『壹』 大數據發展面臨的挑戰是什麼
現在大數據是世界都關注的事情,這是因為大數據能夠幫助人們做很多的事情,大數據的發展也是很多國家重視的地方,當然,我國也不例外。我國對大數據還是比較重視的,現在我國的大數據產業發展已經有了一定的基礎,但是我們還不能放鬆,還需要努力,這是因為我國的數據產業還面臨著眾多的挑戰,在這篇文章中我們就給大家詳細介紹一下大數據發展面臨的挑戰,希望這篇文章能夠更好地幫助大家理解大數據知識。
我國發展大數據產業是一定要向數據強國轉變,現在我國只能說是個數據大國,但是要實現從「數據大國」向「數據強國」轉變,還面臨諸多挑戰。具體面臨的挑戰有五個。
第一個挑戰就是對數據資源及其價值的認識不足。這是因為全社會尚未形成對大數據客觀、科學的認識,對數據資源及其在人類生產、生活和社會管理方面的價值利用認識不足,存在盲目追逐硬體設施投資、輕視數據資源積累和價值挖掘利用等現象。所以說這是我國大數據長期內最大的挑戰,但也是比較容易實現的目標。
第二個挑戰就是技術創新與支撐能力不夠。這主要是因為大數據需要從底層晶元到基礎軟體再到應用分析軟體等信息產業全產業鏈的支撐,無論是新型計算平台、分布式計算架構,還是大數據處理、分析和呈現方面與國外均存在較大差距,對開源技術和相關生態系統的影響力仍然較弱,總體上難以滿足各行各業大數據應用需求。而這是大數據短期內最大的挑戰。
第三個挑戰就是數據資源建設和應用水平不高。這是因為用戶普遍不重視數據資源的建設,即使有數據意識的機構也大多隻重視數據的簡單存儲,很少針對後續應用需求進行加工整理。而且數據資源普遍存在質量差,標准規范缺乏,管理能力弱等現象。在很多跨部門、跨行業的數據共享仍不順暢,有價值的公共信息資源和商業數據開放程度低。數據價值難以被有效挖掘利用,所以說,大數據應用整體上處於起步階段,潛力遠未釋放。
第四個挑戰就是信息安全和數據管理體系尚未建立。數據所有權、隱私權等相關法律法規和信息安全、開放共享等標准規范缺乏,技術安全防範和管理能力不夠,尚未建立起兼顧安全與發展的數據開放、管理和信息安全保障體系。
第五個挑戰就是人才隊伍建設還需加強。就目前而言,我國的綜合掌握數學、統計學、計算機等相關學科及應用領域知識的綜合性數據科學人才缺乏,遠不能滿足發展需要,尤其是缺乏既熟悉行業業務需求,又掌握大數據技術與管理的綜合型人才。
我們在這篇文章中給大家介紹了我國大數據發展需要面臨的挑戰,通過這些內容我們不難發現我國要想成為數據強國還有很長的路要走。所以說,我國從數據大國轉變為數據強國還需要我們共同的努力。
『貳』 在互聯網+及大數據時代,組織及管理者面臨著哪些新的挑戰和機遇
大數據泛指巨量的數據集,因可從中挖掘出有價值的信息而受到重視。《華爾街日報》將大數據時代、智能化生產和無線網路革命稱為引領未來繁榮的三大技術變革。有報告指出數據是一種生產資料,大數據是下一個創新、競爭、生產力提高的前沿。世界經濟論壇的報告認定大數據為新財富,價值堪比石油。因此,發達國家紛紛將開發利用大數據作為奪取新一輪競爭制高點的重要抓手。
大數據時代的來臨
互聯網特別是移動互聯網的發展,加快了信息化向社會經濟各方面、大眾日常生活的滲透。有資料顯示,1998年全球網民平均每月使用流量是1MB(兆位元組),2000年是10MB,2003年是100MB,2008年是1GB(1GB等於1024MB),2014年將是10GB。全網流量累計達到1EB(即10億GB或1000PB)的時間在2001年是一年,在2004年是一個月,在2007年是一周,而2013年僅需一天,即一天產生的信息量可刻滿1.88億張DVD光碟。我國網民數居世界之首,每天產生的數據量也位於世界前列。淘寶網站每天有超過數千萬筆交易,單日數據產生量超過50TB(1TB等於1000GB),存儲量40PB(1PB等於1000TB)。網路公司目前數據總量接近1000PB,存儲網頁數量接近1萬億頁,每天大約要處理60億次搜索請求,幾十PB數據。一個8Mbps(兆比特每秒)的攝像頭一小時能產生3.6GB數據,一個城市若安裝幾十萬個交通和安防攝像頭,每月產生的數據量將達幾十PB。醫院也是數據產生集中的地方。現在,一個病人的CT影像數據量達幾十GB,而全國每年門診人數以數十億計,並且他們的信息需要長時間保存。總之,大數據存在於各行各業,一個大數據時代正在到來。
信息爆炸不自今日起,但近年來人們更加感受到大數據的來勢迅猛。一方面,網民數量不斷增加,另一方面,以物聯網和家電為代表的聯網設備數量增長更快。2007年全球有5億個設備聯網,人均0.1個;2013年全球將有500億個設備聯網,人均70個。隨著寬頻化的發展,人均網路接入帶寬和流量也迅速提升。全球新產生數據年增40%,即信息總量每兩年就可以翻番,這一趨勢還將持續。目前,單一數據集容量超過幾十TB甚至數PB已不罕見,其規模大到無法在容許的時間內用常規軟體工具對其內容進行抓取、管理和處理。
數據規模越大,處理的難度也越大,但對其進行挖掘可能得到的價值更大,這就是大數據熱的原因。首先,大數據反映輿情和民意。網民在網上產生的海量數據,記錄著他們的思想、行為乃至情感,這是信息時代現實社會與網路空間深度融合的產物,蘊含著豐富的內涵和很多規律性信息。根據中國互聯網路信息中心統計,2012年底我國網民數為5.64億,手機網民為4.2億,通過分析相關數據,可以了解大眾需求、訴求和意見。其次,企業和政府的信息系統每天源源不斷產生大量數據。根據一個公司的調研報告,全球企業的信息存儲總量已達2.2ZB(1ZB等於1000EB),年增67%。醫院、學校和銀行等也都會收集和存儲大量信息。政府可以部署感測器等感知單元,收集環境和社會管理所需的信息。2011年,英國《自然》雜志曾出版專刊指出,倘若能夠更有效地組織和使用大數據,人類將得到更多的機會發揮科學技術對社會發展的巨大推動作用。
大數據應用的領域
大數據技術可運用到各行各業。宏觀經濟方面,IBM日本公司建立經濟指標預測系統,從互聯網新聞中搜索影響製造業的480項經濟數據,計算采購經理人指數的預測值。印第安納大學利用谷歌公司提供的心情分析工具,從近千萬條網民留言中歸納出六種心情,進而對道瓊斯工業指數的變化進行預測,准確率達到87%。製造業方面,華爾街對沖基金依據購物網站的顧客評論,分析企業產品銷售狀況;一些企業利用大數據分析實現對采購和合理庫存量的管理,通過分析網上數據了解客戶需求、掌握市場動向。有資料顯示,全球零售商因盲目進貨導致的銷售損失每年達1000億美元,這方面的數據分析大有作為。
在農業領域,矽谷有個氣候公司,從美國氣象局等資料庫中獲得幾十年的天氣數據,將各地降雨、氣溫、土壤狀況與歷年農作物產量的相關度做成精密圖表,預測農場來年產量,向農戶出售個性化保險。在商業領域,沃爾瑪公司通過分析銷售數據,了解顧客購物習慣,得出適合搭配在一起出售的商品,還可從中細分顧客群體,提供個性化服務。在金融領域,華爾街「德溫特資本市場」公司分析3.4億微博賬戶留言,判斷民眾情緒,依據人們高興時買股票、焦慮時拋售股票的規律,決定公司股票的買入或賣出。阿里公司根據在淘寶網上中小企業的交易狀況篩選出財務健康和講究誠信的企業,對他們發放無需擔保的貸款。目前已放貸300多億元,壞賬率僅0.3%。
在醫療保健領域,「谷歌流感趨勢」項目依據網民搜索內容分析全球范圍內流感等病疫傳播狀況,與美國疾病控制和預防中心提供的報告對比,追蹤疾病的精確率達到97%。社交網路為許多慢性病患者提供臨床症狀交流和診治經驗分享平台,醫生藉此可獲得在醫院通常得不到的臨床效果統計數據。基於對人體基因的大數據分析,可以實現對症下葯的個性化治療。在社會安全管理領域,通過對手機數據的挖掘,可以分析實時動態的流動人口來源、出行,實時交通客流信息及擁堵情況。利用簡訊、微博、微信和搜索引擎,可以收集熱點事件,挖掘輿情,還可以追蹤造謠信息的源頭。美國麻省理工學院通過對十萬多人手機的通話、簡訊和空間位置等信息進行處理,提取人們行為的時空規律性,進行犯罪預測。在科學研究領域,基於密集數據分析的科學發現成為繼實驗科學、理論科學和計算科學之後的第四個範例,基於大數據分析的材料基因組學和合成生物學等正在興起。
報告推測,如果把大數據用於美國的醫療保健,一年產生潛在價值3000億美元,用於歐洲的公共管理可獲得年度潛在價值2500億歐元;服務提供商利用個人位置數據可獲得潛在的消費者年度盈餘6000億美元;利用大數據分析,零售商可增加運營利潤60%,製造業設備裝配成本會減少50%。
大數據技術的挑戰和啟示
目前,大數據技術的運用仍存在一些困難與挑戰,體現在大數據挖掘的四個環節中。首先在數據收集方面。要對來自網路包括物聯網和機構信息系統的數據附上時空標志,去偽存真,盡可能收集異源甚至是異構的數據,必要時還可與歷史數據對照,多角度驗證數據的全面性和可信性。其次是數據存儲。要達到低成本、低能耗、高可靠性目標,通常要用到冗餘配置、分布化和雲計算技術,在存儲時要按照一定規則對數據進行分類,通過過濾和去重,減少存儲量,同時加入便於日後檢索的標簽。第三是數據處理。有些行業的數據涉及上百個參數,其復雜性不僅體現在數據樣本本身,更體現在多源異構、多實體和多空間之間的交互動態性,難以用傳統的方法描述與度量,處理的復雜度很大,需要將高維圖像等多媒體數據降維後度量與處理,利用上下文關聯進行語義分析,從大量動態而且可能是模稜兩可的數據中綜合信息,並導出可理解的內容。第四是結果的可視化呈現,使結果更直觀以便於洞察。目前,盡管計算機智能化有了很大進步,但還只能針對小規模、有結構或類結構的數據進行分析,談不上深層次的數據挖掘,現有的數據挖掘演算法在不同行業中難以通用。
大數據技術的運用前景是十分光明的。當前,我國正處在全面建成小康社會征程中,工業化、信息化、城鎮化、農業現代化任務很重,建設下一代信息基礎設施,發展現代信息技術產業體系,健全信息安全保障體系,推進信息網路技術廣泛運用,是實現四化同步發展的保證。大數據分析對我們深刻領會世情和國情,把握規律,實現科學發展,做出科學決策具有重要意義,我們必須重新認識數據的重要價值。
為了開發大數據這一金礦,我們要做的工作還很多。首先,大數據分析需要有大數據的技術與產品支持。發達國家一些信息技術(IT)企業已提前發力,通過加大開發力度和兼並等多種手段,努力向成為大數據解決方案提供商轉型。國外一些企業打出免費承接大數據分析的招牌,既是為了練兵,也是為了獲取情報。過分依賴國外的大數據分析技術與平台,難以迴避信息泄密風險。有些日常生活信息看似無關緊要,其實從中也可摸到國家經濟和社會脈搏。因此,我們需要有自主可控的大數據技術與產品。美國政府2012年3月發布《大數據研究與發展倡議》,這是繼1993年宣布「信息高速公路」之後又一重大科技部署,聯邦政府和一些部委已安排資金用於大數據開發。我們與發達國家有不少差距,更需要國家政策支持。
中國人口居世界首位,將會成為產生數據量最多的國家,但我們對數據保存不夠重視,對存儲數據的利用率也不高。此外,我國一些部門和機構擁有大量數據卻不願與其他部門共享,導致信息不完整或重復投資。政府應通過體制機制改革打破數據割據與封鎖,應注重公開信息,應重視數據挖掘。美國聯邦政府建立統一數據開放門戶網站,為社會提供信息服務並鼓勵挖掘與利用。例如,提供各地天氣與航班延誤的關系,推動航空公司提升正點率。
大數據的挖掘與利用應當有法可依。去年底全國人大通過的加強網路信息保護的決定是一個好的開始,當前要盡快制定「信息公開法」以適應大數據時代的到來。現在很多機構和企業擁有大量客戶信息。應當既鼓勵面向群體、服務社會的數據挖掘,又要防止侵犯個體隱私;既提倡數據共享,又要防止數據被濫用。此外,還需要界定數據挖掘、利用的許可權和范圍。大數據系統本身的安全性也是值得特別關注的,要注意技術安全性和管理制度安全性並重,防止信息被損壞、篡改、泄露或被竊,保護公民和國家的信息安全。
大數據時代呼喚創新型人才。預測大數據將為全球帶來440萬個IT新崗位和上千萬個非IT崗位。預測美國到2018年需要深度數據分析人才44萬—49萬,缺口14萬—19萬人;需要既熟悉本單位需求又了解大數據技術與應用的管理者150萬,這方面的人才缺口更大。中國是人才大國,但能理解與應用大數據的創新人才更是稀缺資源。
大數據是新一代信息技術的集中反映,是一個應用驅動性很強的服務領域,是具有無窮潛力的新興產業領域;目前,其標准和產業格局尚未形成,這是我國實現跨越式發展的寶貴機會。我們要從戰略上重視大數據的開發利用,將它作為轉變經濟增長方式的有效抓手,但要注意科學規劃,切忌一哄而上。
『叄』 如何應對大數據的挑戰
合理獲取數據,存儲應需而變,篩選和分析大數據,理性面對大數據的誘惑,雲計算和大數據相輔相成,處理好非結構化數據,與硬體保持距離,提高大數據的可視化,安全防範必不可少。
『肆』 互聯網時代政府治理面臨什麼新挑戰
互聯網時代,政府治理的特徵事實正在發生深刻變革。與工業時代的傳統政府治理習慣以部門為中心來解決問題、各部門獨立辦事的行政模式不同,互聯網時代的政府治理模式必須與大數據、時效性等緊密結合。
互聯網時代政府治理的特徵
政府治理對象的雙重性
個人既是公民也可能是網民,組織既是實體的也可能是虛擬的,社會形態隨之分化為現實社會和網路社會。
政府治理的精細化和精準化
利用大數據技術,對這些數據進行深度挖掘和關聯處理,能夠准確識別個人、組織、社群的行為特性和活動規律。政府作為「權威的一般性履行」的主體,可以制定並實施「量身定製」的公共政策,從而實現政府治理的精細化和精準化。
政府治理的多中心性和參與性
政府治理的多中心性和參與性。伴隨著互聯網的加速普及,很多人通過互聯網行使知情權、參與權、表達權和監督權,越來越多的政府部門意識到需要運用視頻訪談、社區論壇、微博、微信等新的網路渠道與民眾直接溝通,廣泛聽取各方面的意見建議。
互聯網時代政府治理面臨的新挑戰
互聯網重構了個人、組織、社會與國家之間的關系,顛覆了傳統的治理模式和方式,給政府治理帶來了無法迴避的挑戰。這些挑戰包括:
時效性
互聯網擴大了政府治理的邊界,要求政府對公眾需求作出即時或瞬時回應。互聯網不受時間和空間的束縛,按照7×24×365(7個工作日、24小時、一年365天)的時間維度運行,人們在任何時間、任何地點都可以表達訴求和期待,甚至可以發泄不滿和抗議。他們隨時隨地將自己的所見所聞發布於網路。那些可能讓公眾感同身受的信息,依託互聯網傳播的放大效應引發強烈的社會共鳴,從而要求政府部門及時作出回應。如果政府部門仍然墨守繁文縟節、久拖不決等陳規,或者抱有「事不關己、多一事不如少一事」的心態,最終就有可能導致事態的演變超出各方當事人的預期。
復雜性
互聯網的普及喚醒了人們的權利意識,相應地增加了政府治理的難度。比如在個人信息泄露及其所對應的個人隱私保護方面,根據中國消費者協會2015年3月發布的《2014年度消費者個人信息網路安全報告》,約三分之二的受訪消費者在過去一年裡曾遭遇過個人信息被泄露或被竊取。對此,受訪消費者普遍認為政府部門應該承擔相關責任。
信息不對稱性
海量數據催生了信息冗餘,信息冗餘並不意味著能夠消除信息不對稱,相反,信息越充裕,信息處理成本就越高,信息不對稱性問題往往也就越凸顯。在這種情況下,政府需要配置更多的資源去篩選和處理各類數據,以甄別公共政策制定過程中的條件變數和約束變數。
隨機因素干擾
政府治理面臨的隨機因素不斷增加,放大了治理機制缺失的弊端,進而嚴重影響了公共政策和政府的權威性。互聯網所構建的開放環境一般是在「匿名」狀態下運行的,其本身無法排除魚龍混雜、泥沙俱下的不良和不實信息,這使得政府治理面臨著很多隨機因素。如果不能及時澄清並清除這些隨機因素,很可能會釀成事端。
身份認同危機
近年來,中國的數字鴻溝一直呈擴大趨勢。中國城鄉間、地區間等的數字鴻溝,正逐步表現為寬頻鴻溝、應用鴻溝、技能鴻溝以及知識鴻溝,以至其所可能引發的身份認同危機,會嚴重影響治理的公平性和包容性,從而使經濟社會發展產生不可逆轉的「馬太效應」,影響政府治理的效果。
互聯網時代政府治理新思維——三個「必須認識到」
首先,必須認識到互聯網是一個廣泛的利益相關者平等參與的平台。互聯網就如同一個政策對話場和治理論壇,人們可以直接表達自己的訴求和不滿。而且更為重要的是,互聯網為政府提供了聽取社情民意的直接渠道。中國政府網開設的「我向總理說句話」的常設窗口,從2014年3月到2015年2月27日共收到超過12萬條網民留言,其中很多建議成為政府制定公共政策依據和民意基礎。
其次,必須認識到互聯網是一個多中心的、具有自組織功能的社會化網路。多中心特性就意味著無論是言論還是權威都帶有「去中心」「碎片化」和「去行政化」的色彩,公信力必須建立在整個社會話語和共識的基礎上,因而政府治理必須與多中心密切互動。同時,行為當事人的話語往往更加能夠引發社會共鳴和共振,因此,互聯網時代的政府治理,有了自主治理、協商治理和闡釋治理等多元趨向。
最後,必須認識到互聯網所及之處就是治理所及之處。隨著移動互聯網、雲計算等新興信息通信技術的創新應用,網路幾乎覆蓋了物理世界的各個角落,基於大數據的分析,基本上描繪了經濟社會運行的一幅全息圖。
互聯網的出現,促進了公眾對公共產品和服務的期望值的提升,不斷對政府治理提出了新的要求。在全球范圍內,面向互聯網時代的政府治理轉型正在逐步展開。人們往往認為,互聯網所帶來的未知因素遠遠多於已知因素,而實際上,互聯網真正帶來的是探索未知因素的無窮可能性。我們既不能將現實社會的治理困境和尷尬歸咎於互聯網,也不能對互聯網所「賦予」的效率抱以幻想,畢竟互聯網治理是政府治理的重要組成部分,互聯網本身也是政府治理的重要對象。
互聯網時代的政府治理創新永無止境。
(作者系北京師范大學政府管理學院教授、博導)
『伍』 我國大數據戰略實施面臨的五大挑戰
我國大數據戰略實施面臨的五大挑戰
一、我國實施國家大數據戰略的新成效
近幾年,在國家政策支持下,我國大數據戰略取得多方面成效:
一是產業集聚效應初步顯現。國家八個大數據綜合實驗區建設促進了具有地方特色產業集聚。京津冀和珠三角跨區綜合試驗區,注重數據要素流通;上海、重慶、河南和沈陽試驗區,注重數據資源統籌和產業集聚;內蒙的基礎設施統籌發展,充分發揮能源、氣候等條件,加快實現大數據跨越發展。
二是新業態新模式不斷涌現。我國在大數據應用方面位於世界前列,特別是在服務業領域,如基於大數據的互聯網金融及精準營銷迅速普及;在智慧物流交通領域,通過為貨主、乘客與司機提供實時數據匹配,提升了物流交通效率。
三是與傳統產業融合步伐加快。鐵路、電力和製造業等加快了運用信息技術和大數據的步伐。高鐵推出「高鐵線上訂餐」等服務,提升了乘客體驗。電力企業推廣智能電表,提高了企業利潤。三一重工、航天科工、海爾等一批企業將自身積累的智能製造能力,向廣大中小企業輸出解決方案,著手建設工業互聯網平台。
四是技術創新取得顯著進展。互聯網龍頭企業伺服器單集群規模達到上萬台,具備了建設和運維超大規模大數據平台的技術實力,並以雲服務向外界開放自身技術服務能力和資源。在深度學習、人工智慧、語音識別等前沿領域,我國企業積極布局,搶占技術制高點。
五是產業規模快速增長。2016年我國包括大數據核心軟硬體產品和大數據服務在內的市場規模達到3100億元。預計2017年有望達到4185億元。未來2-3年市場規模的增長率將保持在35%左右。未來5年,年均增長率將超過50%。
六是一批企業快速成長。主要分為三類:一類是已經有獲取大數據能力、具有一定國際影響力的公司,如網路、騰訊、阿里巴巴等互聯網巨頭;二是以華為、浪潮、中興、曙光、用友等為代表的電子信息通信廠商;三是以億贊普、拓爾思、九次方等為代表的大數據服務新興企業。
七是法治法規建設全面推進。先後制定和出台《全國人大常委會關於加強網路信息保護的決定》《全國人大常委會關於加強網路信息保護的決定》《電信和互聯網用戶個人信息保護規定》《電話用戶真實身份信息登記規定(部令第25號)》《中華人民共和國網路安全法》等文件,保障用戶隱私和合法權益。
二、我國實施國家大數據戰略面臨的挑戰
一是數據權屬不清晰,數據流通和利用混亂。大數據帶來了復雜的權責關系,產生數據的個人、企業、非政府組織和政府機構,擁有數據存取實際管理權的雲服務提供商和擁有數據法律和行政管轄權的政府機構,在大數據問題上的法律權責不明確,數據產權承認和保護存在盲點,阻礙了數據有效流通。
二是數據爆炸式增長與數據有效利用矛盾突出。當前面臨的問題不是數據缺乏,而是數據快速增長與數據有效存儲和利用之間矛盾日益突出。數據呈爆炸式增長,每兩年數據量翻10倍,而摩爾定律已接近極限,硬體性能提升難以應對海量數據增長。
三是企業與政府數據雙向共享機制缺乏。目前,我國政府、少數互聯網企業和行業龍頭企業掌握了大部分數據資源,但數據歸屬處於模糊狀態,法律規定不明確,政府與企業數據資源雙向共享不夠。
四是發展一哄而上,存在過度競爭傾向。截止2017年1月,全國37個省、市出台大數據發展規劃,90%提出要統籌建設政府和行業數據中心,有12個省市提出建設面向全國的大數據產業中心,有14省(市)合計產值目標過2.8萬億元,遠遠超過工信部提出到2020年1萬億元大數據產值發展目標。
五是安全問題日益凸顯。截至2017年7月,全國共偵破侵犯公民個人信息案件和黑客攻擊破壞案件1800餘起,抓獲犯罪嫌疑人4800餘名,查獲竊取的各類公民個人信息500多億條。烏克蘭電力系統和伊朗核設施遭遇網路攻擊,也給我國電力、石油、化工、鐵路等重要信息系統安全敲響了警鍾。
三、 更好實施我國國家大數據戰略政策建議
按照十九大精神,要著力推動大數據與實體經濟深度融合,建設數字中國和智慧社會,實現網路強國的目標,需要從政府、企業、社會組織和個人等統籌推動國家大數據戰略落實。
(一)完善機制與制度,更好發揮政府作用。在體制機制方面,建議設立由國務院領導擔任組長的國家大數據戰略領導小組,負責組織領導、統籌協調全國大數據發展。領導小組下設辦公室和大數據專家咨詢委員會。
在法規建設方面,加快制定《大數據管理條例》,鼓勵行業組織制定和發布《大數據挖掘公約》和《大數據職業操守公約》,在條件成熟時啟動《數據法》立法,明確數據權屬,培育大數據市場,加快數據作為生產要素規范流通。
在產業政策方面,出台數字經濟優惠政策,創新數字經濟監管模式,加強重點人群大數據應用能力培訓,創造更多就業。
在試點示範方面,在環境治理、食品安全、市場監管、健康醫療、社保就業、教育文化、交通旅遊、工業製造等領域開展大數據試點應用,以點帶面提升大數據應用能力。
在資源共享方面,按照「邏輯統一、物理分散」原則,通過建設國家一體化大數據中心和國家互聯網大數據平台,探索政府與企業數據資源雙向共享機制。
在發展環境方面,著力部署下一代新基礎設施,加快我國信息基礎設施優化升級,制定政府大數據開發與利用的「負面清單」「權力清單」和「責任清單」,建立統計和評估指標體系,營造良好的輿論環境,防止炒作大數據概念,引導全國大數據健康有序發展。
在數據安全方面,加快落實《中華人民共和國網路安全法》,建立國家關鍵基礎設施信息安全保護制度,明確監管機構的關鍵基礎設施行業主管部門的信息安全監督管理職責,加快推動國產軟硬體的應用推廣,提升安全可控水平。
(二)對企業分類施策,發揮市場資源配置決定性作用。一是發揮互聯網龍頭企業引領和帶動作用。網路、騰訊、阿里、京東為代表的龍頭企業技術和人才儲備雄厚,具有強大的數據資源收集、存儲、計算和分析能力,成為我國大數據技術進步的主要推動力。應像使用電、水、交通等傳統基礎設施一樣,互聯網龍頭企業向各行業提供高性能和低成本的大數據服務,幫助傳統企業提升效率,提升核心競爭力。
二是發揮重要行業龍頭企業數據和用戶優勢。我國電力、交通、金融等諸多行業龍頭集聚了海量用戶和數據,是未來我國大數據戰略實施的主戰場和大數據價值真正「鑽石礦」。應發揮鐵路、電力、金融等重要行業龍頭企業優勢,通過與互聯網龍頭企業深度合作,利用其技術優勢,深度挖掘數據資源,提升自身核心競爭力,並幫助中小企業發展。
三是發揮通信運營商生力軍作用,為大數據發展提供基礎性戰略性資源。我國移動、電信、聯通等擁有全球最多的電話用戶,積累了海量數據,是我國信息社會的戰略性資源。應充分發揮自身在網路方面的優勢,推動移動互聯網、雲計算、大數據、物聯網等與行業結合,助力智慧城市、交通、能源、教育、醫療、製造、旅遊等行業的創新和發展。
(三)激發社會組織活力,構建新型協作關系。構建政府和社會組織互動的信息採集、共享和應用協作機制,提高社會組織大數據應用意識和能力,與具有大數據技術的企業合作,提高社會事業精準化水平和資金使用效率。針對發展需要、重視科技引領,整合廣大科研機構和事業單位力量,加強大數據基礎理論、方法和技術研究,推動關鍵技術突破。
(四)提升公民數據意識和能力,推動「數字公民」建設。通過給每位公民一個數字身份,方便公民獲取個性化、智慧化精準服務,提高政府公共服務的精準度與實效性,推動社會治理向精細化、智慧化轉變。要提高公民數據素養,增強公民數據權利意識,提高大數據應用能力。
『陸』 結合大數據時代的特點,談談數據時代社會治理遇到了哪些挑戰
社會治理大數據意識低。隨著大數據時代的到來,大數據分析為服務型社會治理模式的實現提供了重要支撐。然而,以大數據分析為重要支撐的服務型社會治理模式的實現,必須以社會治理大數據意識的形成為前提。從我國目前的情況來看,社會治理大數據意識仍然比較低,主要體現在以下三個方面:一是「重管理、輕服務」的管控思維在我國仍然大有市場,導致社會治理大數據意識的形成缺乏強有力的平台支撐。二是「重局部、輕全局」的部門利益導向導致我國社會治理體制的碎片化,從而使社會治理大數據意識的形成失去了重要的動力來源。三是「重政府、輕社會」的偏見導致包括企事業單位、社會組織、社區和公民個人在內的其他社會主體在社會治理中的參與性嚴重不足,從而使社會治理大數據意識的形成失去了廣泛的社會基礎。
社會治理大數據共享障礙多。目前,我國社會治理相關數據實現完全共享仍然面臨諸多障礙,主要體現在以下五個方面:一是缺乏數據共享的理念,對社會治理現代化的認識不足,不同部門的數據之間缺乏互聯互通,社會治理相關數據的綜合利用效益低下。二是缺乏數據共享機制的責任主體,從而導致許多政府部門因擔心犯下泄露國家機密的錯誤而寧可不作為。三是缺乏數據共享的法規和制度,無法可依或者法律法規之間相互沖突。四是目前我國尚未形成社會治理數據共享的統一標准和規范,尚未出台在全國具有普遍指導意義的與社會治理機制相關的頂層設計,因此社會治理大數據共享缺乏明確的操作規則和目標指向。五是缺乏合理的財政預算,導致政府部門在社會治理數據和信息資源再利用中收費機制不合理,利益分配不均衡。更有甚者,一些政府部門將其掌握的社會治理數據和信息資源產權部門化,設置利用壁壘,嚴重阻礙社會治理相關數據的共享。
社會治理大數據相關能力弱。在大數據時代,提升對社會治理大數據的分析能力以及對分析結果的應用能力,是實現社會治理創新的關鍵性因素。然而,目前我國社會治理大數據相關能力仍然比較弱,主要體現在以下三個方面:一是缺乏對社會治理大數據進行分析的能力,而這種分析能力又與相關人才的培養和支撐密切相關。目前,除了騰訊、網路、阿里巴巴等技術型互聯網公司掌握和應用大數據分析技術,並網羅一批大數據分析人才之外,我國對社會治理大數據的分析和應用仍然處於探索階段,相關人才十分缺乏。二是目前我國各社會治理主體嚴重缺乏根據社會治理大數據形成社會治理需求的意識和能力,而將這種社會治理需求轉化為有效社會治理和社會服務的能力就更加缺乏。三是長期以來我國各社會治理主體對社會治理特徵和發展趨勢的預測更多的是感性的判斷預測,或者是理論的邏輯推演預測,缺乏以對社會治理大數據的深度挖掘和系統分析為基礎的合理預測。
『柒』 鎴戝浗澶ф暟鎹涓蹇冨彂灞曢潰涓村摢浜涢棶棰樹笌鎸戞垬
鎴戝浗澶ф暟鎹涓蹇冨彂灞曢潰涓寸殑闂棰樹笌鎸戞垬涓昏佸寘鎷浠ヤ笅鍑犱釜鏂歸潰錛
1. 鏁版嵁瀹夊叏涓庨殣縐佷繚鎶わ細闅忕潃澶ф暟鎹鐨勫箍娉涘簲鐢錛屾暟鎹瀹夊叏鍜岄殣縐佷繚鎶ゆ垚涓洪噸瑕佺殑闂棰樸傚ぇ鏁版嵁涓蹇冮渶瑕佺『淇濇暟鎹涓嶈鏈緇忔巿鏉冪殑浜哄憳鎴栫粍緇囪幏鍙栵紝鍚屾椂涔熻佺﹀悎鐩稿叧鐨勯殣縐佷繚鎶ゆ硶瑙勫拰鏍囧噯銆
2. 鏁版嵁鍏變韓涓庢暣鍚堬細澶ф暟鎹鐨勫簲鐢ㄩ渶瑕佸ぇ閲忕殑鏁版嵁錛屼絾鐩鍓嶆垜鍥界殑鏁版嵁鏁村悎鍜屽叡浜榪樺瓨鍦ㄤ竴浜涢棶棰樸備笉鍚岄儴闂ㄣ佷笉鍚屽湴鍖虹殑鏁版嵁鏍囧噯涓嶇粺涓錛屾暟鎹瀛ゅ矝鐜拌薄杈冧負鏅閬嶏紝榪欑粰澶ф暟鎹鐨勫垎鏋愬拰搴旂敤甯︽潵浜嗕竴瀹氱殑鍥伴毦銆
3. 鎶鏈涓庝漢鎵嶇煭緙猴細澶ф暟鎹鎶鏈鍙戝睍榪呴燂紝鎴戝浗鍦ㄧ浉鍏蟲妧鏈鏂歸潰鐨勭爺鍙戝拰搴旂敤姘村鉤榪橀渶瑕佽繘涓姝ユ彁鍗囥傚悓鏃訛紝澶ф暟鎹浜烘墠鐭緙轟篃鏄褰撳墠闈涓寸殑闂棰橈紝灝ゅ叾鏄鍏峰囨暟鎹鍒嗘瀽銆佹暟鎹鎸栨帢絳夋妧鑳界殑澶嶅悎鍨嬩漢鎵嶆洿涓虹揣緙恆
4. 娉曡勪笌鏀跨瓥鐜澧冿細澶ф暟鎹涓蹇冪殑榪愯惀鍜岀$悊闇瑕佺浉搴旂殑娉曡勫拰鏀跨瓥鐜澧冩敮鎸併傜洰鍓嶆垜鍥藉湪鐩稿叧娉曡勫拰鏀跨瓥鏂歸潰榪樺瓨鍦ㄤ竴浜涗笉瀹屽杽鐨勫湴鏂癸紝闇瑕佽繘涓姝ュ畬鍠勩
5. 鑳芥簮涓庣幆澧冮棶棰橈細澶ф暟鎹涓蹇冪殑榪愯惀闇瑕佸ぇ閲忕殑鐢靛姏鍜屽喎鍗磋懼囷紝浠ヤ繚鎸佹暟鎹涓蹇冪殑姝e父榪愯屻傛垜鍥界洰鍓嶉潰涓寸潃鐢靛姏渚涘簲緔у紶鍜岀幆澧冩薄鏌撶瓑闂棰橈紝榪欑粰澶ф暟鎹涓蹇冪殑鍙戝睍甯︽潵浜嗕竴瀹氱殑鎸戞垬銆
涓轟簡搴斿硅繖浜涙寫鎴橈紝鎴戝浗搴旇ュ姞寮烘暟鎹瀹夊叏鍜岄殣縐佷繚鎶ゆ妧鏈鐨勭爺鍙戝拰搴旂敤錛屾帹鍔ㄦ暟鎹鏁村悎鍜屽叡浜宸ヤ綔錛屽姞寮哄ぇ鏁版嵁鎶鏈浜烘墠鐨勫煿鍏誨拰寮曡繘錛屽畬鍠勭浉鍏蟲硶瑙勫拰鏀跨瓥鐜澧冿紝騫剁Н鏋佹帰緔㈢豢鑹茶兘婧愬拰鐜淇濇妧鏈鍦ㄥぇ鏁版嵁涓蹇冪殑搴旂敤銆
『捌』 大數據來了 給政府統計帶來了機遇與挑戰
大數據來了 給政府統計帶來了機遇與挑戰
對於政府統計機構來說,沒有什麼比數據更重要的了。我們研究統計分類標准、統計調查方法、統計數據採集方式、統計數據加工處理方法、統計數據評估技術,都是為了獲取真實准確、完整及時、代表性強、分類科學、經濟適用的統計數據。
大數據時代的到來,既給政府統計帶來重大發展機遇,也帶來嚴峻挑戰。
一、大數據在政府統計中的應用
國家統計局高度重視大數據在政府統計中的應用。到目前為止,已經與17家大數據企業簽訂了戰略合作協議。當然,目前大數據在中國政府統計中的應用仍處於起步階段,主要表現在兩個方面:一是大數據成為政府統計數據的部分資料來源;二是大數據成為政府統計數據質量的部分評估依據。
(一)大數據成為政府統計數據的部分資料來源
目前,大數據已經成為中國政府統計數據的部分資料來源,以下是幾個有代表性的方面:
1.利用重點網上零售交易平台數據測算網上零售額
為了掌握網上零售交易平台的交易規模和結構,綜合測算網上零售數據,從今年1月份開始,國家統計局實施了月度網上零售交易平台調查,調查范圍為42家重點網上零售交易平台,包括京東商城、亞馬遜、當當網、淘寶網、天貓商城、酒仙網、美團網、中糧我買網、國美在線、大眾點評網等。據對上述42家重點網上零售交易平台數據測算,今年1~8月份,全國網上零售額22400.9億元,同比增長36.5%。其中,實物商品網上零售額18653.4億元,增長35.6%,佔全部網上零售額的83.3%;非實物商品網上零售額3747.5億元,增長41.1%,佔全部網上零售額的16.7%。這對於宏觀管理部門和社會公眾了解網上零售情況具有重要的參考作用。
2.利用房屋交易網簽數據計算全國70個大中城市的新建住宅價格指數
房屋交易網簽數據是指買賣雙方簽訂購房合同後,房地產開發企業在房管部門進行備案,並在房產信息網上公布的相關信息,包含地址、樓層、價格、面積和金額等詳細信息,基本涵蓋了當月新建住宅的全部交易情況。從2011年1月份開始,國家統計局開始採用房屋交易網簽數據計算全國70個大中城市的新建住宅價格指數。這對於提高70個大中城市新建住宅價格指數的數據質量起到了重要作用。
3.利用卓創資訊公司提供的價格信息,開展流通領域重要生產資料市場價格監測
國家統計局與卓創資訊公司開展合作,利用該企業提供的價格信息,開展流通領域重要生產資料市場價格監測。從2014年1月開始,按旬共同向社會發布流通領域9大類50種重要生產資料市場價格的檢測結果。行業涵蓋黑色金屬、有色金屬、化工產品、煤炭、石油天然氣、非金屬建材、農產品、農業生產資料、林產品等領域。地區監測范圍覆蓋北京、天津、河北、山西、內蒙古、遼寧、吉林、上海等24個省區市。這對於宏觀管理部門和社會公眾了解流通領域重要生產資料市場價格信息起到了重要作用。
(二)大數據成為政府統計數據質量的部分評估依據
國家統計局除了把大數據作為政府統計數據的部分資料來源外,也高度重視利用大數據評估政府統計數據質量。以下是目前比較有代表性的兩個方面:一是利用中國銀聯跨行銀行卡消費數據評估社會消費品零售總額數據質量;二是利用大型機械裝備企業物聯網數據評估固定資產投資數據質量。
二、大數據給政府統計帶來的機遇與挑戰
對於政府統計來說,大數據既帶來了重大發展機遇,也帶來嚴峻挑戰。
(一)大數據給政府統計帶來重大發展機遇
首先,大數據將不斷提高政府統計服務宏觀管理和社會公眾的能力。隨著大數據的不斷發展和完善,隨著政府統計機構開發應用大數據能力的不斷提升,政府統計產品的種類將會不斷豐富,政府統計數據的質量和時效性將會不斷提升,從而政府統計服務宏觀管理和社會公眾的能力會不斷提高。
其次,大數據將會推動政府統計發生革命性的變化。隨著大數據的發展和完善,隨著政府統計機構開發應用大數據技術的逐步成熟,政府統計將會發生革命性變化。一是現有的以周期性普查為基礎,以抽樣調查為主體,綜合運用全面調查、重點調查等方法,並充分利用行政記錄等資料的統計調查方法體系可能會發生重大變化。長期以來,抽樣調查方法,即在總體中抽選樣本、利用樣本推算總體的方法;普查和全面調查方法,即對總體中所有單位逐一進行調查的方法,在我國政府統計中發揮了重要作用。今後,在較長的時期內這些方法仍然會被政府統計所廣泛採用。但在大數據不斷發展和完善的情況下,某些領域、某些方面的大數據可能會取代抽樣調查、普查和全面調查方法,成為獲取統計數據的重要方法,而且這種獲取統計數據的方法將會變得越來越重要。二是政府統計中的數據採集方式可能會發生重大變化。長期以來,政府統計機構主要以企業填報、住戶記賬、調查員入戶等方式採集原始數據。在大數據不斷發展和完善的情況下,一部分原始數據將通過挖掘大數據的方式獲取,而且這種新的數據採集方式將會變得越來越重要。三是政府統計的數據處理模式可能會發生重大變化。在大數據不斷發展和完善的情況下,現行的對普查和全面調查數據進行直接審核、匯總、加工處理和對抽樣調查數據進行推算放大的數據處理模式可能會發生重大變化。
(二)大數據給政府統計帶來嚴峻挑戰
首先,大數據對政府統計能力帶來挑戰。從大數據本身的產生到發展完善,從政府統計對大數據的初步運用到成熟運用,需要一個較長的時期。在這個過程中,一方面,政府統計中傳統的統計調查方法、數據採集方式和數據處理模式將繼續運行,否則滿足不了宏觀管理和社會公眾的需求。另一方面,政府統計系統必須投入大量的人力和物力對大數據進行挖掘、加工處理和運用,否則也適應不了大數據時代宏觀管理和社會公眾的需求。這種雙軌運行的模式,對政府統計能力將是一個巨大的挑戰。
其次,大數據對傳統政府統計理念帶來挑戰。傳統的政府統計有一個約定俗成的理念:抽樣調查方法可降低調查成本,提高效率和數據質量。因為抽樣調查只對總體中部分抽中的樣本進行調查,並非對總體中的每一個單位都進行調查,所以調查單位明顯減少,可降低成本,節約時間,提高效率。同時,由於調查單位較少,政府統計機構有能力對基層統計調查人員進行較為扎實的培訓和指導,有精力對統計調查數據進行較為嚴格的檢查和審核,從而能夠提高統計調查數據質量。隨著大數據不斷發展完善,政府統計機構將會越來越多地通過大數據企業間接地獲取統計數據,不需要對總體中的具體單位進行直接調查,不需要調查員,從而也不需要對調查員進行培訓,抽樣調查所具有的調查成本低、能夠提高統計調查數據質量的優點就不復存在了。
以上是小編為大家分享的關於大數據來了 給政府統計帶來了機遇與挑戰的相關內容,更多信息可以關注環球青藤分享更多干貨
『玖』 結合大數據時代的特點,談談數據時代社會治理遇到了哪些挑戰
促進社會治理體制從碎片化到網格化的轉變。當前,社會治理碎片化是我國社會內治理體制存在的容主要問題,具體表現為:承擔社會治理職能的各部門各自為政,協同性不足,同時不同部門的職能之間存在交叉和重疊,「信息孤島」和「信息打架」現象並存。這種碎片化的社會治理體制使我國的社會治理陷入高成本、低效率的困境。
隨著大數據時代的到來,社會治理大數據成為可供所有社會治理主體使用的公共財產。在這種情況下,實現社會治理大數據的完全共享,不斷提升其使用效能、效率和效益,將有助於推動各社會治理主體之間的協同與合作,進而促進社會治理體制從碎片化向網格化轉變。
促進社會治理方法從以有限個案為基礎到「用數據說話」的轉變。長期以來,基於少數人的社會治理需求推斷、預判多數人乃至整個社會現時的或者未來的社會治理需求,基於部分地區的社會治理經驗推斷整個地區乃至整個國家的社會治理政策和措施,是一種在我國佔主導地位的社會治理思維。