導航:首頁 > 網路數據 > 醫葯大數據應用

醫葯大數據應用

發布時間:2024-06-02 16:34:23

Ⅰ 醫療行業大數據應用的三個案例

醫療行業大數據應用的三個案例
文章從華大基因推出腫瘤基因檢測服務、大數據預測早產兒病情、廣東省人民醫院利用大數據調配床位3個醫療行業大數據應用案例中,以應用背景、數據源、圖說場景、實現途徑、應用效果5個視角去看待大數據在醫療的應用狀況。
案例一:華大基因推出腫瘤基因檢測服務
應用背景:
伴隨著生物技術、大數據技術的發展,個體基因檢測治療疾病已經成為現實。其中,最廣為人知的是美國好萊塢女星安吉麗娜?朱莉,在 2013 年經過檢測她發現自身攜帶致癌基因——BRCA1 基因,為防止罹患卵巢癌,於 2015 年切除了卵巢和輸卵管。目前,國內外已經有多家基因檢測機構,如我國的華大基因、貝瑞和康、 美國的 23andMe、 Illumina 公司等。華大基因一直致力於腫瘤基因組學研究,已經研究 20 多類癌症。近日,華大基因推出了自主研究的腫瘤基因檢測服務,採用了高通量測序手段對來自腫瘤病人的癌組織進行相關基因分析,對肺癌、乳腺癌、胃癌等多種常見高發癌症進行早期、無創傷檢測。
數據源:
檢測數據:患者血清、口腔黏膜數據、基因測序等。
其它數據:體檢數據、電子病歷、遺傳記錄、患者調查、地理區域以及生活條件等。
圖說場景:

實現路徑:
首先採取患者樣本,通過測序得到基因序列,接著採用大數據技術與原始基因比對,鎖定突變基因,通過分析做出正確的診斷,進而全面、系統、准確地解讀腫瘤葯物與突變基因的關系,同時根據患者的個體差異性,輔助醫生選擇合適的治療葯物,制定個體化的治療方案,實現「 同病異治」 或「 異病同治」 ,從而延長患者的生存時間。
應用效果:
癌症診斷和預測。腫瘤醫院的病人中有 60%至 80%剛到醫院時就已經進入中晚期,癌症早期的篩查可以幫助患者有針對性的改善生活習慣或者採取個體化的輔助治療,有益於身體健康;同時將癌症扼殺在搖籃里,從而降低日後巨大的醫葯開支和生活困擾。助力個性化醫療。結合生物大數據,挖掘疾病分子機制最終可以做到更好的篩查,更好的臨床指導以及更好用葯的過程。
案例二:大數據預測早產兒病情
應用背景:
安大略理工大學的卡羅琳·麥格雷戈( Carolyn McGregor)博士和一支研究隊伍與 IBM 一起和很多醫院合作,用一個軟體來監測處理即時的病人信息,然後把它用於早產兒的病情診斷。
數據源:
個人體征數據:心率、呼吸、體溫、血壓和血氧含量。
其它數據:孕婦產檢數據、電子病歷、遺傳數據等。
實現路徑:
系統會監控 16 個不同地方的數據,比如心率、呼吸、體溫、血壓和血氧含量,這些數據可以達到每秒鍾 1260 個數據點之多。在明顯感染症狀出現的 24 小時之前,系統就能監測到早產兒細微的身體變化發出的感染信號,及早預測控制早產兒的病情,從而提高新生兒的出生率。
應用效果:
預測病情。早產兒的穩定不是病情好轉的標志,只有通過海量的數據並且找出隱含的相關性才能發現提早知道病情,醫生就能夠提早治療,也能更早地知道某種療法是否有效,這一切都有利於病人的康復。
案例三:廣東省人民醫院利用大數據調配床位
應用背景:
起因於國外醫院的經驗以及廣東省人民醫院各專業科室差異很大的病床使用率。長期以來,優勢專業病源充足,病人候床情況嚴重,排隊入院,相反有些專業空床情況明顯,病床使用率僅 65%左右。為此管理層打出了模糊臨床二級分科、跨科收治病人、集中床位調配權的一套「 組合拳」 。
數據源:
患者數據:掛號數據、電子病歷、患者基本數據等。
醫院數據:各科室床位使用情況、診療活動、平均住院費用、平均住院周期等。
實現路徑:
對跨科收治病人之後的科與科之間的工作量、收入、支出、分攤成本等指標進行合理的劃分,強化了入院處的集中床位調配權,解決病人入院排隊情況,使醫院更好地履行了社會責任,同時也給增加了醫院的效益。
應用效果:
提高病床使用率。病床使用率由 87%提高到 92%,優勢專業候床排隊現象明顯減少。
支持決策判斷。優勢專科與弱勢專科的病人在地域構成比、平均住院費用等標上存在顯著差異,支持決策判斷。

Ⅱ 大數據技術應用在醫療行業的哪些方面

【導讀】大數據技術可以說目前已經應用到了各行各業中,對於各行各業都是有很大的幫助和促進作用的,在醫療行業,能夠促進醫學研究,幫助改善我們的生活質量,有效促進相關疾病的治療等等,那麼大數據技術應用在醫療行業的哪些方面呢?下面我們就來一起了解一下。

1、新型冠狀病毒大數據搜索報告

該數據有可能更好地預測各種情況和當前公共衛生問題引起的區域性暴發疫情的情況。反過來,醫療服務提供者能夠採取適當的預防措施,並分配必要的資源,以應對與健康有關的特定疾病的區域性升級

2、區域醫療保健監控

可以將數據用於預測醫學研究,從而有助於預防可能的疾病傳播。例如,通過跟蹤他們搜索的醫療問題來了解患者人群及其醫療保健需求以及跟蹤他們在醫療站點上提供的信息,這些都是促進預防保健和研究的方法。

3、打擊性傳播疾病

如果及時報告,則可以治療性傳播疾病(STD)和性傳播感染(STI)。但是,諸如缺乏性教育等問題通常會導致症狀不受控制。大數據可以利用本地經驗,並幫助科技公司和醫療保健提供商填補信息空白並傳播對性健康的認識。

4、機器人護士

如今,在醫學研究和發展中使用大數據至關重要。人工智慧和機器學習正在引領醫學數據的收集,新葯療法的發現以及患者預後的改善。通過實時分析公共衛生問題,大數據可以促進多個領域的醫學研究,改善患者護理並防止致命疾病的傳播。

5、改善醫療保健支持系統

醫療技術的主要進步之一是醫療保健機器人技術,預計到2021年其收入將增長到28億美元。醫療保健機器人技術包括外科機器人培訓,機器人護士,智能假肢和仿生學等專業,以及治療,葯丸,遠程呈現和後勤方面的幫助。使用大數據驅動的機器人技術有可能極大地改善醫療保健支持的質量,這已經通過少數著名的機器人護士(如Robot
Dinsow)看到,它可以監控患者並提醒他們用葯;Paro機器人可以提醒護理人員。

關於大數據技術在醫療行業應用,就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於大數據工程師相關內容,可以點擊本站的其他文章進行學習。

Ⅲ 大數據在醫療行業的應用有哪些

大數據專業屬於交叉學科:以統計學、數學、計算機為三大支撐性學科;生物、醫學、環境科學、經濟學、社會學、管理學為應用拓展性學科。所以大數據在眾多行業都有應用,下面說說其在醫療領域的應用。
隨著互聯網規模不斷的擴大,大數據正在改變著這個時代的絕大一部分的行業或者企業,醫療行業也不例外,醫療健康正在成為人們關注的重點問題,以智能化、數字化為特徵的醫療信息化正在蓬勃興起,醫療行業的數據類型也在向海量、復雜、多樣的類型方式轉變。
1.就醫數據進行電子化管理
對電子醫療記錄的收集,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。在信息系統中進行分享,每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。
2.健康預測
通過智能手錶等可穿戴設備的數據,建立健康預測模型,通過這些可穿戴設備持續不斷地收集健康數據並存儲在雲端,實時匯報病人的健康狀況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。
3.醫學影像以及臨床診斷
通過讓大數據機器人來識別記住各類海量的醫學影像,例如X射線、核磁共振成像、超聲波……等各種的圖像。對大量病歷進行深度挖掘與學習,訓練其對影片的診斷,最終實現輔助醫生進行臨床決策,規范診療路徑,提高醫生的工作效率。
4.葯品研發
利用大數據進行數據建模並進行分析,預測葯物的臨床結果,可以為臨床階段的實驗結果提供參考,節省臨床階段的時間並優化臨床實驗結果。制葯公司也可以通過數據建模進行分析,從而生產出治療成功率更高的葯品並極大地縮短葯品從研發到投入市場的時間。

Ⅳ 大數據醫療行業的5大應用

一、電子病歷


到目前為止,大數據最強大的應用就是電子醫療記錄的收集。每一個病人都有自己的電子記錄,包括個人病史、家族病史、過敏症以及所有醫療檢測結果等。


這些記錄通過安全的信息系統(究竟是否安全值得商榷)在不同的醫療機構之間共享。每一個醫生都能夠在系統中添加或變更記錄,而無需再通過耗時的紙質工作來完成。這些記錄同時也能幫助病人掌握自己的用葯情況,同時也是醫學研究的重要數據參考。


二、健康監控


醫療業的另一個創新是“可穿戴設備”的應用,這些設備能夠實時匯報病人的健康狀況。


和醫院內部分析醫療數據的軟體類似,這些新的分析設備具備同樣的功能,但能在醫療機構之外的場所使用,降低了醫療成本,病人在家就能獲知自己的健康狀況,同時還獲得智能設備所提供的治療建議。這些可穿戴設備持續不斷地收集健康數據並存儲在雲端。


三、醫護資源配置


這個看似不可能完成的任務,已經在大數據的幫助幫助下在一些“試點”單位實現。在法國巴黎,有四家醫院通過多個來源的數據預測每家醫院每天和每小時的患者數量。


他們採用一種被稱為“時間序列分析”的技術,分析過去10年的患者入院記錄。這項研究能夠幫助研究人員發現患者入院的規律並利用機器學習,找到能夠預測未來入院規律的演算法。


四、大數據與人工智慧


人工智慧技術通過演算法和軟體,分析復雜的醫療數據,達到近似人類認知的目的。因此AI使得計算機演算法能夠在沒有直接人為輸入的情況下預估結論成為可能。由AI支持的腦機介面可以幫助恢復基本的人類體驗,例如因神經系統疾病和神經系統創傷而喪失的說話和溝通功能。


五、醫學影像


醫學影像包括X射線、核磁共振成像、超聲波等,這些都是醫療過程中的關鍵環節。


放射科醫生往往需要單獨查看每一個檢查結果,不但產生了巨大的工作量,同時也有可能耽誤患者的最佳治療時間。但是大數據卻可以有效解決這一問題。


關於大數據醫療行業的5大應用的內容,青藤小編就和您分享到這里了。如果您對大數據工程有濃厚的興趣,希望這篇文章可以為您提供幫助。如果您還想了解更多關於數據分析師、大數據工程師的技巧及素材等內容,可以點擊本站的其他文章進行學習。

Ⅳ 醫療大數據五大應用透視

醫療大數據五大應用透視
醫療行業是較早運用大數據分析的傳統行業之一。其中,五大醫療服務領域包括臨床業務、網路平台、公眾健康管理、遠程病人監控、新葯開發等,對大數據運用的深度和廣度都走在了前面。大數據分析大幅度提高了醫療效果和用戶滿意度。
臨床記錄和醫保大數據
匯總患者的臨床記錄和醫療保險數據集並進行高級分析,將提高醫療支付方、醫療服務提供方和醫葯企業的決策能力。比如,對醫葯企業來說,他們不僅可以生產出具有更佳療效的葯品,而且能保證葯品適銷對路。臨床記錄和醫療保險數據集的市場剛剛開始發展,擴張的速度將取決於醫療保健行業完成EMR和循證醫學發展的速度。
世界各地的很多醫療機構(如英國的NICE、德國IQWIG、加拿大普通葯品檢查機構等)已經開始了CER項目並取得了初步成功。2009年,美國通過的復甦與再投資法案,就是向這個方向邁出的第一步。在這一法案下,設立的比較效果研究聯邦協調委員會協調整個聯邦政府的比較效果的研究,並對4億美元投入資金進行分配。這一投入想要獲得成功,還有大量潛在問題需要解決。比如臨床數據和保險數據的一致性問題,當前在缺少EHR(電子健康檔案)標准和互操作性的前提下,大范圍倉促部署EHR可能造成不同數據集難以整合。再如病人隱私問題,想在保護病人隱私的前提下提供足夠詳細的數據以保證分析結果的有效性不是一件容易的事。還有一些體制問題,比如目前美國法律禁止醫療保險機構和醫療補助服務中心(Centers for Medicare and Medicaid Services)(醫療服務支付方)使用成本/效益比例來制定報銷決策,因此,即便他們通過大數據分析找到更好的方法也很難落實。
網路平台和社區
另一個潛在的大數據啟動的商業模型是網路平台和大數據,這些平台已經產生了大量有價值的數據。比如PatientsLikeMe.com網站,病人可以在這個網站上分享治療經驗;Sermo.com網站,醫生可以在這個網站上分享醫療見解;Participatorymedicine.org網站,這家非營利性組織運營的網站鼓勵病人積極進行治療。這些平台可以成為寶貴的數據來源。例如,Sermo.com向醫葯公司收費,允許他們訪問會員信息和網上互動信息。
公眾健康
大數據的使用可以改善公眾健康監控。公共衛生部門可以通過覆蓋全國的患者電子病歷資料庫,快速檢測傳染病,進行全面的疫情監測,並通過集成疾病監測和響應程序,快速進行響應。這將帶來很多好處,包括醫療索賠支出減少、傳染病感染率降低,衛生部門可以更快地檢測出新的傳染病和疫情。通過提供准確和及時的公眾健康咨詢可以大幅提高公眾健康風險意識,降低傳染病感染風險。所有這些都將幫助人們創造更好的生活。
遠程病人監控
從對慢性病人的遠程監控系統收集數據,並將分析結果反饋給監控設備(查看病人是否正在遵從醫囑),從而確定今後的用葯和治療方案。
2010年,美國有1.5億慢性病如糖尿病、充血性心臟衰竭、高血壓患者,他們的醫療費用佔到了醫療衛生系統醫療成本的80%。遠程病人監護系統對治療慢性病患者是非常有用的。遠程病人監護系統包括家用心臟監測設備、血糖儀乃至晶元葯片。晶元葯片被患者攝入後,實時傳送數據到電子病歷資料庫。舉個例子,遠程監控可以提醒醫生對充血性心臟衰竭病人採取及時治療措施,防止緊急狀況發生,因為充血性心臟衰竭的標志之一是由於保水產生的體重增加現象,這可以通過遠程監控實現預防。更多的好處是,通過對遠程監控系統產生的數據分析,可以減少病人住院時間,減少急診量,實現提高家庭護理比例和門診醫生預約量的目標。
新葯開發
醫療產品公司可以利用大數據提高研發效率。拿美國為例,這將創造每年超過1000億美元的價值。
醫葯公司在新葯物的研發階段,可以通過數據建模和分析,確定最有效率的投入產出比,從而配備最佳資源組合。模型基於葯物臨床試驗階段之前的數據集及早期臨床階段的數據集,盡可能及時地預測臨床結果。評價因素包括產品的安全性、有效性、潛在的副作用和整體的試驗結果。通過預測建模可以降低醫葯產品公司的研發成本,在通過數據建模和分析預測葯物臨床結果後,可以暫緩研究次優的葯物,或者停止在次優葯物上的昂貴的臨床試驗。
除了研發成本,醫葯公司還可以更快地得到回報。通過數據建模和分析,醫葯公司可以將葯物更快推向市場,生產更有針對性的葯物,有更高潛在市場回報和治療成功率的葯物。原來一般新葯從研發到推向市場的時間大約為13年,使用預測模型可以幫助醫葯企業提早3~5年將新葯推向市場。

Ⅵ 大數據在醫學領域有什麼應用

1、健康監測


大數據技術可以提供居民的健康檔案,包括全部診療信息、體檢信息,這些信息可以為患病居民提供更有針對性的治療方案。並且通過智能手錶等可穿戴設備,隨時帶著,可以實時匯報病人的健康情況。應用於數百萬人及其各種疾病的預測和分析,並且在未來的臨床試驗將不再局限於小樣本,而是包括所有人。


2、數據電子化管理


患者的影像數據,病歷數據、檢驗檢查結果、診療費用等各種數據錄入大數據系統,統一管理起來,每位醫生都能夠在系統中查到病人的詳細資料以及變更記錄。而無需再通過耗時的紙質工作來完成,這對於大夫更好地把握疾病的診斷和治療十分重要。


3、醫療科研


在醫療科研領域,運用大數據技術對各種數據進行篩選、分析,可以為科研工作提供強有力的數據分析支持。例如健康危險因素分析的科研中,利用大數據技術可以在系統全面地收集健康危險因素數據,包括環境因素,生物因素,經濟社會因素,個人行為和心理因素,醫療衛生服務因素,以及人類生物遺傳因素等的基礎上,進行比對關聯分析,針對不同區域、家族進行評估和遴選,研究某些疾病發病的家族性、地區區域分布性等特性。

閱讀全文

與醫葯大數據應用相關的資料

熱點內容
提取不相鄰兩列數據如何做圖表 瀏覽:45
r9s支持的網路制式 瀏覽:633
什麼是提交事務的編程 瀏覽:237
win10打字卡住 瀏覽:774
linux普通用戶關機 瀏覽:114
文件夾的相片如何列印出來 瀏覽:84
mpg文件如何刻錄dvd 瀏覽:801
win10edge注冊表 瀏覽:309
cad圖形如何復制到另一個文件中 瀏覽:775
sim文件在手機上用什麼打開 瀏覽:183
ubunturoot文件夾 瀏覽:745
手機文件誤刪能否恢復數據 瀏覽:955
照片文件名中的數字代表什麼 瀏覽:44
cs6裁切工具 瀏覽:235
資料庫超過多少數據會卡 瀏覽:858
CAD落圖文件 瀏覽:125
怎樣翻譯文件內容 瀏覽:679
戴爾r910安裝linux 瀏覽:69
有線電視升級失敗 瀏覽:560
火絨安全把文件刪掉了在哪裡找 瀏覽:503

友情鏈接