾」和「痛點」提供了強大支撐;精準醫療、個性化教育、社會監管、輿情監測預警,大數據使以往無法實現的環節變得簡單、可操作;大數據也使一些新的主題成為國家治理的重點,比如維護數據主權、開放數據資產、保持在數字空間的國家競爭力等。

從哲學意義上來看,大數據不僅僅是一場技術革命,也不僅僅是一場管理革命或者治理革命,它給人類的認知能力帶來深刻變化,可謂是認識論的一次升華。具體而言,大數據可以為決策者解決「四個問題」,提升「兩種能力」。一是解決「坐井觀天」的問題,以往人們決策只能基於視野之內極為有限的局部信息,和井底之蛙無異,大數據則可以實現整個蒼穹盡收眼底;二是解決「一葉障目」的問題,以往不具備全樣本數據分析能力,只能用小樣本分析近似推理,猶如從「泰山」中取來「一葉」,而真理可能存在於全樣本的海量數據之中,藉助大數據則可完全克服;三是解決「瞎子摸象」的問題,七個瞎子根本無法根據各自的認識加總出完整的大象,因為他們的信息是相互離散的,無法有效關聯起來,而大數據的基本優點是在深入關聯中還原事物的原貌;四是解決「城門失火,殃及池魚」的問題,人們習慣於因果分析,遇到這種「稀奇古怪」的因果鏈則很難前瞻和推理,但大數據注重相關關系,可以准確地發掘出規律。提升兩種能力,一個是「一葉知秋」的能力,體現大數據敏銳的洞察能力,另一個是「運籌帷幄,決勝千里」的能力;體現大數據對時空約束的突破。這些足以說明,大數據是人類認識世界和改造世界能力的一次升華。

中國成為數據強國的優勢、挑戰與路徑

值得振奮的是,中國具備成為數據強國的優勢條件。從2013年至2020年,全球數據規模將增長十倍,每年產生的數據量由當前的4.4萬億GB,增長至44萬億GB,每兩年翻一番。從全球佔比來看,中國成為數據強國的潛力極為突出,2010年中國數據佔全球比例為10%,2013年佔比為13%,2020年佔比將達到18%,屆時,中國的數據規模將超過美國的數據規模,位居世界第一。中國成為數據大國並不奇怪,因為我們是人口大國、製造業大國、互聯網大國、物聯網大國,這都是最活躍的數據生產主體,未來幾年成為數據大國也是邏輯上必然的結果。

盡管存在成為數據強國的潛力,但在目前的政策環境之下,我國推進大數據戰略仍存在以下幾個清晰的挑戰。第一,頂層設計方面,全球大國之間圍繞大數據的競爭頗為激烈,中國作為一個後發國家,想要實現彎道超車,後來居上並非易事。如何能夠緊扣創新前沿,把准未來趨勢,超前戰略部署,對政策設計來說是一個非常現實的挑戰。第二,數據開放方面,「數據孤島」廣泛存在,雖然政府掌握著80%的數據,但現實中卻相互割裂,自成體系,「部門牆」「行業牆」「地區牆」阻礙了數據的流動共享,數據被視為部門的利益和隱私,這與大數據時代的基本理念准則相悖。第三,大數據相關的法律、法規、標准缺位,導致能夠開放的數據不開放,需要保護的隱私不保護,企業由於標准模糊而無法大膽創新。第四,「數據主權」容易受到侵蝕,由於數據空間是國家新的戰略維度,尚沒有完備的安全保障體系,再加上電腦、手機、晶元、伺服器、搜索引擎、操作系統、軟體等核心的數據「基礎設施」大量依賴進口,數據資產極易流失,數據主權極易受到侵蝕。

把握優勢,克服挑戰,抓住大數據革命帶來的「機會窗口」,建設數據強國,是實現中華民族偉大復興的一個有力支撐。然而,我們需要怎樣做才能更好地擁抱大數據時代,確保在數字化趨勢中立於不敗之地呢?首先,需要在國家頂層設計上有一個清晰的行動框架,包括由什麼部門主導、哪些部門參與、什麼樣的協作機制、沿著什麼優先次序、克服哪些既有的障礙、達到什麼戰略目標,只有這樣,各部門、各地區、企業界、學術界才能形成合力,在一個共同的路線圖上協作推進。其次,盤活數據資產,在數據開放上取得實質性突破。一些基本的建議包括:加快G2G(政府與政府之間)、G2B(政府與企業之間)、G2C(政府與公民之間)大數據開放與共享;推動基礎性、戰略性大數據資源庫整合;加強大數據基礎設施建設,編制國家大數據檔案。最後,把強大的「國家企業」和活躍的「萬眾創新」結合起來。一方面,要培育可以和國際「八大金剛」並駕齊驅的巨型企業作為大數據環境中競爭的中堅力量,同時,鼓勵和引導大眾創業、萬眾創新成為數據生態系統中的活躍力量。

以上是小編為大家分享的關於大數據 大變革、大機遇的相關內容,更多信息可以關注環球青藤分享更多干貨

閱讀全文

與曲強大數據相關的資料

熱點內容
有線電視升級失敗 瀏覽:560
火絨安全把文件刪掉了在哪裡找 瀏覽:503
手機qq網路狀態方框 瀏覽:225
哪裡有文件紙袋 瀏覽:873
復制的東西能不能粘貼到空文件夾 瀏覽:876
酒店沒有網路如何繳費 瀏覽:380
win10開機滾動很久 瀏覽:520
可對元數據實例進行的操作有什麼 瀏覽:934
什麼後綴的文件kit 瀏覽:295
word行書字體庫下載 瀏覽:579
iosuc版本歷史版本 瀏覽:14
電影字幕文件製作軟體 瀏覽:723
windows10免密碼登錄 瀏覽:762
iphone5s跑步記步 瀏覽:978
手機網站設計怎麼做好 瀏覽:322
中興路由器修改密碼 瀏覽:391
小米忘記壓縮文件密碼 瀏覽:716
cad哪些字體是形文件 瀏覽:2
word2007寶典pdf 瀏覽:46
lg電視如何連接網路 瀏覽:392

友情鏈接