導航:首頁 > 網路數據 > 大數據一個的特徵是

大數據一個的特徵是

發布時間:2024-06-19 02:05:52

大數據的特徵是什麼

大數據(big data)是指無法在一定時間內用常規軟體工具對其內容進行抓取、管理和處理的數據集合。大數據有五大特點,即大量(Volume)、高速(Velocity)、多樣(Variety)、低價值密度(Value)、真實性(Veracity)。它並沒有統計學的抽樣方法,只是觀察和追蹤發生的事情。
大數據的用法傾向於預測分析、用戶行為分析或某些其他高級數據分析方法的使用。
大數據的特徵:
容量(Volume):數據的大小決定所考慮的數據的價值和潛在的信息;

種類(Variety):數據類型的多樣性;
速度(Velocity):指獲得數據的速度;
可變性(Variability):妨礙了處理和有效地管理數據的過程;
真實性(Veracity):數據的質量;
復雜性(Complexity):數據量巨大,來源多渠道;
價值(value):合理運用大數據,以低成本創造高價值。

❷ 大數據的特徵有哪些

大數據的特徵都有哪些
數據量大(Volume)
第一個特徵是數據量大。大數據的起始計量單位至少是P(1000個T)、E(100萬個T)或Z(10億個T)。
類型繁多(Variety)
第二個特徵是數據類型繁多。包括網路日誌、音頻、視頻、圖片、地理位置信息等等,多類型的數據對數據的處理能力提出了更高的要求。
價值密度低(Value)
第三個特徵是數據價值密度相對較低。如隨著物聯網的廣泛應用,信息感知無處不在,信息海量,但價值密度較低,如何通過強大的機器演算法更迅速地完成數據的價值「提純」,是大數據時代亟待解決的難題。
速度快、時效高(Velocity)
第四個特徵是處理速度快,時效性要求高。這是大數據區分於傳統數據挖掘最顯著的特徵。
既有的技術架構和路線,已經無法高效處理如此海量的數據,而對於相關組織來說,如果投入巨大採集的信息無法通過及時處理反饋有效信息,那將是得不償失的。可以說,大數據時代對人類的數據駕馭

❸ 大數據的特徵包括哪些

1、規模性


隨著信息化技術的高速發展,數據開始爆發性增長。大數據中的數據不再以幾個GB或幾個TB為單位來衡量,而是以PB(1千個T)、EB(1百萬個T)或ZB(10億個T)為計量單位。


2、多樣性


多樣性主要體現在數據來源多、數據類型多和數據之間關聯性強這三個方面。


數據來源多,企業所面對的傳統數據主要是交易數據,而互聯網和物聯網的發展,帶來了諸如社交網站、感測器等多種來源的數據。


而由於數據來源於不同的應用系統和不同的設備,決定了大數據形式的多樣性。大體可以分為三類:一是結構化數據,如財務系統數據、信息管理系統數據、醫療系統數據等,其特點是數據間因果關系強;二是非結構化的數據,如視頻、圖片、音頻等,其特點是數據間沒有因果關系;三是半結構化數據,如HTML文檔、郵件、網頁等,其特點是數據間的因果關系弱。


數據類型多,並且以非結構化數據為主。傳統的企業中,數據都是以表格的形式保存。而大數據中有70%-85%的數據是如圖片、音頻、視頻、網路日誌、鏈接信息等非結構化和半結構化的數據。


數據之間關聯性強,頻繁交互,如遊客在旅遊途中上傳的照片和日誌,就與遊客的位置、行程等信息有很強的關聯性。


3、高速性


這是大數據區分於傳統數據挖掘最顯著的特徵。大數據與海量數據的重要區別在兩方面:一方面,大數據的數據規模更大;另一方面,大數據對處理數據的響應速度有更嚴格的要求。實時分析而非批量分析,數據輸入、處理與丟棄立刻見效,幾乎無延遲。數據的增長速度和處理速度是大數據高速性的重要體現。


4、價值性


盡管企業擁有大量數據,但是發揮價值的僅是其中非常小的部分。大數據背後潛藏的價值巨大。由於大數據中有價值的數據所佔比例很小,而大數據真正的價值體現在從大量不相關的各種類型的數據中。挖掘出對未來趨勢與模式預測分析有價值的數據,並通過機器學習方法、人工智慧方法或數據挖掘方法深度分析,並運用於農業、金融、醫療等各個領域,以期創造更大的價值。

❹ 大數據的特徵是什麼

1、容量():數據的大小決定所考慮的數據的價值和潛在的信息;

2、種類(Variety):數據類型的多樣性;

3、速度(Velocity):指獲得數據的速度;

4、可變性(Variability):妨礙了處理和有效地管理數據的過程。

5、真實性(Veracity):數據的質量。

6、復雜性(Complexity):數據量巨大,來源多渠道。

7、價值(value):合理運用大數據,以低成本創造高價值。

(4)大數據一個的特徵是擴展閱讀:

大數據的精髓:

大數據帶給我們的三個顛覆性觀念轉變:是全部數據,而不是隨機采樣;是大體方向,而不是精確制導;是相關關系,而不是因果關系。

A、不是隨機樣本,而是全體數據:在大數據時代,我們可以分析更多的數據,有時候甚至可以處理和某個特別現象相關的所有數據,而不再依賴於隨機采樣(隨機采樣,以前我們通常把這看成是理所應當的限制,但高性能的數字技術讓我們意識到,這其實是一種人為限制);

B、不是精確性,而是混雜性:研究數據如此之多,以至於我們不再熱衷於追求精確度;

之前需要分析的數據很少,所以我們必須盡可能精確地量化我們的記錄,隨著規模的擴大,對精確度的痴迷將減弱;擁有了大數據,我們不再需要對一個現象刨根問底,只要掌握了大體的發展方向即可,適當忽略微觀層面上的精確度,會讓我們在宏觀層面擁有更好的洞察力;

C、不是因果關系,而是相關關系:我們不再熱衷於找因果關系,尋找因果關系是人類長久以來的習慣,在大數據時代,我們無須再緊盯事物之間的因果關系,而應該尋找事物之間的相關關系;相關關系也許不能准確地告訴我們某件事情為何會發生,但是它會提醒我們這件事情正在發生。

❺ 大數據的基本特徵

大數據特徵為:數據類型繁多、數據價值密度相對較低、處理速度快、時效性要求高。大數據指的是無法在一定時間范圍內使用常規軟體工具進行捕捉、管理和處理的數據集合,需要新處理模式才能具有更強的決策力、洞察發現力和流程優化能力的海量、高增長率和多樣化的信息資產。
一、大數據特徵

1、數據類型繁多:對數據的處理能力提出了更高的要求,例如網路日誌、音頻、視頻、圖片、地理位置信息等等多類型的數據。

2、處理速度快和時效性要求高:是區分於傳統的數據挖掘,也這是大數據最顯著的特徵。

3、數據價值密度相對較低:隨著物聯網的廣泛應用,無處不在的信息感知和信息海量,但是價值密度卻較低。大數據時代亟待解決的難題是:如何通過強大的機器演算法可以更迅速地完成數據的價值「提純」。

二、大數據的四大特點

1、海量性:有IDC 最近的報告預測稱,在2020 年,將會擴大50 倍的全球數據量。現在來看,大數據的規模一直是一個不斷變化的指標,單一數據集的規模範圍可以從幾十TB到數PB不等。也就是說,存儲1 PB數據是需要兩萬台配備50GB硬碟的個人電腦。而且,很多你意想不到的來源都能產生數據。

2、高速性:指數據被創建和移動的速度。在高速網路時代,創建實時數據流成為了流行趨勢,主要是通過基於實現軟體性能優化的高速電腦處理器和伺服器。企業一般需了解怎麼快速創建數據,還需知道怎麼快速處理、分析並返回給用戶,來滿足他們的一些需求。

3、多樣性:由於新型多結構數據,導致數據多樣性的增加。還包括網路日誌、社交媒體、手機通話記錄、互聯網搜索及感測器網路等數據類型造成。

4、易變性:大數據會呈現出多變的形式和類型,是由於大數據具有多層結構,相比傳統的業務數據,大數據有不規則和模糊不清的特性,導致很難甚至不能使用傳統的應用軟體來分析。隨時間演變傳統業務數據已擁有標準的格式,能夠被標準的商務智能軟體識別。現在來看,要處理並從各種形式呈現的復雜數據中挖掘價值,成為了企業面臨的挑戰。

閱讀全文

與大數據一個的特徵是相關的資料

熱點內容
ps入門必備文件 瀏覽:348
以前的相親網站怎麼沒有了 瀏覽:15
蘋果6耳機聽歌有滋滋聲 瀏覽:768
怎麼徹底刪除linux文件 瀏覽:379
編程中字體的顏色是什麼意思 瀏覽:534
網站關鍵詞多少個字元 瀏覽:917
匯川am系列用什麼編程 瀏覽:41
筆記本win10我的電腦在哪裡打開攝像頭 瀏覽:827
醫院單位基本工資去哪個app查詢 瀏覽:18
css源碼應該用什麼文件 瀏覽:915
編程ts是什麼意思呢 瀏覽:509
c盤cad佔用空間的文件 瀏覽:89
不銹鋼大小頭模具如何編程 瀏覽:972
什麼格式的配置文件比較主流 瀏覽:984
增加目錄word 瀏覽:5
提取不相鄰兩列數據如何做圖表 瀏覽:45
r9s支持的網路制式 瀏覽:633
什麼是提交事務的編程 瀏覽:237
win10打字卡住 瀏覽:774
linux普通用戶關機 瀏覽:114

友情鏈接