❶ 大數據主要是做數據的匯總還有具體哪些領域呢
大數據(來big data),指無法在源一定時間范圍內用常規軟體工具進行捕捉、管理和處理的數據集合,是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。大數據的5V特點(IBM提出):Volume(大量)、Velocity(高速)、Variety(多樣)、Value(低價值密度)、Veracity(真實性),平台有hadoop
❷ 如何進行大數據分析及處理
提取有用信息和形成結論。
用適當的統計、分析方法對收集來的大量數據進行分析,將它們加以匯總和理解並消化,以求最大化地開發數據的功能,發揮數據的作用。數據分析為了提取有用信息和形成結論而對數據加以詳細研究和概括總結的過程。
要求在標題欄中註明各個量的名稱、符號、數量級和單位等:根據需要還可以列出除原始數據以外的計算欄目和統計欄目等。從圖線上可以簡便求出實驗需要的某些結果,還可以把某些復雜的函數關系,通過一定的變換用圖形表示出來。
(2)匯總和大數據擴展閱讀:
大數據分析及處理的相關要求規定:
1、以數據流引領技術流、物質流、資金流、人才流,將深刻影響社會分工協作的組織模式,促進生產組織方式的集約和創新。
2、大數據推動社會生產要素的網路化共享、集約化整合、協作化開發和高效化利用,改變了傳統的生產方式和經濟運行機制,可顯著提升經濟運行水平和效率。
3、大數據持續激發商業模式創新,不斷催生新業態,已成為互聯網等新興領域促進業務創新增值、提升企業核心價值的重要驅動力。大數據產業正在成為新的經濟增長點,將對未來信息產業格局產生重要影響。
❸ 2020北京車展匯總:大數據告訴你,消費者最喜歡什麼車
本屆北京車展已經接近尾聲了,無論是從網上還是從現場流量來說,此次的車展還是十分成功的,也為汽車愛好者提供了一場「色香味」俱全的饕餮盛宴。那麼,你最喜歡哪一款新車呢?歡迎留言區討論。
本文來源於汽車之家車家號作者,不代表汽車之家的觀點立場。
❹ 濡備綍榪涜屽ぇ鏁版嵁鍒嗘瀽鍙婂勭悊錛
1銆佺敤閫傚綋鐨勭粺璁°佸垎鏋愭柟娉曞規敹闆嗘潵鐨勫ぇ閲忔暟鎹榪涜屽垎鏋愶紝灝嗗畠浠鍔犱互奼囨誨拰鐞嗚В騫舵秷鍖栵紝浠ユ眰鏈澶у寲鍦板紑鍙戞暟鎹鐨勫姛鑳斤紝鍙戞尌鏁版嵁鐨勪綔鐢ㄣ傛暟鎹鍒嗘瀽涓轟簡鎻愬彇鏈夌敤淇℃伅鍜屽艦鎴愮粨璁鴻屽規暟鎹鍔犱互璇︾粏鐮旂┒鍜屾傛嫭鎬葷粨鐨勮繃紼嬨
2銆佸ぇ鏁版嵁鐨勯噰闆嗘槸鎸囧埄鐢ㄥ氫釜鏁版嵁搴撴潵鎺ユ敹鍙戣嚜瀹㈡埛絝錛圵eb銆丄pp鎴栬呬紶鎰熷櫒褰㈠紡絳夛級鐨勬暟鎹錛屽苟涓旂敤鎴峰彲浠ラ氳繃榪欎簺鏁版嵁搴撴潵榪涜岀畝鍗曠殑鏌ヨ㈠拰澶勭悊宸ヤ綔銆
3銆佷互渚誇粠涓鑾峰緱鏈夌敤鐨勪俊鎮錛涙暟鎹鍒嗘瀽錛氬埄鐢ㄥぇ鏁版嵁鍒嗘瀽宸ュ叿瀵規暟鎹榪涜屾寲鎺橈紝浠ヤ究鍙戠幇鏈夌敤鐨勪俊鎮鍜岃勫緥銆
4銆佸ぇ鏁版嵁澶勭悊涔嬪洓錛氬彂鎺樹富瑕佹槸鍦ㄧ幇鏈夋暟鎹涓婇潰榪涜屾牴鎹鍚勭嶇畻娉曠殑鏍哥畻錛岀劧鍚庤搗鍒伴勬祴(Predict)鐨勪綔鐢錛岀劧鍚庡疄鐜頒竴浜涢珮絳夌駭鏁版嵁鍓栨瀽鐨勯渶奼傘備富瑕佽繍鐢ㄧ殑宸ュ叿鏈塇adoop鐨凪ahout絳夈
5銆佸ぇ鏁版嵁澶勭悊鏁版嵁鐨勬柟娉曪細閫氳繃紼嬪簭瀵歸噰闆嗗埌鐨勫師濮嬫暟鎹榪涜岄勫勭悊錛屾瘮濡傛竻媧楋紝鏍煎紡鏁寸悊錛屾護闄よ剰鏁版嵁絳夛紝騫舵⒊鐞嗘垚鐐瑰嚮嫻佽屾ā鍨嬫暟鎹銆傚皢棰勫勭悊涔嬪悗鐨勬暟鎹瀵煎叆鍒版暟鎹搴撲腑鐩稿簲鐨勫簱鍜岃〃涓銆
6銆佸備綍榪涜屾湁鏁堢殑澶ф暟鎹澶勭悊銆佸垎鏋愯稿氫紒涓氭姇涓嬫暟鐧句竾緹庡厓鐢ㄤ簬澶ф暟鎹銆佸ぇ鏁版嵁鍒嗘瀽錛屽苟闆囩敤鏁版嵁鍒嗘瀽瀹訛紝浣嗗嵈鎰熷埌寰堝彈鎸銆傛棤鍙鍚﹁わ紝浠栦滑鐜板湪寰楀埌浜嗘洿澶氥佹洿濂界殑鏁版嵁銆備粬浠鐨勫垎鏋愬笀鍜屽垎鏋愭硶涔熸槸涓嫻佺殑銆
❺ excel中分類匯總怎麼用
❻ 大數據是什麼
作者:李麗
鏈接:https://www.hu.com/question/23896161/answer/28624675
來源:知乎
著作權歸作者所有。商業轉載請聯系作者獲得授權,非商業轉載請註明出處。
"大數據"是一個體量特別大,數據類別特別大的數據集,並且這樣的數據集無法用傳統資料庫工具對其內容進行抓取、管理和處理。 "大數據"首先是指數據體量(volumes)?大,指代大型數據集,一般在10TB?規模左右,但在實際應用中,很多企業用戶把多個數據集放在一起,已經形成了PB級的數據量;其次是指數據類別(variety)大,數據來自多種數據源,數據種類和格式日漸豐富,已沖破了以前所限定的結構化數據范疇,囊括了半結構化和非結構化數據。接著是數據處理速度(Velocity)快,在數據量非常龐大的情況下,也能夠做到數據的實時處理。最後一個特點是指數據真實性(Veracity)高,隨著社交數據、企業內容、交易與應用數據等新數據源的興趣,傳統數據源的局限被打破,企業愈發需要有效的信息之力以確保其真實性及安全性。
"大數據"是需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。從數據的類別上看,"大數據"指的是無法使用傳統流程或工具處理或分析的信息。它定義了那些超出正常處理范圍和大小、迫使用戶採用非傳統處理方法的數據集。
亞馬遜網路服務(AWS)、大數據科學家JohnRauser提到一個簡單的定義:大數據就是任何超過了一台計算機處理能力的龐大數據量。
研發小組對大數據的定義:"大數據是最大的宣傳技術、是最時髦的技術,當這種現象出現時,定義就變得很混亂。" Kelly說:"大數據是可能不包含所有的信息,但我覺得大部分是正確的。對大數據的一部分認知在於,它是如此之大,分析它需要多個工作負載,這是AWS的定義。當你的技術達到極限時,也就是數據的極限"。 大數據不是關於如何定義,最重要的是如何使用。最大的挑戰在於哪些技術能更好的使用數據以及大數據的應用情況如何。這與傳統的資料庫相比,開源的大數據分析工具的如Hadoop的崛起,這些非結構化的數據服務的價值在哪裡。
二、大數據分析
從所周知,大數據已經不簡簡單單是數據大的事實了,而最重要的現實是對大數據進行分析,只有通過分析才能獲取很多智能的,深入的,有價值的信息。那麼越來越多的應用涉及到大數據,而這些大數據的屬性,包括數量,速度,多樣性等等都是呈現了大數據不斷增長的復雜性,所以大數據的分析方法在大數據領域就顯得尤為重要,可以說是決定最終信息是否有價值的決定性因素。基於如此的認識,大數據分析普遍存在的方法理論有哪些呢?
1、可視化分析
大數據分析的使用者有大數據分析專家,同時還有普通用戶,但是他們二者對於大數據分析最基本的要求就是可視化分析,因為可視化分析能夠直觀的呈現大數據特點,同時能夠非常容易被讀者所接受,就如同看圖說話一樣簡單明了
2、數據挖掘演算法
大數據分析的理論核心就是數據挖掘演算法,各種數據挖掘的演算法基於不同的數據類型和格式才能更加科學的呈現出數據本身具備的特點,也正是因為這些被全世界統計學家所公認的各種統計方法(可以稱之為真理)才能深入數據內部,挖掘出公認的價值。另外一個方面也是因為有這些數據挖掘的演算法才能更快速的處理大數據,如果一個演算法得花上好幾年才能得出結論,那大數據的價值也就無從說起了。
3、預測性分析能力
大數據分析最終要的應用領域之一就是預測性分析,從大數據中挖掘出特點,通過科學的建立模型,之後便可以通過模型帶入新的數據,從而預測未來的數據。
4、數據質量和數據管理
大數據分析離不開數據質量和數據管理,高質量的數據和有效的數據管理,無論是在學術研究還是在商業應用領域,都能夠保證分析結果的真實和有價值。
大數據分析的基礎就是以上五個方面,當然更加深入大數據分析的話,還有很多很多更加有特點的、更加深入的、更加專業的大數據分析方法。
三、大數據技術
1、數據採集:ETL工具負責將分布的、異構數據源中的數據如關系數據、平面數據文件等抽取到臨時中間層後進行清洗、轉換、集成,最後載入到數據倉庫或數據集市中,成為聯機分析處理、數據挖掘的基礎。
2、數據存取:關系資料庫、NOSQL、SQL等。
3、基礎架構:雲存儲、分布式文件存儲等。
4、數據處理:自然語言處理(NLP,NaturalLanguageProcessing)是研究人與計算機交互的語言問題的一門學科。處理自然語言的關鍵是要讓計算機"理解"自然語言,所以自然語言處理又叫做自然語言理解(NLU,NaturalLanguage Understanding),也稱為計算語言學(Computational Linguistics。一方面它是語言信息處理的一個分支,另一方面它是人工智慧(AI, Artificial Intelligence)的核心課題之一。
5、統計分析:假設檢驗、顯著性檢驗、差異分析、相關分析、T檢驗、方差分析、卡方分析、偏相關分析、距離分析、回歸分析、簡單回歸分析、多元回歸分析、逐步回歸、回歸預測與殘差分析、嶺回歸、logistic回歸分析、曲線估計、因子分析、聚類分析、主成分分析、因子分析、快速聚類法與聚類法、判別分析、對應分析、多元對應分析(最優尺度分析)、bootstrap技術等等。
6、數據挖掘:分類
(Classification)、估計(Estimation)、預測(Prediction)、相關性分組或關聯規則(Affinity grouping or
association rules)、聚類(Clustering)、描述和可視化、Description and Visualization)、復雜數據類型挖掘(Text,
Web ,圖形圖像,視頻,音頻等)
7、模型預測:預測模型、機器學習、建模模擬。
8、結果呈現:雲計算、標簽雲、關系圖等。
四、大數據特點
要理解大數據這一概念,首先要從"大"入手,"大"是指數據規模,大數據一般指在10TB(1TB=1024GB)規模以上的數據量。大數據同過去的海量數據有所區別,其基本特徵可以用4個V來總結(Vol-ume、Variety、Value和Veloc-ity),即體量大、多樣性、價值密度低、速度快。
1、
數據體量巨大。從TB級別,躍升到PB級別。
2、
數據類型繁多,如前文提到的網路日誌、視頻、圖片、地理位置信息,等等。
3、
價值密度低。以視頻為例,連續不間斷監控過程中,可能有用的數據僅僅有一兩秒。
4、
處理速度快。1秒定律。最後這一點也是和傳統的數據挖掘技術有著本質的不同。物聯網、雲計算、移動互聯網、車聯網、手機、平板電腦、PC以及遍布地球各個角落的各種各樣的感測器,無一不是數據來源或者承載的方式。
大數據技術是指從各種各樣類型的巨量數據中,快速獲得有價值信息的技術。解決大數據問題的核心是大數據技術。目前所說的"大數據"不僅指數據本身的規模,也包括採集數據的工具、平台和數據分析系統。大數據研發目的是發展大數據技術並將其應用到相關領域,通過解決巨量數據處理問題促進其突破性發展。因此,大數據時代帶來的挑戰不僅體現在如何處理巨量數據從中獲取有價值的信息,也體現在如何加強大數據技術研發,搶占時代發展的前沿。
五、大數據處理
大數據處理之一:採集
大數據的採集是指利用多個資料庫來接收發自客戶端(Web、App或者感測器形式等)的數據,並且用戶可以通過這些資料庫來進行簡單的查詢和處理工作。比如,電商會使用傳統的關系型資料庫MySQL和Oracle等來存儲每一筆事務數據,除此之外,Redis和MongoDB這樣的NoSQL資料庫也常用於數據的採集。
在大數據的採集過程中,其主要特點和挑戰是並發數高,因為同時有可能會有成千上萬的用戶來進行訪問和操作,比如火車票售票網站和淘寶,它們並發的訪問量在峰值時達到上百萬,所以需要在採集端部署大量資料庫才能支撐。並且如何在這些資料庫之間進行負載均衡和分片的確是需要深入的思考和設計。
大數據處理之二:導入/預處理
雖然採集端本身會有很多資料庫,但是如果要對這些海量數據進行有效的分析,還是應該將這些來自前端的數據導入到一個集中的大型分布式資料庫,或者分布式存儲集群,並且可以在導入基礎上做一些簡單的清洗和預處理工作。也有一些用戶會在導入時使用來自Twitter的Storm來對數據進行流式計算,來滿足部分業務的實時計算需求。
導入與預處理過程的特點和挑戰主要是導入的數據量大,每秒鍾的導入量經常會達到百兆,甚至千兆級別。
大數據處理之三:統計/分析
統計與分析主要利用分布式資料庫,或者分布式計算集群來對存儲於其內的海量數據進行普通的分析和分類匯總等,以滿足大多數常見的分析需求,在這方面,一些實時性需求會用到EMC的GreenPlum、Oracle的Exadata,以及基於MySQL的列式存儲Infobright等,而一些批處理,或者基於半結構化數據的需求可以使用Hadoop。
統計與分析這部分的主要特點和挑戰是分析涉及的數據量大,其對系統資源,特別是I/O會有極大的佔用。
大數據處理之四:挖掘
與前面統計和分析過程不同的是,數據挖掘一般沒有什麼預先設定好的主題,主要是在現有數據上面進行基於各種演算法的計算,從而起到預測(Predict)的效果,從而實現一些高級別數據分析的需求。比較典型演算法有用於聚類的Kmeans、用於統計學習的SVM和用於分類的NaiveBayes,主要使用的工具有Hadoop的Mahout等。該過程的特點和挑戰主要是用於挖掘的演算法很復雜,並且計算涉及的數據量和計算量都很大,常用數據挖掘演算法都以單線程為主。
整個大數據處理的普遍流程至少應該滿足這四個方面的步驟,才能算得上是一個比較完整的大數據處理
六、大數據應用與案例分析
大數據應用的關鍵,也是其必要條件,就在於"IT"與"經營"的融合,當然,這里的經營的內涵可以非常廣泛,小至一個零售門店的經營,大至一個城市的經營。以下是關於各行各業,不同的組織機構在大數據方面的應用的案例,在此申明,以下案例均來源於網路,本文僅作引用,並在此基礎上作簡單的梳理和分類。
大數據應用案例之:醫療行業
[1] Seton Healthcare是採用IBM最新沃森技術醫療保健內容分析預測的首個客戶。該技術允許企業找到大量病人相關的臨床醫療信息,通過大數據處理,更好地分析病人的信息。
[2] 在加拿大多倫多的一家醫院,針對早產嬰兒,每秒鍾有超過3000次的數據讀取。通過這些數據分析,醫院能夠提前知道哪些早產兒出現問題並且有針對性地採取措施,避免早產嬰兒夭折。
[3] 它讓更多的創業者更方便地開發產品,比如通過社交網路來收集數據的健康類App。也許未來數年後,它們搜集的數據能讓醫生給你的診斷變得更為精確,比方說不是通用的成人每日三次一次一片,而是檢測到你的血液中葯劑已經代謝完成會自動提醒你再次服葯。
大數據應用案例之:能源行業
[1] 智能電網現在歐洲已經做到了終端,也就是所謂的智能電表。在德國,為了鼓勵利用太陽能,會在家庭安裝太陽能,除了賣電給你,當你的太陽能有多餘電的時候還可以買回來。通過電網收集每隔五分鍾或十分鍾收集一次數據,收集來的這些數據可以用來預測客戶的用電習慣等,從而推斷出在未來2~3個月時間里,整個電網大概需要多少電。有了這個預測後,就可以向發電或者供電企業購買一定數量的電。因為電有點像期貨一樣,如果提前買就會比較便宜,買現貨就比較貴。通過這個預測後,可以降低采購成本。
[2] 維斯塔斯風力系統,依靠的是BigInsights軟體和IBM超級計算機,然後對氣象數據進行分析,找出安裝風力渦輪機和整個風電場最佳的地點。利用大數據,以往需要數周的分析工作,現在僅需要不足1小時便可完成。
大數據應用案例之:通信行業
[1] XO Communications通過使用IBM SPSS預測分析軟體,減少了將近一半的客戶流失率。XO現在可以預測客戶的行為,發現行為趨勢,並找出存在缺陷的環節,從而幫助公司及時採取措施,保留客戶。此外,IBM新的Netezza網路分析加速器,將通過提供單個端到端網路、服務、客戶分析視圖的可擴展平台,幫助通信企業制定更科學、合理決策。
[2] 電信業者透過數以千萬計的客戶資料,能分析出多種使用者行為和趨勢,賣給需要的企業,這是全新的資料經濟。
[3] 中國移動通過大數據分析,對企業運營的全業務進行針對性的監控、預警、跟蹤。系統在第一時間自動捕捉市場變化,再以最快捷的方式推送給指定負責人,使他在最短時間內獲知市場行情。
[4] NTT docomo把手機位置信息和互聯網上的信息結合起來,為顧客提供附近的餐飲店信息,接近末班車時間時,提供末班車信息服務。
❼ 有誰知道大數據指的是什麼
大數據(big data),或稱巨量資料,指的是所涉及的資料量規模巨大到無法通過目前主流軟體工具,在合理時間內達到擷取、管理、處理、並整理成為幫助企業經營決策更積極目的的資訊。(在維克托·邁爾-舍恩伯格及肯尼斯·庫克耶編寫的《大數據時代》中大數據指不用隨機分析法(抽樣調查)這樣的捷徑,而採用所有數據的方法[2])大數據的4V特點:Volume(大量)、Velocity(高速)、Variety(多樣)、Value(價值)。
說起大數據,就要說到商業智能:
商業智能(Business Intelligence,簡稱:BI),又稱商業智慧或商務智能,指用現代數據倉庫技術、線上分析處理技術、數據挖掘和數據展現技術進行數據分析以實現商業價值。
商業智能作為一個工具,是用來處理企業中現有數據,並將其轉換成知識、分析和結論,輔助業務或者決策者做出正確且明智的決定。是幫助企業更好地利用數據提高決策質量的技術,包含了從數據倉庫到分析型系統等。
商務智能的產生發展
商業智能的概念經由Howard Dresner(1989年)的通俗化而被人們廣泛了解。當時將商業智能定義為一類由數據倉庫(或數據集市)、查詢報表、數據分析、數據挖掘、數據備份和恢復等部分組成的、以幫助企業決策為目的技術及其應用。
商務智能是20世紀90年代末首先在國外企業界出現的一個術語,其代表為提高企業運營性能而採用的一系列方法、技術和軟體。它把先進的信息技術應用到整個企業,不僅為企業提供信息獲取能力,而且通過對信息的開發,將其轉變為企業的競爭優勢,也有人稱之為混沌世界中的智能。因此,越來越多的企業提出他們對BI的需求,把BI作為一種幫助企業達到經營目標的一種有效手段。
目前,商業智能通常被理解為將企業中現有的數據轉化為知識,幫助企業做出明智的業務經營決策的工具。這里所談的數據包括來自企業業務系統的訂單、庫存、交易賬目、客戶和供應商資料及來自企業所處行業和競爭對手的數據,以及來自企業所處的其他外部環境中的各種數據。而商業智能能夠輔助的業務經營決策既可以是作業層的,也可以是管理層和策略層的決策。
為了將數據轉化為知識,需要利用數據倉庫、線上分析處理(OLAP)工具和數據挖掘等技術。因此,從技術層面上講,商業智能不是什麼新技術,它只是ETL、數據倉庫、OLAP、數據挖掘、數據展現等技術的綜合運用。
把商業智能看成是一種解決方案應該比較恰當。商業智能的關鍵是從許多來自不同的企業運作系統的數據中提取出有用的數據並進行清理,以保證數據的正確性,然後經過抽取(Extraction)、轉換(Transformation)和裝載(Load),即ETL過程,合並到一個企業級的數據倉庫里,從而得到企業數據的一個全局視圖,在此基礎上利用合適的查詢和分析工具、數據挖掘工具、OLAP工具等對其進行分析和處理(這時信息變為輔助決策的知識),最後將知識呈現給管理者,為管理者的決策過程提供支持。
企業導入BI的優點
1.隨機查詢動態報表
2.掌握指標管理
3.隨時線上分析處理
4.視覺化之企業儀表版
5.協助預測規劃
導入BI的目的
1.促進企業決策流程(Facilitate the Business Decision-Making Process):BIS增進企業的資訊整合與資訊分析的能力,匯總公司內、外部的資料,整合成有效的決策資訊,讓企業經理人大幅增進決策效率與改善決策品質。
2.降低整體營運成本(Power the Bottom Line):BIS改善企業的資訊取得能力,大幅降低IT人員撰寫程式、Poweruser製作報表的時間與人力成本,而彈性的模組設計介面,完全不需撰寫程式的特色也讓日後的維護成本大幅降低。
3.協同組織目標與行動(Achieve a Fully Coordinated Organization):BIS加強企業的資訊傳播能力,消除資訊需求者與IT人員之間的認知差距,並可讓更多人獲得更有意義的資訊。全面改善企業之體質,使組織內的每個人目標一致、齊心協力。
商業智能領域的技術應用
商業智能的技術體系主要有數據倉庫(Data Warehouse,DW)、聯機分析處理(OLAP)以及數據挖掘(Data Mining,DM)三部分組成。
數據倉庫是商業智能的基礎,許多基本報表可以由此生成,但它更大的用處是作為進一步分析的數據源。所謂數據倉庫(DW)就是面向主題的、集成的、穩定的、不同時間的數據集合,用以支持經營管理中的決策制定過程。多維分析和數據挖掘是最常聽到的例子,數據倉庫能供給它們所需要的、整齊一致的數據。
在線分析處理(OLAP)技術則幫助分析人員、管理人員從多種角度把從原始數據中轉化出來、能夠真正為用戶所理解的、並真實反映數據維特性的信息,進行快速、一致、交互地訪問,從而獲得對數據的更深入了解的一類軟體技術。
數據挖掘(DM)是一種決策支持過程,它主要基於AI、機器學習、統計學等技術,高度自動化地分析企業原有的數據,做出歸納性的推理,從中挖掘出潛在的模式,預測客戶的行為,幫助企業的決策者調整市場策略,減少風險,做出正確的決策。
商業智能的應用范圍
1.采購管理
2.財務管理
3.人力資源管理
4.客戶服務
5.配銷管理
6.生產管理
7.銷售管理
8.行銷管理
商業智能實施步驟
商業智能系統處理流程[1]
商業智能(BI)作為一個概念,描述與業務緊密結合,並且根據需要進行相關特性展示和數據處理的過程。
為了讓數據「活」起來,往往需要利用數據倉庫、數據挖掘、報表設計與展示、聯機在線分析(OLAP)等技術。數據或者數據源包含的種類繁多,例如存儲在關系型資料庫中的,在外圍數據文件中的,在業務流中實時產生存儲在內存中的等等。而商業智能最終能夠輔助的業務經營決策,既可以是操作層的,也可以是戰術層和戰略層的決策。
這些分析有財務管理、點擊流分析(Clickstream)、供應鏈管理、關鍵績效指標(Key Performance Indicators, KPI)、客戶分析等。商業智能關注的是,從各種渠道(軟體,系統,人,等等)發掘可執行的戰略信息。商業智能用的工具有抽取(Extraction)、轉換(Transformation)和載入(Load)軟體(搜集數據,建立標準的數據結構,然後把這些數據存在另外的資料庫中)、數據挖掘和在線分析(Online Analytical Processing,允許用戶容易地從多個角度選取和察看數據)等 。
商業智能系統的功能
商業智能系統應具有的主要功能:
數據倉庫:高效的數據存儲和訪問方式。提供結構化和非結構化的數據存儲,容量大,運行穩定,維護成本低,支持元數據管理,支持多種結構,例如中心式數據倉庫,分布式數據倉庫等。存儲介質能夠支持近線式和二級存儲器。能夠很好的支持現階段容災和備份方案。
數據ETL:數據ETL支持多平台、多數據存儲格式(多數據源,多格式數據文件,多維資料庫等)的數據組織,要求能自動化根據描述或者規則進行數據查找和理解。減少海量、復雜數據與全局決策數據之間的差距。幫助形成支撐決策要求的參考內容。
數據統計輸出(報表):報表能快速的完成數據統計的設計和展示,其中包括了統計數據表樣式和統計圖展示,可以很好的輸出給其他應用程序或者Html形式表現和保存。對於自定義設計部分要提供簡單易用的設計方案,支持靈活的數據填報和針對非技術人員設計的解決方案。能自動化完成輸出內容的發布。
分析功能:可以通過業務規則形成分析內容,並且展示樣式豐富,具有一定的交互要求,例如預警或者趨勢分析等。要支持多維度的聯機在線分析(OLAP分析),實現維度變化、旋轉、數據切片和數據鑽取等。幫助決策做出正確的判斷。
典型的商業智能系統
典型的商業智能系統有:
客戶分析系統、菜籃分析系統、反洗錢系統、反詐騙系統、客戶聯絡分析系統、市場細分系統、信用計分系統、產品收益系統、庫存運作系統以及與商業風險相關的應用系統等。
[編輯]商業智能解決方案廠商
提供商業智能解決方案的著名IT廠商包括微軟、IBM、Oracle、Microstrategy、Business Objects、Cognos、SAS等
最後,希望你關注一下FineBI,帆軟軟體的大數據解決方案,我看了,還是很不錯的
❽ 大數據要產生價值,必須要經過收集,匯總,保存,管理,分析等環節
大數據技術的戰略意義不在於掌握龐大的數據信息,而在於對這些含有意義的回數據進行專業化處理。答換言之,如果把大數據比作一種產業,那麼這種產業實現盈利的關鍵,在於提高對數據的「加工能力」,通過「加工」實現數據的「增值」。
大數據處理關鍵技術一般包括:大數據採集、大數據預處理、大數據存儲及管理、大數據分析及挖掘、大數據展現和應用(大數據檢索、大數據可視化、大數據應用等)。
❾ 什麼是大數據,大數據有什麼特點
大數據具有4v特點,即volume(大量)、velocity(高速)、variety(多樣)和veracity(精確),其核心在於對這些含有意義的數據進行專業化處理。比如微碼鄧白氏通過數據分析發現采購a產品的用戶80%也會要同時采購b產品,而采購周期大約是3個月,這樣就可以每三個月來向采購a產品的客戶推送一次信息,推送的時候除了a產品的信息也同時推送b的信息。